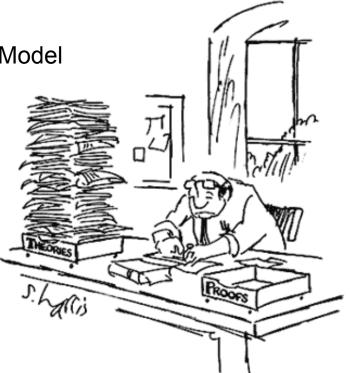
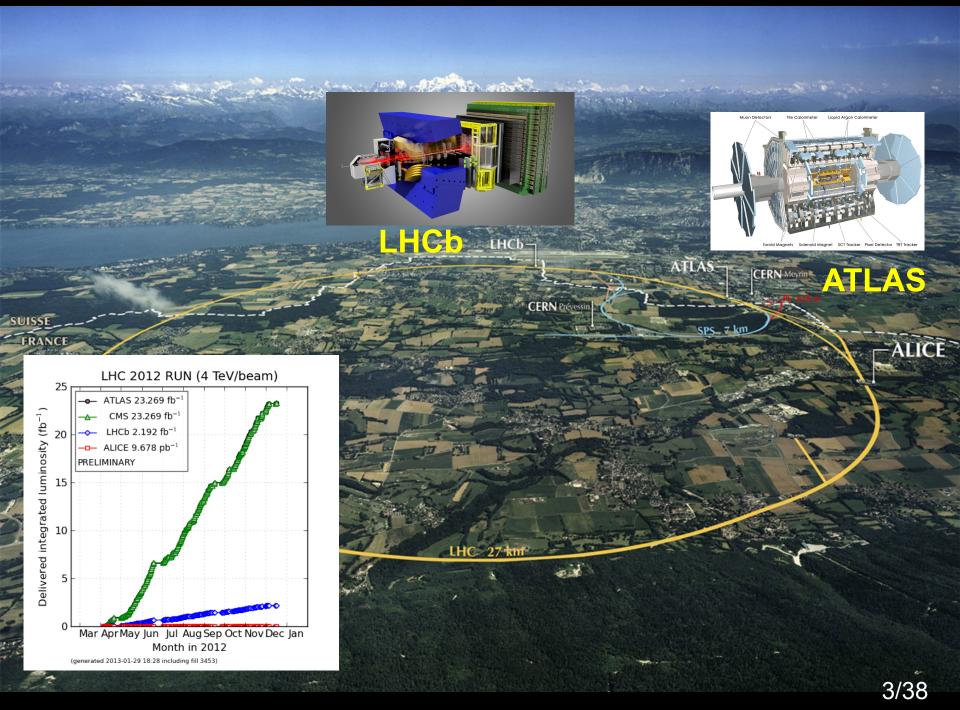
### New particle searches at the Large Hadron Collider



Paul de Jong Nikhef/UvA

"Particles, particles, particles."

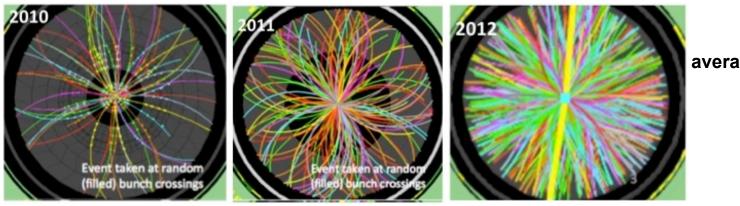

**LHC:** proton-proton collider,  $\sqrt{s} = 8 \text{ TeV}$  (2012), 14 TeV (eventually) luminosity: 25 fb<sup>-1</sup> (2011+2012), 300 fb<sup>-1</sup> eventually (2021)


#### LHC Goals:

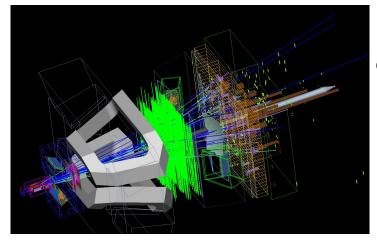
Study electroweak symmetry breaking

Search for clues of physics beyond the Standard Model

We need experimental clues to understand: dark matter, dark energy, neutrino masses, matter-antimatter asymmetry, stability of the electroweak scale, unification of forces, flavour, gravity,...

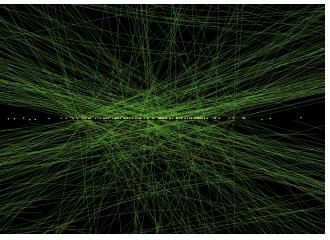




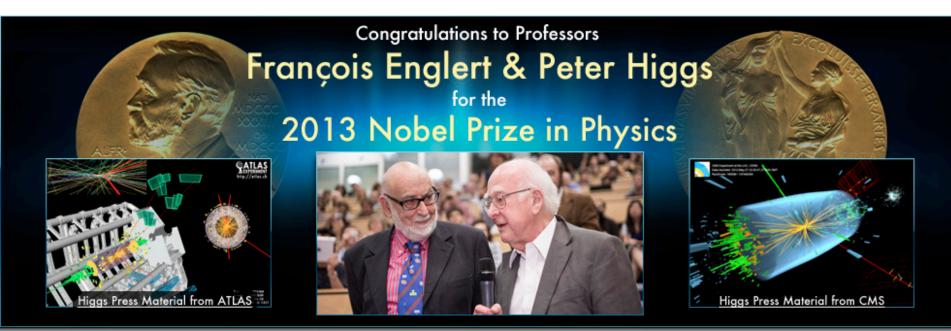


### Experiments are operating very well

Data taking efficiency > 95% Operating channels > 98% typically Resolutions as expected, radiation damage as foreseen Capable of recording data at 2-3 times the rate expected

### But conditions are challenging: more pile-up than designed (50 ns i.o. 25 ns b.c. rate)



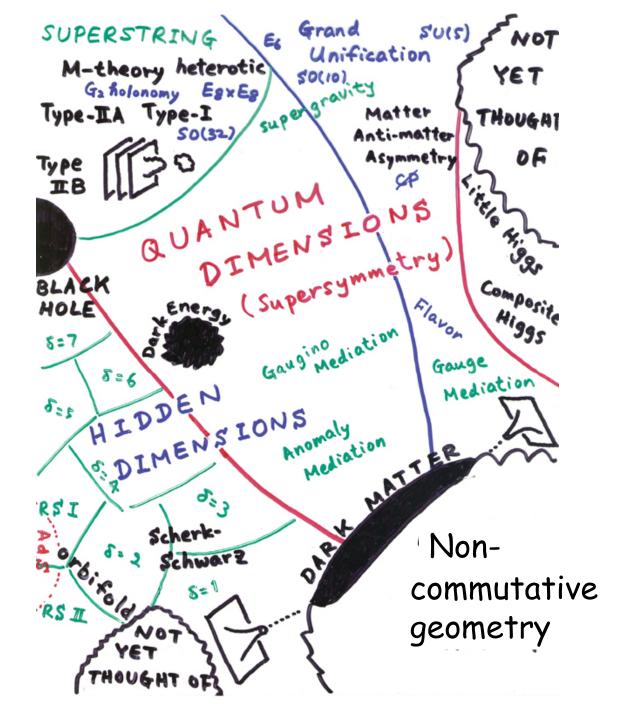

average bunch crossing




event in LHCb

78 reconstructed vertices in CMS

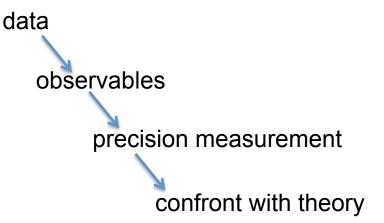



### Highlight on the way to first goal:



The ATLAS and CMS experiments at CERN congratulate Professors François Englert and Peter Higgs for their pioneering work in identifying the electro-weak-symmetry-breaking mechanism. CMS and ATLAS independently announced the discovery of a new particle on 4 July 2012, later identified as a Higgs boson, confirming the predictions of Professors Higgs, Englert and others in seminal papers published in 1964. We join in this celebration of the triumph of human curiosity and ingenuity.

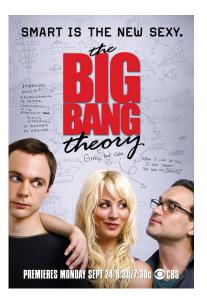
But a SM Higgs without anything else leaves us no clues as to what is beyond






after H. Murayama

**Inclusive searches**: deviations from SM prediction beyond exp+th uncertainties






model-independent

new physics in loops higher mass scales

Exclusive searches: model-driven, tuned



problem with the SM

new theory to solve problem

predictions

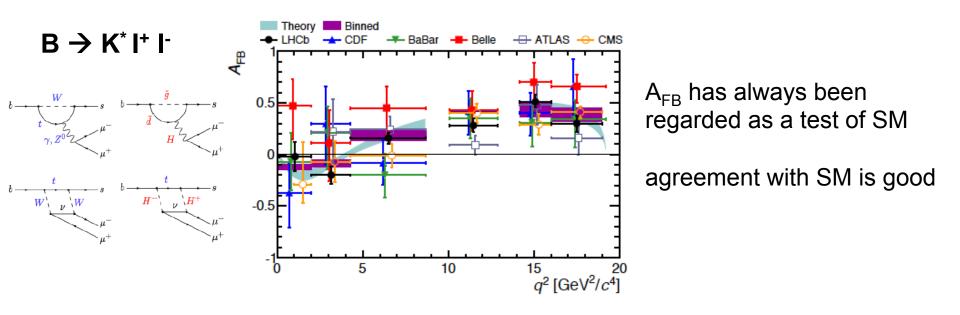
confront with data

Complementary

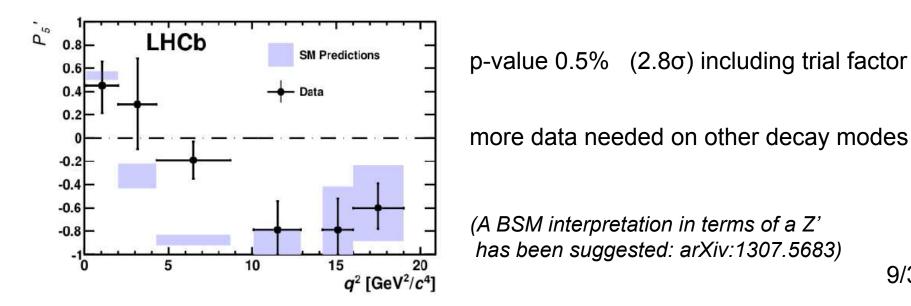
model-dependent higher sensitivity for specific models

