
NCG in 4 pages Thijs van den Broek
A very brief introduction into noncommutative geometry

The aim of this small document is to provide the reader (assumed to be somebody with a back-
ground in physics) a bird’s eye view of noncommutative geometry (NCG) and in particular its
application in particle physics. I by far have the intention to give even a remotely complete exhi-
bition of the subject, rather I will touch upon some of its main ideas and concepts.

NCG is a branch of mathematics that has become of vast size; it incorporates ideas and techni-
ques from various other field of mathematics. Although it is a mathematicians playground, there
are a number of applications in physics, one of these I will be focussing on. This is the possibility
to give a derivation of the Standard Model in geometrical nature. Physics and geometry have in
fact already had a rather long and fruitful joint history, think of the geometrical interpretation of
gauge theories and the General theory of relativity. As I will explain, NCG may be considered to
be a generalization of the latter.

The field is rooted in an idea that dates back to the 1940s stating that any compact space X and
the commutative algebra of continous functions on that space,

C(X,C) = {f : X → C, f is continuous}

contain the same information (strictly: they are each others dual)1. So instead of talking about
spaces (which are a topological concept) you might equally well talk about commutative alge-
bras (that are an algebraic concept). Building upon the above correspondence, various geometric
properties of the space X can be translated into properties of the corresponding algebra C(X):
a link between two completely different fields of mathematics is established! The essential idea
behind NCG is to generalize this correspondence to noncommmutative algebras2 and to provide
mathematical techniques in order to handle these noncommutative algebras.

Now for the physically interesting cases, we must enrich the space X with extra structures: we
promote it to a Riemannian manifold, a space that locally looks like the Euclidean space Rn (for
some n) on which we define a Riemannian metric g.3 We’re just referring to curved spacetimes
here, but you must keep in mind that your standard Minkowski space is problematic, since it
features a metric with minus signs... From here on we write M instead of X .

The aim of the above was to give an intuitive feeling of the basic idea of NCG, what will follow
now is considered to be the most prominent object in NCG, the spectral triple (A,H, D). HereA is
a (non)commutative unital involutive4 algebra (= space!), H is a Hilbert space —so automatically
equipped with an inner product, denoted by 〈., .〉 : H ×H → C— on which A is represented as
bounded operators, and a self-adjoint operator D : H → H. There are a number of compatibility
conditions between these three objects (that I will take for granted now) that in fact make it a
rather stringent definition.

1In the case that you’re not familiar with the concept of an algebra: it is a vector space on which a product —satisfying
certain rules— is defined. In this case we define for each f and g in C(X,C) that (fg)(x) := f(x)g(x) ∈ C i.e. fg is
indeed again an element of C(X,C).

2There seems to be some sort of “don’t ask, don’t tell”-policy towards the question whether or not such noncommu-
tative algebras again correspond to something one might call a “noncommutative space”.

3To connect with the notation that you’re probably more familiar to: this means that for each x ∈ X we have a map
g(x) whose components are denoted by gµν .

4The first of these means that there is an element that plays the role of a multiplicative unit, the second means that for
each m ∈ A, m∗ ∈ A as well.
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Okay, you might want an example of a spectral triple now. The following may said to have served
as the motivating example of the field; NCG is more or less modelled to be a generalization of it:

(A,H, D) = (C∞(M,C), L2(M,S), /∂ = iγµ(∂µ + ωµ)), . (1)

I will comment on the three different values one by one

· C∞(M,C) is the subset of C(M,C) containing only smooth (i.e. infinitely differentiable)
functions. It can be made involutive (just as C(M) itself) by just defining f∗ through
(f∗)(x) := f(x) for any x ∈M .

· The space L2(M,S) consists of smooth, spinor-valued functions5 ψ (i.e. ψ(x) is a spinor for
each x ∈ M ). The number of components of that spinor depends on the dimension of the
manifold M . In addition for each of these spinors

〈ψ,ψ〉 ≡
∫
M

ψ∗(x)ψ(x)
√
gdnx <∞

has to hold. Note that for a given manifold M , L2(M,S) need not even exist; its existence
heavily relies on the properties of M .

· /∂ is the operator that is familiar from the Dirac equation, save for the term ωµ which is a
term that accounts for the manifoldM being curved. The Dirac operator /∂ is in fact defined
using the Levi-Civita connection, the unique connection that is compatible with the metric
on M . Picking a metric thus gives you a unique Dirac operator, and the same holds the
other way around: the Dirac operator can therefore be seen as a metric.

Given a spectral triple one can enrich it with two operators, J and γ onH, the first of which can be
seen as some sort of charge conjugation, whereas the latter allows you to make a distinction into
left- and right-handed elements ofH (it is called a grading). We denote such an enriched spectral
triple by (A,H, D; J, γ) and call it a real, even spectral triple. These operators J and γ satisfy

Dγ = −γD DJ = ±JD J2 = ±1 Jγ = ±γJ

and the three different signs giving rise to eight possible combinations determine the so called
KO-dimension (∈ N mod 8) of the spectral triple.
Two more ingredients are needed. The first stems from the mathematically natural question “to
what extent is a given spectral triple unique?”. To answer that question one can —given a spec-
tral triple (A,H, D)— consider a second algebra B that is Morita equivalent6 toA. The task at hand
is then to find a spectral triple (B,H′, D′) of which B serves as the algebra: this can be called a
Morita equivalent spectral triple —though strictly it isn’t an equivalence relation. There is a de-
finite answer to this problem, but I will not mention it here, since we’ll only be needing a special
case here. Since A is Morita equivalent to itself, one can consider the answer to the problem, but
taking B = A. It turns out that there is a whole family of spectral triples that are Morita equi-
valent to the original one and they are given by (A,H, DA = D + A), where for each different
A we have another member of this family. In the case of a real spectral triple we have a slightly
different solution: the members are given by DA = D+A± JAJ∗, where A must be selfadjoint.7

The DA are called the inner fluctuations of D. These inner fluctuations turn out to have the right
form in order to be interpreted as gauge fields.

5Strictly speaking they are square integrable sections of a spinor bundle.
6Morita equivalence is a bit weaker than unitary equivalence. Will you settle with the example that each algebra A is

Morita equivalent with the algebra ofA-valued N ×N -matrices?
7Where the sign is the one coming from DJ = ±JD.
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The second and last ingredient that we’ll need here is a natural functional that can serve as the
equivalent of the action we know from high energy physics. For that we want something which
only depends on the data that is present in the spectral triple. The most (?) simple choice that
meets these requirements would be to count how many of the eigenvalues ofDA are smaller than
some mass scale Λ. Now for technical reasons it turns out that taking this isn’t allowed and we’ll
have to settle with something similar:

Tr
[
f(D2

A/Λ
2)
]
, (2)

where again the mass-scale Λ appears, as does some (a priori arbitrary) function f . The thing is
called the spectral action postulate. We’re considering the spectrum of DA here, hence the name.
Despite