direct production of new particles

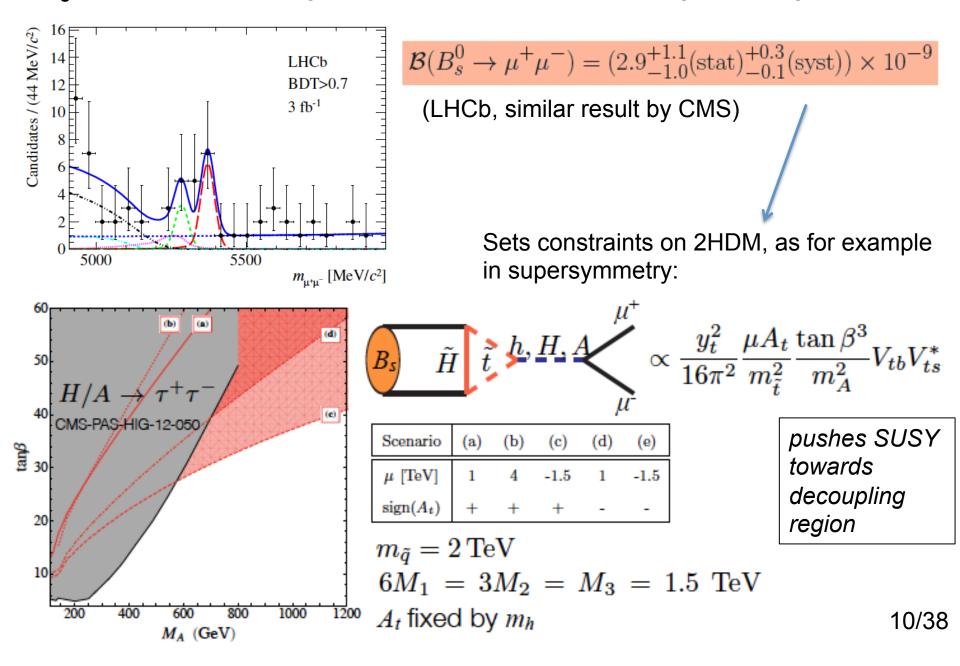
### In this talk:


Some interesting inclusive measurements (subjective choice)

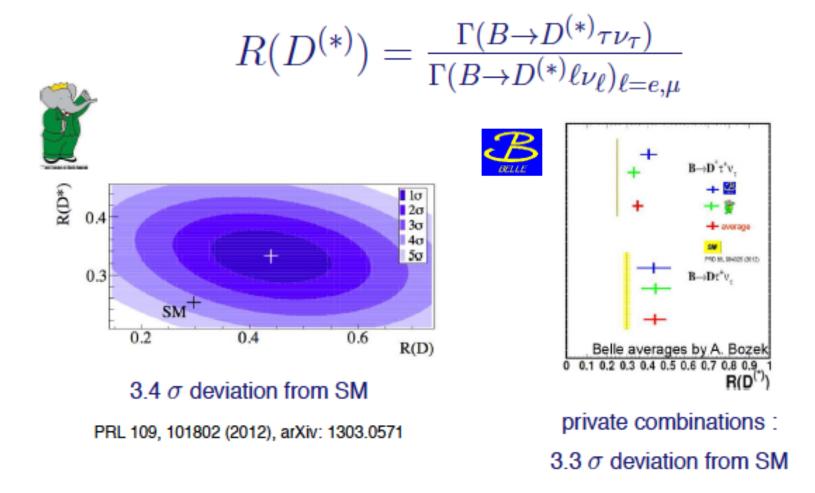
- LHCb  $B \rightarrow K^* \parallel, B_s \rightarrow \mu\mu$
- $B \rightarrow D^{(*)} \tau v$
- Top quark physics @ Tevatron and LHC


Dedicated searches:

- Resonances
- Supersymmetry
- Vector-like quarks


Outlook

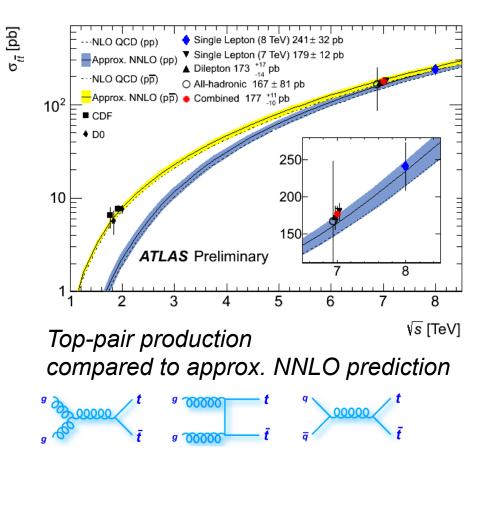



**Recent analysis of LHCb**:  $B \rightarrow K^* \mu^+ \mu^-$  (LHCb-PAPER-2013-037) New optimised observables, coefficients of angular distributions (min. th. unc.) 3 observables agree with prediction, 1 disagrees:

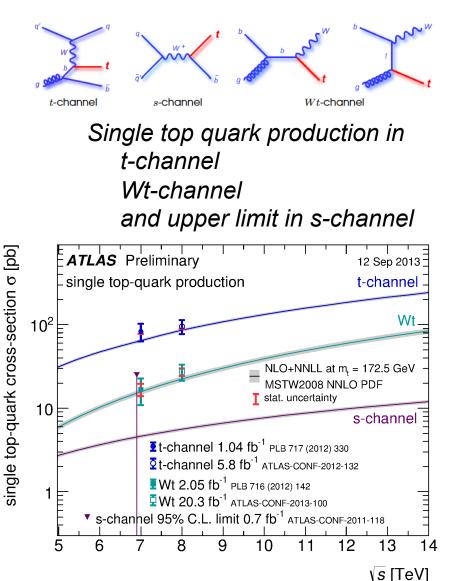


 $B_s \rightarrow \mu^+ \mu^-$ : rare decay in SM, could be enhanced by new physics




### Lepton flavour universality in B decays?

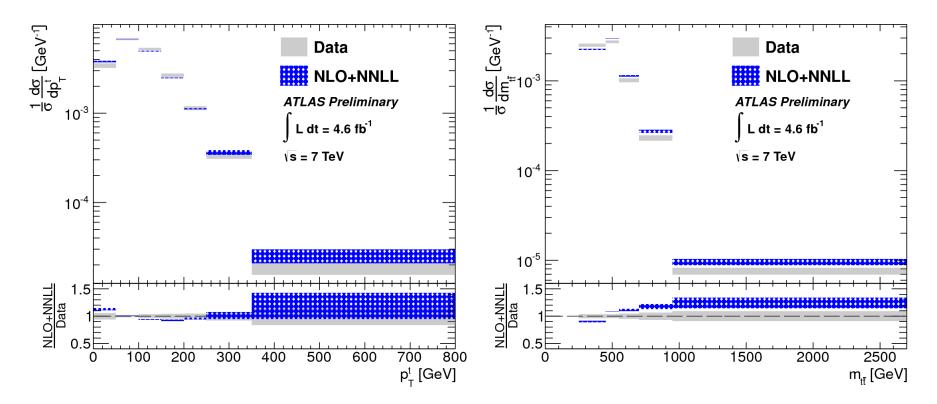



Together a >4 $\sigma$  not-understood discrepancy

New charged currents in the 3<sup>rd</sup> generation?

### Top quark physics: top-pair and single top production cross sections

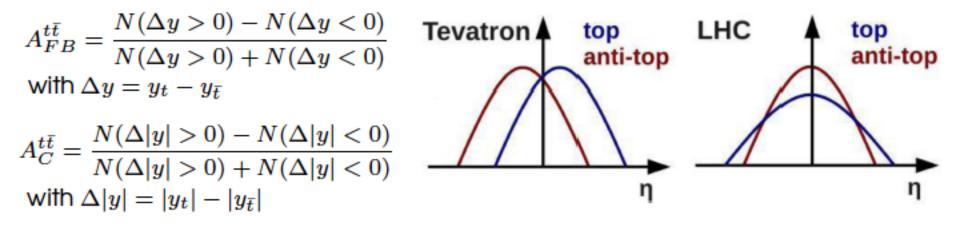



Not much room for deviations from SM...



12/38

### More detailed studies of top final state: differential cross sections


Top  $p_T$  and  $m_{tt}$  distributions, compared to NLO+NNLL theory

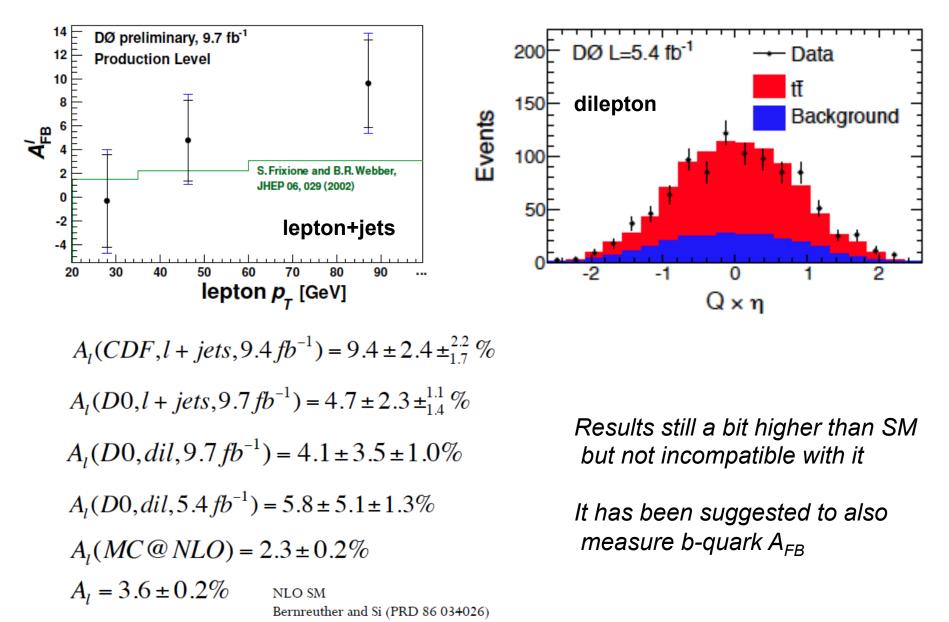


Plus measurements on jet distributions, top polarization, spin correlations, W-helicity fractions, anomalous couplings, flavour-changing neutral current decays.

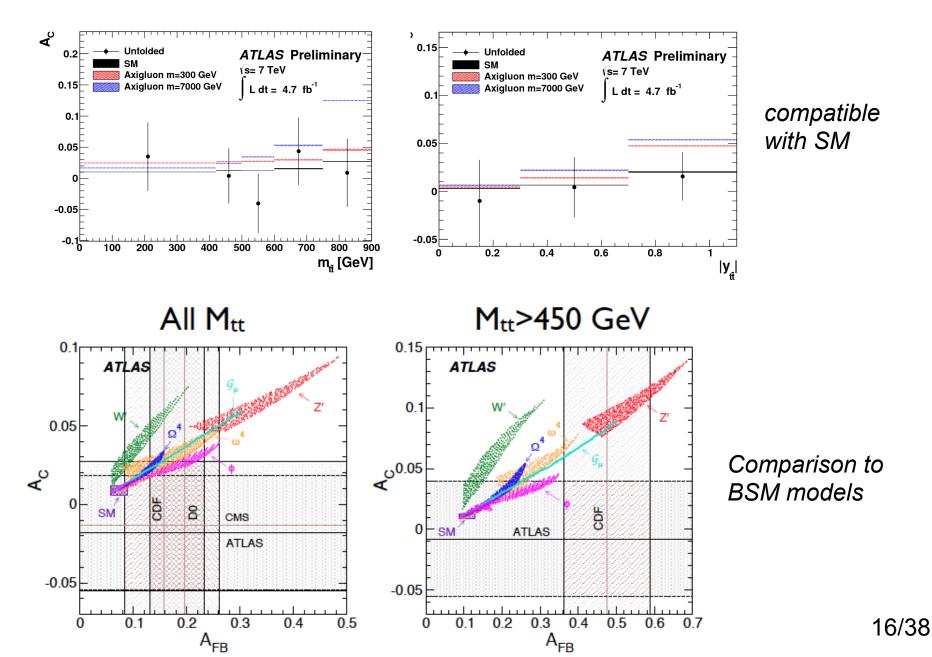
In agreement with SM; more data will enhance precision.

### An observed discrepancy at the Tevatron: top-antitop f/b asymmetry



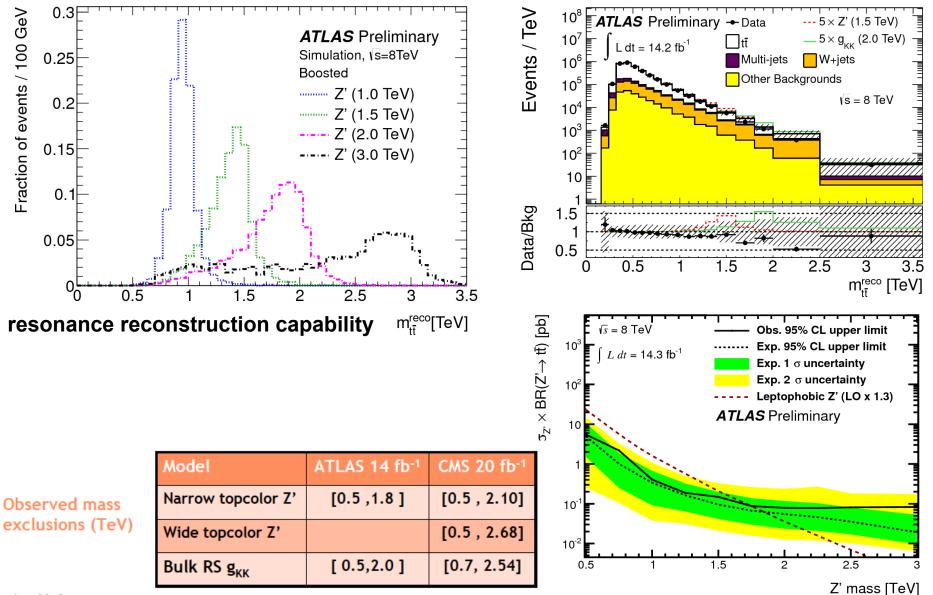

| Selection                         | NLO (QCD+EW) | CDF, 5.3 fb <sup>-1</sup> | D0, 5.4 fb <sup>-1</sup>        | CDF, 8.7 fb-1 |
|-----------------------------------|--------------|---------------------------|---------------------------------|---------------|
| Inclusive                         | 6.6          | 15.8 ± 7.4                | 19.6 ± 6.5                      | 16.2 ± 4.7    |
| $M_{tt}$ < 450 GeV/c <sup>2</sup> | 4.7          | -11.6 ± 15.3              | 7.8 ± 4.8<br>(Bkg. Subtracted)  | 7.8 ± 5.4     |
| $M_{tt} \ge 450 \text{ GeV/c}^2$  | 10.0         | 47.5 ± 11.2               | II.5 ± 6.0<br>(Bkg. Subtracted) | 29.6 ± 6.7    |
| ∆y  < 1.0                         | 4.3          | 2.6 ± 11.8                | 6.1 ± 4.1<br>(Bkg. Subtracted)  | 8.8 ± 4.7     |
| ∆y  ≥ 1.0                         | 13.9         | 61.1 ± 25.6               | 21.3 ± 9.7<br>(Bkg. Subtracted) | 43.3 ± 10.9   |

 $A_{FB}^{tt}$ 


2012

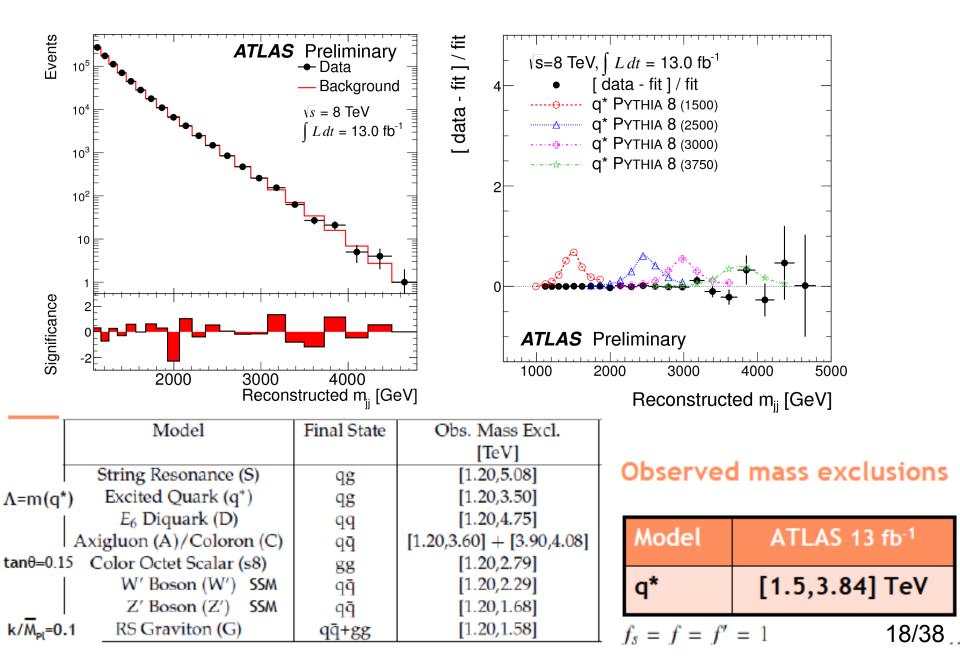
14/38

### Charge asymmetries of leptons from top decay:




### Top asymmetry at the LHC: measure A<sub>c</sub>




### top-antitop resonances

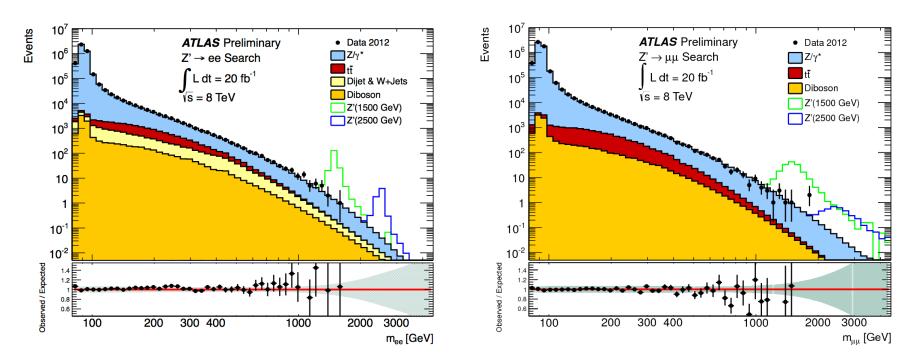
data



17/38

### **Dijet resonances**



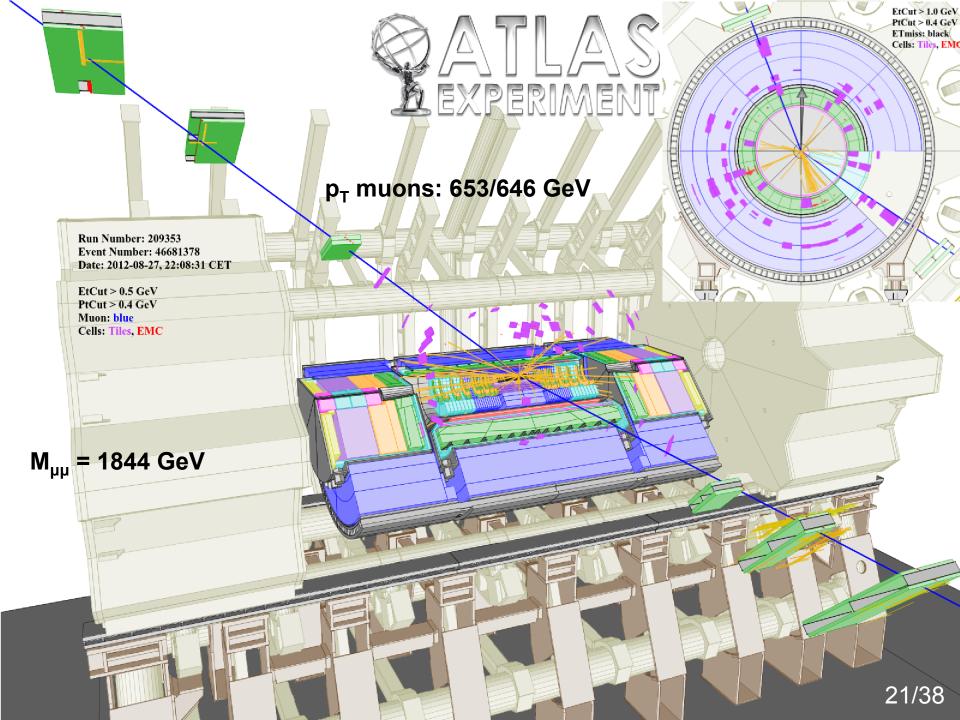



CMS Experiment at LHC, CERN Data recorded: Fri Oct 5 12:29:33 2012 CEST Run/Event: 204541 / 52508234 Lumi section: 32 CMS

CMS Experiment at LHC, CERN Data recorded: Fri Oct 5 12:29:33 2012 CEST Run/Event: 204541 / 52508234 Lumi section: 32

# m(jj) = 5.15 TeV

### **Dilepton resonances**




### Observed lower mass limits (TeV)

|             | Model                                 | ATLAS | CMS  |
|-------------|---------------------------------------|-------|------|
| L C U       | SSM Z'                                | 2.86  | 2.96 |
| SM          | <b>Ε</b> <sub>6</sub> Ζ' <sub>ψ</sub> | 2.38  | 2.60 |
| ll<br>model | RS G* ( $k/\overline{M}_{Pl}=0.1$ )   | 2.47  |      |

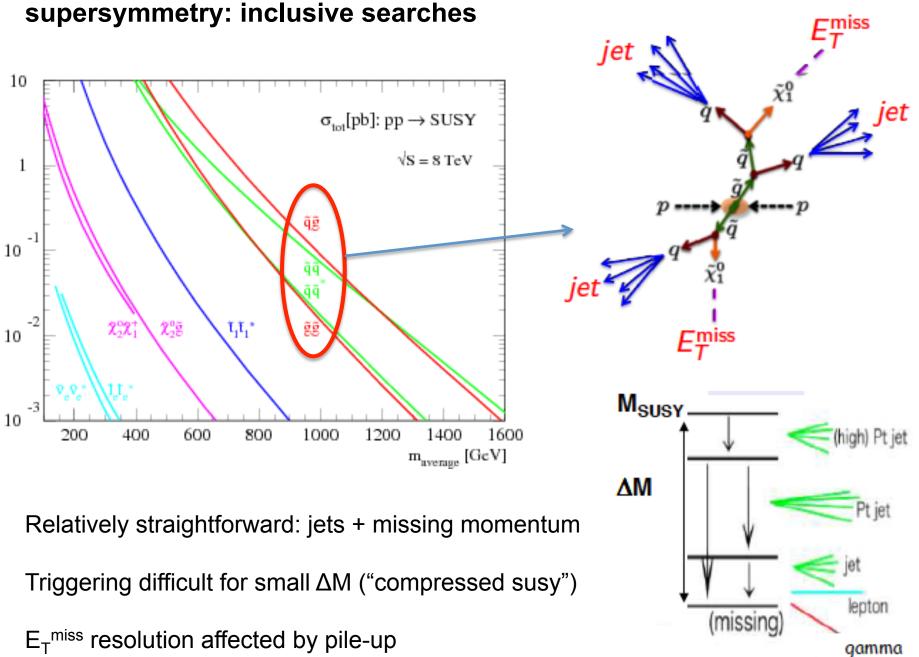
SSM = Sequential SM

RS= Randall Sundrum mode



## Supersymmetry

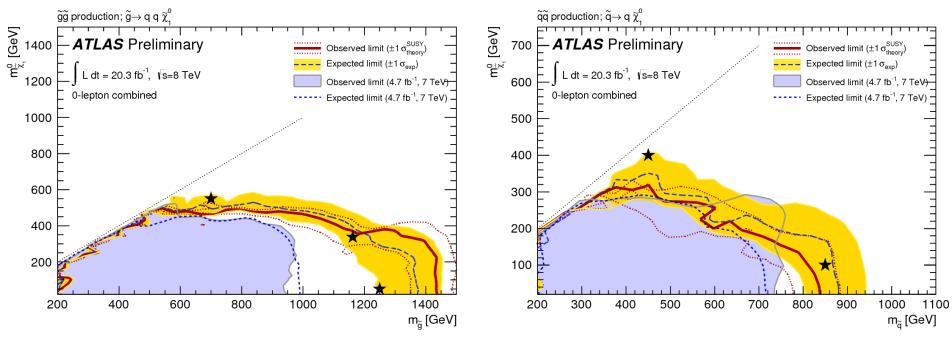
Text-book example of a theory that could solve some of the SM problems (stability of Higgs mass, dark matter, gauge coupling unification)


Also a text-book example of a much-discussed theory with very many experimental tests that have all remained empty-handed...

- Inclusive searches
- Third generation squark searches
- Electroweak gaugino searches

assuming R-parity conservation (stable LSP escaping detector)




"One day, all these trees will be SUSY phenomenology papers"



E<sub>T</sub><sup>miss</sup> resolution affected by pile-up

23/38

### **Results: limits on squarks and gluinos**

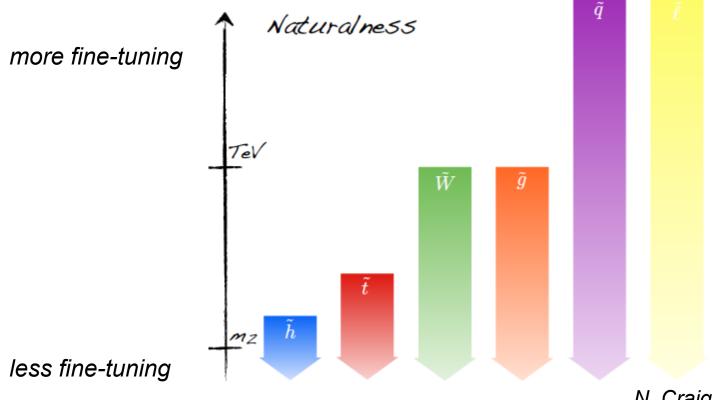


Guide to these plots:

Assume 100% branching fraction in these decay modes Assume all other sparticles decouple (high mass) Assume degeneracy between L,R scalar-up,-down,-charm,-strange

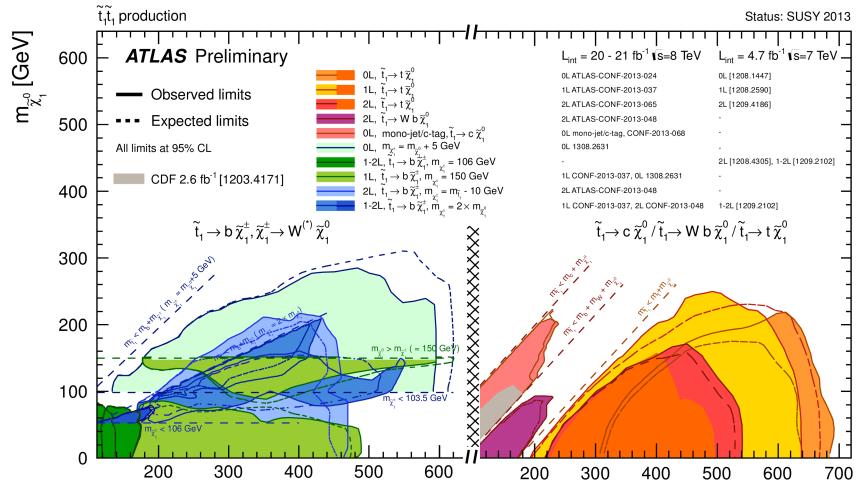
then: gluinos excluded below 1.35 TeV for light neutralino LSP squarks excluded below 780 GeV for light neutralino LSP but: no limit at all for neutralino mass > 500 GeV or so

### Beware the small print that comes with every result!


- Difficult or impossible to give "absolute" limits, since basically always assumptions involved
- Iimits quickly degrade or disappear when raising m(LSP) beyond several hundreds of GeV
- inclusive searches often assume degenerate 1st and 2nd generation squarks. Limits decrease (by several hundreds of GeV) if this is given up
- simplified models make strong assumptions on branching ratios, masses of intermediate states
- theory uncertainties (cross sections/scales/pdfs, initial state radiation)

*G. Dissertori "The IF-files"* 

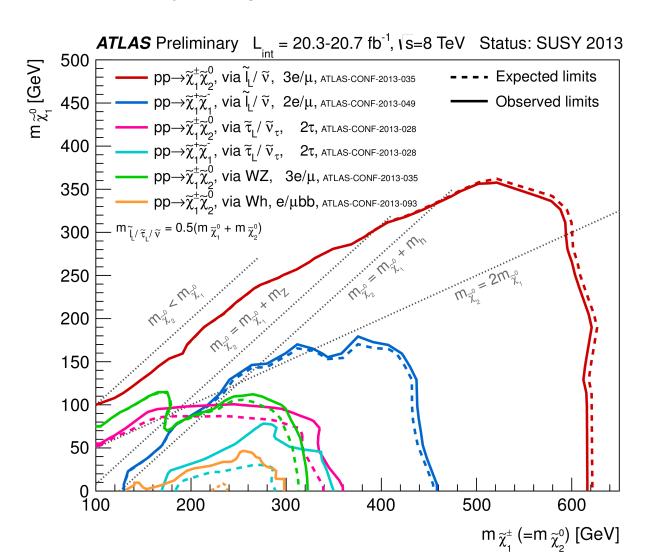
Blind generalizations beyond the small print are likely to be unjustified.


### But: not all SUSY particles are equal...

Natural SUSY: stop has a role in keeping the Higgs light, and cannot be too heavy gluino cannot be too heavy, to keep the stop light... higgsino mass (μ) is naturally of order M<sub>Z</sub> we don't care much about other squarks, and about sleptons

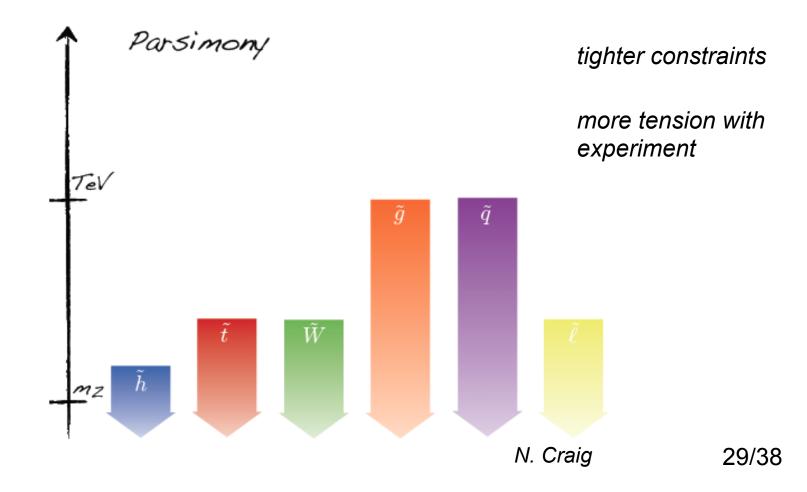


### Searches for the SUSY partner of the top quark (stop):

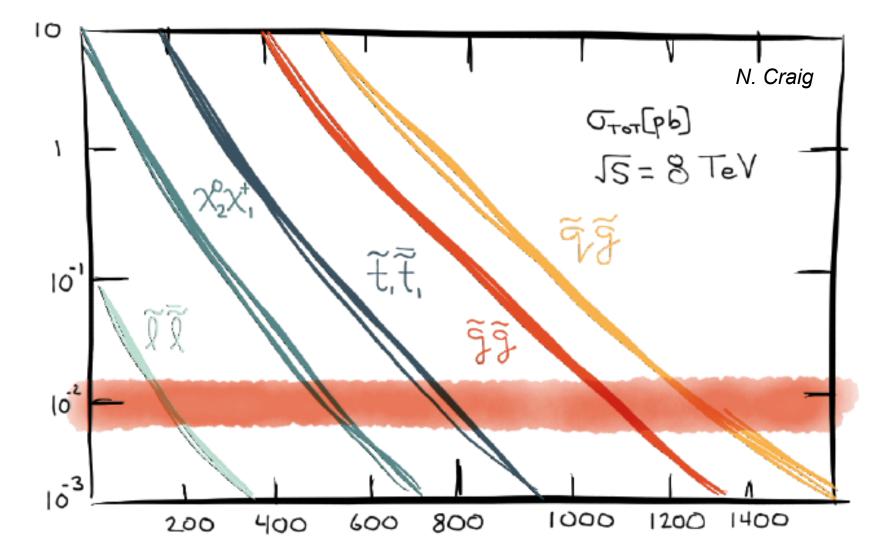

Add b-jet tagging to selection criteria Fight big top-antitop production background Limits given for specific decay modes: top+neutralino, b+chargino, c+neutralino



 $m_{\tilde{t}}$  [GeV] 27/38


### Searches for electroweak gauginos in multi-lepton final states

Chargino pair production or chargino+neutralino2 production Sensitivity boosted if sleptons are light: mediate leptonic decay Otherwise decay through W/Z to LSP.




However, there is something unnatural about natural SUSY...

Parsimony: keep SUSY breaking as simple as possible expect no big mass gap between generations expect no big mass difference between squarks and gluinos



Summary: roughly, cross section limits are of the order 10 fb:



Although there are exceptions: sleptons a little better

compressed spectra and gaugino  $\rightarrow$  W/Z a little worse

### In addition many searches for "non-standard decays":

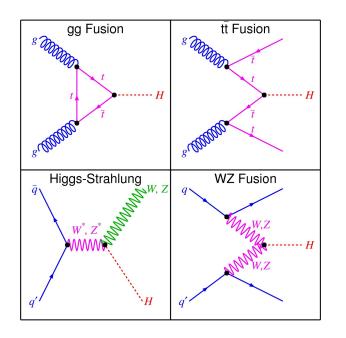
**R**-parity violation

(semi-)stable charged particles

late decays (detached vertices)

long-lived gluinos stopped in material and decaying much later

disappearing tracks

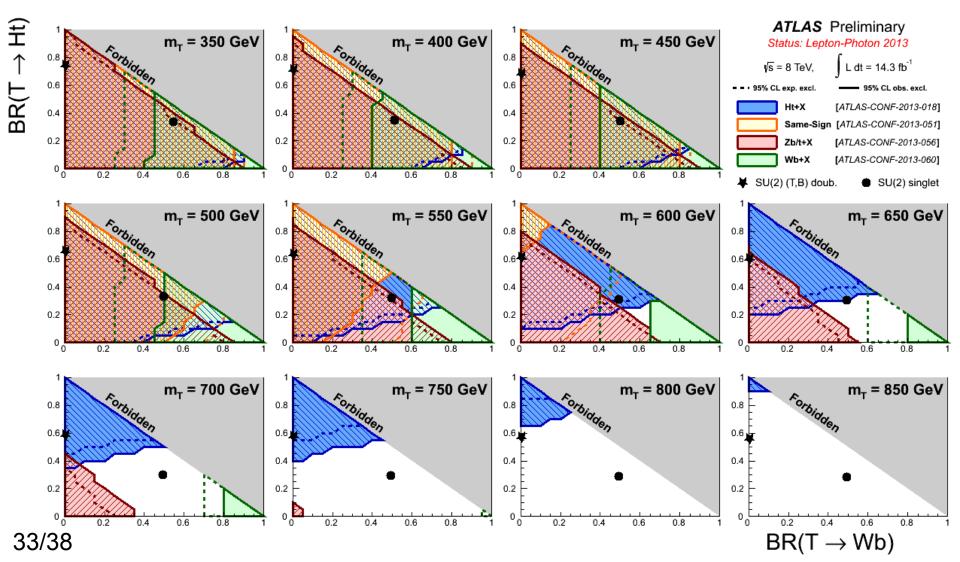

non-pointing photons...

### New physics searches using the Higgs: Higgs-as-a-tool

Higgs: The only new particle at the LHC so far Better measure it to ultimate precision!

Dark matter cross sections now known to be very small (Xenon100) Quite possibly, only interactions through Higgs mediation Interesting connections Higgs-DM !

Higgs production:




gluon-gluon fusion loop dominated by most massive particle: top

Agreement of H cross section measurement with SM implies 4<sup>th</sup> generation chiral fermions excluded

### Exception to 4<sup>th</sup> generation exclusion: vector-like quarks

L and R quarks transform the same under SU(2) Can get a mass without the Higgs. ATLAS search for vector-like T



#### 34/38

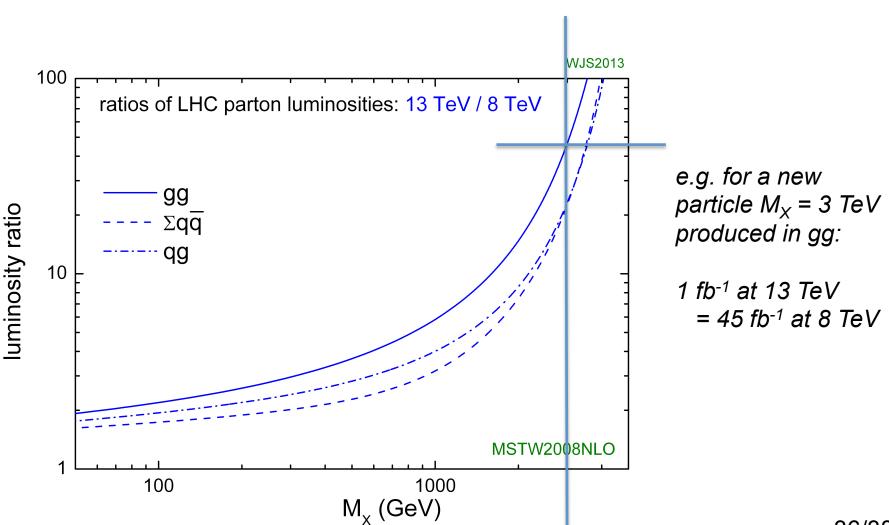
#### ATLAS Exotics Searches\* - 95% CL Lower Limits (Status: May 2013)

|                  |                                                                                                                                       |                                                       |                                                                                                         | (•••••• <b>)</b>                                                    |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
|                  | Large ED (ADD) : monojet + $E_{T,miss}$                                                                                               | L=4.7 fb <sup>-1</sup> , 7 TeV [1210.449]]            | 4 37 ToV                                                                                                | Μ <sub>D</sub> (δ=2)                                                |
|                  | Large ED (ADD) : monophoton + $E_{T,miss}$                                                                                            |                                                       |                                                                                                         | $M_D(0-2)$                                                          |
| \$               | Large ED (ADD): histophoton + $E_{T,miss}$<br>Large ED (ADD): diphoton & dilepton, $m_{\gamma\gamma/II}$                              | L=4.6 fb <sup>-1</sup> , 7 TeV [1209.4625]            | 1.93 TeV M <sub>D</sub> (δ=2)                                                                           | $M_{\rm s}$ (HLZ $\delta$ =3, NLO) <b>ATLAS</b>                     |
| Extra dimensions | UED : diphoton + $E_{T,miss}$                                                                                                         | L=4.7 fb <sup>-1</sup> , 7 TeV [1211.1150]            | 4.18 lev<br>1.40 TeV Compact. scale                                                                     | M <sub>S</sub> (HLZ 0=3, NLO) Broliminon                            |
| SIC              |                                                                                                                                       | L=4.8 fb <sup>-1</sup> , 7 TeV [1209.0753]            |                                                                                                         | M <sub>KK</sub> ~ R <sup>-1</sup>                                   |
| en               | $S^{1}/Z_{2} ED$ : dilepton, $m_{\parallel}$                                                                                          | L=5.0 fb <sup>-1</sup> , 7 TeV [1209.2535]            |                                                                                                         | 1411                                                                |
| ũ                | RS1 : dilepton, m                                                                                                                     | L=20 fb <sup>-1</sup> , 8 TeV [ATLAS-CONF-2013-017]   |                                                                                                         | n mass $(k/M_{\rm Pl} = 0.1)$                                       |
| di               | RS1: WW resonance, $m_{T,NN}$                                                                                                         | L=4.7 fb <sup>-1</sup> , 7 TeV [1208.2880]            | 1.23 TeV Graviton mass (k                                                                               |                                                                     |
| ľa               | Bulk RS : ZZ resonance, $m_{\text{lig}}$                                                                                              | L=7.2 fb <sup>-1</sup> , 8 TeV [ATLAS-CONF-2012-150]  | 850 Gev Graviton mass (k/M <sub>PI</sub> =                                                              | J                                                                   |
| xt               | RS g $\rightarrow$ tt (BR=0.925) : tt $\rightarrow$ I+jets, $m_{tt}$                                                                  | L=4.7 fb <sup>-1</sup> , 7 TeV [1305.2756]            | 2.07 TeV g <sub>KK</sub> mass                                                                           | s = 7, 8 TeV                                                        |
| ш                | ADD BH $(M_{TH} / M_D = 3)$ : SS dimuon, $N_{ch_Dart.}$                                                                               | L=1.3 fb <sup>-1</sup> , 7 TeV [1111.0080]            | 1.25 TeV $M_D(\delta=6)$                                                                                |                                                                     |
|                  | ADD BH $(M_{TH}/M_D=3)$ : leptons + jets, $\Sigma p_T$                                                                                | L=1.0 fb <sup>-1</sup> , 7 TeV [1204.4646]            | 1.5 TeV M <sub>D</sub> (δ=6)                                                                            |                                                                     |
|                  | Quantum black hole : dijet, F <sub>y</sub> (m <sub>i</sub> )<br>gggg contact interaction : $\chi(m)$                                  | L=4.7 fb <sup>-1</sup> , 7 TeV [1210.1718]            | 4.11 Tev                                                                                                | $M_D(\delta=6)$                                                     |
| _                |                                                                                                                                       | L=4.8 fb <sup>-1</sup> , 7 TeV [1210.1718]            |                                                                                                         | 7.6 TeV A                                                           |
| 0                | qqll CI : ee & µµ, mٌ                                                                                                                 | L=5.0 fb <sup>-1</sup> , 7 TeV [1211.1150]            |                                                                                                         | 13.9 TeV A (constructive int.)                                      |
|                  | uutt CI : SS dilepton + jets + E <sub>7, miss</sub>                                                                                   | L=14.3 fb <sup>-1</sup> , 8 TeV [ATLAS-CONF-2013-051] | 3.3 TeV A (                                                                                             |                                                                     |
|                  | Z' (SSM) : m <sub>ee/μμ</sub>                                                                                                         | L=20 fb <sup>-1</sup> , 8 TeV [ATLAS-CONF-2013-017]   | 2.86 TeV Z' ma                                                                                          | ass                                                                 |
|                  | Z' (SSM) : m <sub>ee</sub>                                                                                                            | L=4.7 fb <sup>-1</sup> , 7 TeV [1210.6604]            | 1.4 TeV Z' mass                                                                                         |                                                                     |
| 5                | Z' (leptophobic topcolor) : $t\bar{t} \rightarrow l+jets, m_{t\bar{t}}$                                                               | L=14.3 fb <sup>-1</sup> , 8 TeV [ATLAS-CONF-2013-052] | 1.8 TeV Z' mass                                                                                         |                                                                     |
| _                | W' (SSM): $m_{T,e/\mu}$                                                                                                               | L=4.7 fb <sup>-1</sup> , 7 TeV [1209.4446]            | 2.55 TeV W' mas                                                                                         | SS                                                                  |
|                  | W' ( $\rightarrow$ tq, g <sub>g</sub> =1): $m_{tq}$                                                                                   |                                                       | 430 GeV W' mass                                                                                         |                                                                     |
|                  | $W'_{R} (\rightarrow tb, LRSM) : m_{tb}^{H}$                                                                                          | L=14.3 fb <sup>-1</sup> , 8 TeV [ATLAS-CONF-2013-050] | 1.84 TeV W' mass                                                                                        |                                                                     |
| $\alpha$         | Scalar LQ pair ( $\beta$ =1) : kin. vars. in eejj, evjj                                                                               | L=1.0 fb <sup>-1</sup> , 7 TeV [1112.4828]            | 660 Gev 1 <sup>st</sup> gen. LQ mass                                                                    |                                                                     |
| ГŐ               | Scalar LQ pair (β=1) : kin. vars. in μμjj, μνjj                                                                                       | L=1.0 fb <sup>-1</sup> , 7 TeV [1203.3172]            | 685 Gev 2 <sup>nd</sup> gen. LQ mass                                                                    |                                                                     |
|                  | Scalar LQ pair (β=1) : kin. vars. in ττjj, τνjj                                                                                       | L=4.7 fb <sup>-1</sup> , 7 TeV [1303.0526]            | 534 GeV 3rd gen. LQ mass                                                                                |                                                                     |
| 0                | $4^{\text{th}}$ generation : t't' $\rightarrow$ WbWb<br>4th generation : b'b' $\rightarrow$ SS dilepton + jets + $E_{T \text{ miss}}$ | L=4.7 fb <sup>-1</sup> , 7 TeV [1210.5468]            | 656 GeV ť mass                                                                                          |                                                                     |
| W X R            | 1,11235                                                                                                                               | L=14.3 fb <sup>-1</sup> , 8 TeV [ATLAS-CONF-2013-051] | 720 GeV b' mass                                                                                         |                                                                     |
| New<br>quarks    | Vector-like quark : $TT \rightarrow Ht+X$                                                                                             | L=14.3 fb <sup>-1</sup> , 8 TeV [ATLAS-CONF-2013-018] | 790 Gev T mass (isospin doublet                                                                         |                                                                     |
|                  | Vector-like quark : CC, ming                                                                                                          | L=4.6 fb <sup>-1</sup> , 7 TeV [ATLAS-CONF-2012-137]  | 1.12 TeV VLQ mass (charge                                                                               |                                                                     |
| - i -            | Excited quarks : γ-jet resonance, m                                                                                                   | L=2.1 fb <sup>-1</sup> , 7 TeV [1112.3580]            | 2.46 TeV q* mas                                                                                         | S                                                                   |
| Excit.<br>ferm.  | Excited quarks : dijet resonance, m                                                                                                   | L=13.0 fb <sup>-1</sup> , 8 TeV [ATLAS-CONF-2012-148] | 3.84 TeV                                                                                                |                                                                     |
| Fe               | Excited b quark : W-t resonance, mwt                                                                                                  | L=4.7 fb <sup>-1</sup> , 7 TeV [1301.1583]            | 870 Gev b* mass (left-handed o                                                                          |                                                                     |
|                  | Excited leptons : I-γ resonance, m                                                                                                    | L=13.0 fb <sup>-1</sup> , 8 TeV [ATLAS-CONF-2012-146] | 2.2 TeV I* mass (                                                                                       | 1 P.                                                                |
|                  | Techni-hadrons (LSTC) : dilepton, m <sub>ee/µµ</sub>                                                                                  | L=5.0 fb <sup>-1</sup> , 7 TeV [1209.2535]            | <mark>850 GeV</mark> ρ <sub>4</sub> /ω <sub>τ</sub> mass ( <i>m</i> (ρ <sub>4</sub> /ω <sub>τ</sub> ) - |                                                                     |
|                  | Techni-hadrons (LSTC) : WZ resonance (IvII), m                                                                                        | L=13.0 fb <sup>-1</sup> , 8 TeV [ATLAS-CONF-2013-015] |                                                                                                         | $_{\rm T}$ ) + $m_{\rm W}$ , $m(a_{\rm T}) = 1.1 m(\rho_{\rm T})$ ) |
| ~                | Major. neutr. (LRSM, no mixing) : 2-lep + jets                                                                                        | L=2.1 fb <sup>-1</sup> , 7 TeV [1203.5420]            | 1.5 TeV N mass (m(W                                                                                     | ) = 2 TeV)                                                          |
| Othei<br>H       | eavy lepton N <sup>±</sup> (type III seesaw) : Z-I resonance, m <sub>21</sub>                                                         | L=5.8 fb <sup>-1</sup> , 8 TeV [ATLAS-CONF-2013-019]  | $N^{\pm}$ mass ( $ V_{e}  = 0.055$ , $ V_{\mu}  = 0.063$ , $ V_{\tau}  = 0.063$                         |                                                                     |
| 1tC              | $H_{L}^{\text{H}}$ (DY prod., BR( $H_{L}^{\text{H}} \rightarrow II$ )=1) : SS ee ( $\mu\mu$ ), $m_{L}^{\text{H}}$                     | L=4.7 fb <sup>-1</sup> , 7 TeV [1210.5070] 4          | 09 Gev H <sup>±±</sup> mass (limit at 398 GeV for μμ                                                    |                                                                     |
| 0                | Color octet scalar : dijet resonance, m                                                                                               | L=4.8 fb <sup>-1</sup> , 7 TeV [1210.1718]            | 1.86 TeV Scalar reso                                                                                    | nance mass                                                          |
| Multi-           | charged particles (DY prod.) : highly ionizing tracks                                                                                 | L=4.4 fb <sup>-1</sup> , 7 TeV [1301.5272]            | 490 GeV mass ( q  = 4e)                                                                                 |                                                                     |
|                  | gnetic monopoles (DY prod.) : highly ionizing tracks                                                                                  | L=2.0 fb <sup>-1</sup> , 7 TeV [1207.6411]            | 862 GeV mass                                                                                            |                                                                     |
|                  | n                                                                                                                                     |                                                       |                                                                                                         |                                                                     |
|                  |                                                                                                                                       | 10 <sup>-1</sup>                                      | 1                                                                                                       | 10 10 <sup>2</sup>                                                  |
|                  |                                                                                                                                       | 10                                                    |                                                                                                         |                                                                     |
| *Only            | a selection of the available mass limits on new states or                                                                             | r phenomena shown                                     |                                                                                                         | Mass scale [TeV]                                                    |

\*Only a selection of the available mass limits on new states or phenomena shown

#### ATLAS SUSY Searches\* - 95% CL Lower Limits

Status: SUSY 2013


| ATLAS | Preliminary |
|-------|-------------|
|-------|-------------|

 $\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1}$   $\sqrt{s} = 7, 8 \text{ TeV}$ 

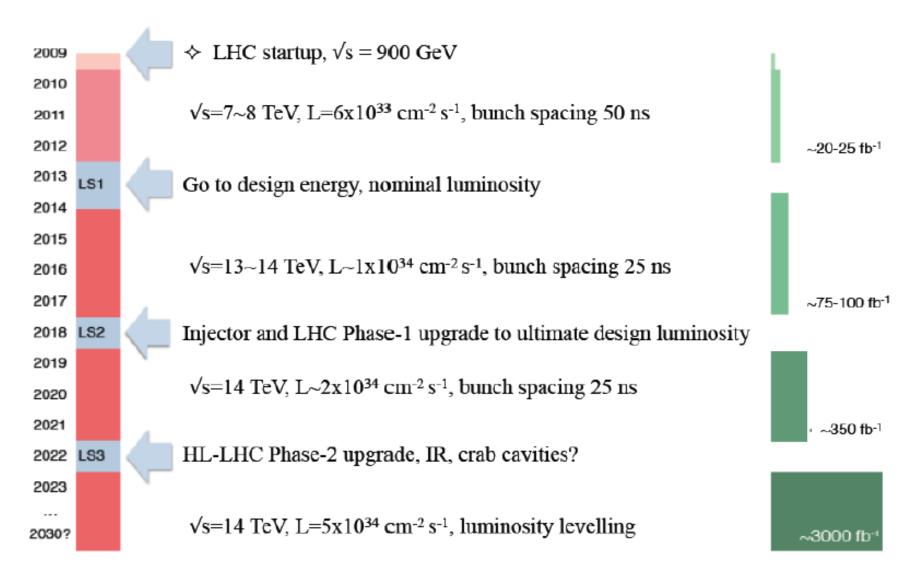
|                                                   | Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e, μ, τ, γ                                                                                                                                                                                     | Jets                                                                                                                        | $E^{\mathrm{miss}}_{\mathrm{T}}$                                             | ∫£ dt[fb                                                                            | <b>b</b> <sup>-1</sup> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mass limit                                                                                                                                                                                                         | JZ 01 - (4.0 ZZ.0) 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Reference                                                                                                                                                                                                                                                                              |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inclusive Searches                                | $ \begin{array}{l} MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_{1}^{0} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \rightarrow q q \tilde{\chi}_{1}^{0} \end{pmatrix} \\ \tilde{g}\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \rightarrow q q \tilde{\chi}_{1}^{0} \rightarrow q q \tilde{\chi}_{1}^{0} \end{pmatrix} \\ \tilde{g}\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \rightarrow q q \tilde{\chi}_{1}^{0} \rightarrow q q \tilde{\chi}_{1}^{0} \rightarrow q q \tilde{\chi}_{1}^{0} \end{pmatrix} $ | $\begin{matrix} 0 \\ 1 & e, \mu \\ 0 \\ 0 \\ 0 \\ 1 & e, \mu \\ 2 & e, \mu \\ 2 & e, \mu \\ 1 - 2 & \tau \\ 2 & \gamma \\ 1 & e, \mu + \gamma \\ \gamma \\ 2 & e, \mu & (Z) \\ 0 \end{matrix}$ | 2-6 jets<br>3-6 jets<br>2-6 jets<br>2-6 jets<br>3-6 jets<br>3-6 jets<br>0-2 jets<br>0-2 jets<br>1 b<br>0-3 jets<br>mono-jet | Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes           | 20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3                        | q̃, g̃           g̃ | 1.7 TeV<br>1.2 TeV<br>1.2 TeV<br>1.1 TeV<br>740 GeV<br>1.3 TeV<br>1.3 TeV<br>1.3 TeV<br>1.18 TeV<br>1.18 TeV<br>1.24 TeV<br>1.24 TeV<br>1.4 TeV<br>1.4 TeV<br>1.07 TeV<br>619 GeV<br>900 GeV<br>690 GeV<br>645 GeV | $\begin{split} m(\tilde{q}) = m(\tilde{g}) \\ & \text{any } m(\tilde{q}) \\ & \text{any } m(\tilde{q}) \\ & \text{m}(\tilde{x}_1^0) = 0 \text{ GeV} \\ & m(\tilde{x}_1^0) = 0 \text{ GeV} \\ & m(\tilde{x}_1^0) = 0 \text{ GeV} \\ & m(\tilde{x}_1^0) = 0 \text{ GeV} \\ & ta \eta \mathcal{E} \times 15 \\ & ta \eta \mathcal{E} \times 18 \\ & m(\tilde{x}_1^0) > 50 \text{ GeV} \\ & m(\tilde{x}_1^0) > 50 \text{ GeV} \\ & m(\tilde{x}_1^0) > 50 \text{ GeV} \\ & m(\tilde{x}_1^0) > 200 \text{ GeV} \\ & m(\tilde{x}_1^0) > 200 \text{ GeV} \\ & m(\tilde{g}) > 10^{-4} \text{ eV} \end{split}$                                                                                                                                                                                                                                                                                  | ATLAS-CONF-2013-047<br>ATLAS-CONF-2013-062<br>1308.1841<br>ATLAS-CONF-2013-047<br>ATLAS-CONF-2013-047<br>ATLAS-CONF-2013-047<br>ATLAS-CONF-2013-089<br>1208.4688<br>ATLAS-CONF-2013-026<br>1209.0753<br>ATLAS-CONF-2012-144<br>1211.1167<br>ATLAS-CONF-2012-152<br>ATLAS-CONF-2012-152 |
| 3 <sup>rd</sup> gen.<br>ẽ med.                    | $\begin{array}{c} \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow b \bar{t} \tilde{\chi}_{1}^{+} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0<br>0<br>0-1 <i>e</i> ,μ<br>0-1 <i>e</i> ,μ                                                                                                                                                   | 3 b<br>7-10 jets<br>3 b<br>3 b                                                                                              | Yes<br>Yes<br>Yes<br>Yes                                                     | 20.1<br>20.3<br>20.1<br>20.1                                                        | 800 800 800 800 800 800 800 800 800 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.2 TeV<br>1.1 TeV<br>1.34 TeV<br>1.3 TeV                                                                                                                                                                          | $\begin{array}{l} m(\tilde{\chi}_{1}^{0}) < 600  \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) < 350  \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) < 400  \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) < 300  \mathrm{GeV} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATLAS-CONF-2013-061<br>1308.1841<br>ATLAS-CONF-2013-061<br>ATLAS-CONF-2013-061                                                                                                                                                                                                         |
| 3 <sup>rd</sup> gen. squarks<br>direct production | $ \begin{array}{c} \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{t}_1^0 \\ \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow t \tilde{t}_1^{\pm} \\ \tilde{t}_1 \tilde{t}_1(\text{light}), \tilde{t}_1 \rightarrow b \tilde{t}_1^{\pm} \\ \tilde{t}_1 \tilde{t}_1(\text{light}), \tilde{t}_1 \rightarrow b \tilde{t}_1^0 \\ \tilde{t}_1 \tilde{t}_1(\text{light}), \tilde{t}_1 \rightarrow t \tilde{t}_1^0 \\ \tilde{t}_1 \tilde{t}_1(\text{medium}), \tilde{t}_1 \rightarrow t \tilde{t}_1^0 \\ \tilde{t}_1 \tilde{t}_1(\text{medium}), \tilde{t}_1 \rightarrow t \tilde{t}_1^0 \\ \tilde{t}_1 \tilde{t}_1(\text{heavy}), \tilde{t}_1 \rightarrow \tilde{t}_1^0 \\ \tilde{t}_1 \tilde{t}_1(\text{heavy}), \tilde{t}_1 \rightarrow \tilde{t}_1^0 \\ \tilde{t}_1 \tilde{t}_1(\text{neatural GMSB}) \\ \tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{matrix} 0 \\ 2 \ e, \mu \ (SS) \\ 1-2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 3 \ e, \mu \ (Z) \end{matrix}$                                              | 2 b<br>0-3 b<br>1-2 b<br>0-2 jets<br>2 jets<br>2 b<br>1 b<br>2 b<br>nono-jet/c-ta<br>1 b<br>1 b                             | Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>ag Yes<br>Yes<br>Yes | 20.1<br>20.7<br>4.7<br>20.3<br>20.3<br>20.1<br>20.7<br>20.5<br>20.3<br>20.7<br>20.7 | $ \begin{array}{c} \tilde{b}_{1} \\ \tilde{b}_{1} \\ \tilde{t}_{1} \\ \tilde{t}_{2} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100-620 GeV<br>275-430 GeV<br>110 <mark>-167 GeV</mark><br>130-220 GeV<br>225-525 GeV<br>225-525 GeV<br>200-610 GeV<br>320-660 GeV<br>90-200 GeV<br>500 GeV<br>271-520 GeV                                         | $\begin{array}{l} m(\tilde{\chi}_{1}^{0}) < \!\! 90  \text{GeV} \\ m(\tilde{\chi}_{1}^{*}) = \!\! 2  m(\tilde{\chi}_{1}^{0}) \\ m(\tilde{\chi}_{1}^{0}) = \!\! 55  \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) = \!\! 56  \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) = \!\! 0  \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) = \!\! 0  \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) < \!\! 200  \text{GeV}, m(\tilde{\chi}_{1}^{+}) - \!\! m(\tilde{\chi}_{1}^{0}) = \!\! 5  \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) = \!\! 0  \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) = \!\! 0  \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) = \!\! 0  \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) = \!\! 56  \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) = \!\! 55  \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) = \!\! 150  \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) + \!\! 150  \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) + \!\! 180  \text{GeV} \\ \end{array}$ | 1308.2631<br>ATLAS-CONF-2013-007<br>1208.4305, 1209.2102<br>ATLAS-CONF-2013-048<br>ATLAS-CONF-2013-065<br>1308.2631<br>ATLAS-CONF-2013-037<br>ATLAS-CONF-2013-024<br>ATLAS-CONF-2013-068<br>ATLAS-CONF-2013-025<br>ATLAS-CONF-2013-025                                                 |
| EW<br>direct                                      | $ \begin{array}{c} \tilde{\ell}_{L_{\mathrm{R}}} \tilde{\ell}_{L_{\mathrm{R}}}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\kappa}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu (\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\nu} \nu (\tau \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \ell_{1} \nu \tilde{\ell}_{1} \ell (\ell \tilde{\nu} \nu), \ell \tilde{\nu} \tilde{\ell}_{\mathrm{L}} \ell (\tilde{\nu} \nu) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \chi_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $2 e, \mu  2 e, \mu  2 \tau  3 e, \mu  3 e, \mu  1 e, \mu$                                                                                                                                     | 0<br>0<br>-<br>0<br>2 <i>b</i>                                                                                              | Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes                                       | 20.3<br>20.3<br>20.7<br>20.7<br>20.7<br>20.7<br>20.3                                | $ \begin{array}{c} \tilde{\ell} \\ \tilde{\chi}_1^{\pm} \\ \tilde{\chi}_1^{\pm} \\ \tilde{\chi}_1^{\pm} \\ \tilde{\chi}_1^{\pm} \\ \tilde{\chi}_2^{\pm} \\ \tilde{\chi}_1^{\pm} \\ \tilde{\chi}_2^{\pm} \\ \tilde{\chi}_1^{\pm} \\ \tilde{\chi}_2^{\pm} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                         | 85-315 GeV         125-450 GeV           180-330 GeV         600 GeV           600 GeV         m( $\tilde{\chi}_1^{\pm}$ )=r           315 GeV         285 GeV                                                     | $\begin{array}{l} m(\tilde{\chi}_{1}^{0}) = 0 \; \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) = 0 \; \text{GeV} \; m(\tilde{\ell}, \tilde{\nu}) = 0.5(m(\tilde{\chi}_{1}^{\pm}) + m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{0}) = 0 \; \text{GeV}, \; m(\tilde{\tau}, \tilde{\nu}) = 0.5(m(\tilde{\chi}_{1}^{\pm}) + m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{2}^{0}), \; m(\tilde{\chi}_{1}^{0}) = 0, \; m(\tilde{\ell}, \tilde{\nu}) = 0.5(m(\tilde{\chi}_{1}^{\pm}) + m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{1}) = m(\tilde{\chi}_{2}^{0}), \; m(\tilde{\chi}_{1}^{0}) = 0, \; sleptons \; decoupled \\ m(\tilde{\chi}_{1}^{\pm}) = m(\tilde{\chi}_{2}^{0}), \; m(\tilde{\chi}_{1}^{0}) = 0, \; sleptons \; decoupled \end{array}$                                                                                                                                      | ATLAS-CONF-2013-049<br>ATLAS-CONF-2013-049<br>ATLAS-CONF-2013-028<br>ATLAS-CONF-2013-035<br>ATLAS-CONF-2013-035<br>ATLAS-CONF-2013-093                                                                                                                                                 |
| Long-lived<br>particles                           | Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^+$<br>Stable, stopped $\tilde{g}$ R-hadron<br>GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu})_+ \tau(e$<br>GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$ , long-lived $\tilde{\chi}_1^0$<br>$\tilde{q}\tilde{q}, \tilde{\chi}_1^0 \rightarrow q q \mu$ (RPV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                              | 1 jet<br>1-5 jets<br>-<br>-<br>-                                                                                            | Yes<br>Yes<br>-<br>Yes<br>-                                                  | 20.3<br>22.9<br>15.9<br>4.7<br>20.3                                                 | $ \begin{array}{c} \tilde{\chi}_1^{\pm} \\ \tilde{g} \\ \tilde{\chi}_1^{0} \\ \tilde{\chi}_1^{0} \\ \tilde{q} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 270 GeV 832 GeV<br>475 GeV<br>230 GeV<br>1.0 TeV                                                                                                                                                                   | $\begin{array}{l} m(\tilde{\chi}_{1}^{z})\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ATLAS-CONF-2013-069<br>ATLAS-CONF-2013-057<br>ATLAS-CONF-2013-058<br>1304.6310<br>ATLAS-CONF-2013-092                                                                                                                                                                                  |
| RPV                                               | $ \begin{array}{l} LFV pp \rightarrow \widetilde{v}_{\tau} + X, \widetilde{v}_{\tau} \rightarrow e + \mu \\ LFV pp \rightarrow \widetilde{v}_{\tau} + X, \widetilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear RPV CMSSM \\ \widetilde{\chi}_{1}^{+}\widetilde{\chi}_{1}^{-}, \widetilde{\chi}_{1}^{+} \rightarrow W\widetilde{\chi}_{1}^{0}, \widetilde{\chi}_{1}^{0} \rightarrow ee\widetilde{\nu}_{\mu}, e\mu \widetilde{\nu} \\ \widetilde{\chi}_{1}^{+}\widetilde{\chi}_{1}^{-}, \widetilde{\chi}_{1}^{+} \rightarrow W\widetilde{\chi}_{1}^{0}, \widetilde{\chi}_{1}^{0} \rightarrow \tau \tau \widetilde{\nu}_{e}, e\tau \widetilde{\nu} \\ \widetilde{g} \rightarrow qqq \\ \widetilde{g} \rightarrow \widetilde{t}_{1} t, \widetilde{t}_{1} \rightarrow bs \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 1 \ e, \mu \\ \zeta_e \\ \zeta_e \\ \zeta_e \\ \zeta_e \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \left( \text{SS} \right) \end{array}$      | -<br>7 jets<br>-<br>-<br>6-7 jets<br>0-3 <i>b</i>                                                                           | -<br>Yes<br>Yes<br>Yes<br>-<br>Yes                                           | 4.6<br>4.7<br>20.7<br>20.7<br>20.3<br>20.7                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.61 TeV<br>1.1 TeV<br>1.2 TeV<br>760 GeV<br>350 GeV<br>916 GeV<br>880 GeV                                                                                                                                         | $\begin{array}{l} \lambda_{311}'=0.10,\lambda_{132}\!=\!0.05\\ \lambda_{311}'=0.10,\lambda_{1(2)33}\!=\!0.05\\ m(\tilde{q})\!=\!m(\tilde{g}),cr_{LSP}\!<\!1\text{mm}\\ m(\tilde{\chi}_{1}^{0})\!\!>\!300\text{GeV},\lambda_{121}\!\!>\!0\\ m(\tilde{\chi}_{1}^{0})\!\!>\!80\text{GeV},\lambda_{133}\!\!>\!0\\ \text{BR}(t)\!=\!\text{BR}(b)\!=\!\text{BR}(c)\!=\!0\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1212.1272<br>1212.1272<br>ATLAS-CONF-2012-140<br>ATLAS-CONF-2013-036<br>ATLAS-CONF-2013-036<br>ATLAS-CONF-2013-091<br>ATLAS-CONF-2013-007                                                                                                                                              |
| Other                                             | Scalar gluon pair, sgluon $\rightarrow q\bar{q}$<br>Scalar gluon pair, sgluon $\rightarrow t\bar{t}$<br>WIMP interaction (D5, Dirac $\chi$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>2 <i>e</i> , µ (SS)<br>0                                                                                                                                                                  | 4 jets<br>1 <i>b</i><br>mono-jet                                                                                            | -<br>Yes<br>Yes                                                              | 4.6<br>14.3<br>10.5                                                                 | sgluon<br>sgluon<br>M* scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100-287 GeV<br>800 GeV<br>704 GeV                                                                                                                                                                                  | incl. limit from 1110.2693 $\mathbf{m}(\chi){<}80~\mathrm{GeV}, \text{limit of}{<}687~\mathrm{GeV} \text{ for D8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1210.4826<br>ATLAS-CONF-2013-051<br>ATLAS-CONF-2012-147                                                                                                                                                                                                                                |
| *Onl                                              | full data p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <mark>√s = 8 TeV</mark><br>partial data<br>le mass limit                                                                                                                                       | full c                                                                                                                      |                                                                              | s or phei                                                                           | nomena is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $10^{-1}$ 1<br>shown. All limits quoted are observed minus 1 $\sigma$ theoretical sig                                                                                                                              | Mass scale [TeV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35/38                                                                                                                                                                                                                                                                                  |

## Outlook

From early 2015 onwards: higher energy !



36/38


### Some expectations for 2015:

Collisions at  $\sqrt{s} = 13$  TeV from April 2015 onwards Maybe 2 fb<sup>-1</sup> by July (EPS-HEP), 5 fb<sup>-1</sup> by August (LP), 15-30 fb<sup>-1</sup> end of 2015

Challenges: 25 ns bunch spacing instead of 50 ns realign and recalibrate detectors changes in trigger/DAQ/software...

Could pass current limits on: excited quarks with 0.5 fb<sup>-1</sup> at 13 TeV gluinos with 1 fb<sup>-1</sup> top squarks and Z' with 3 fb<sup>-1</sup>

### and then: luminosity !

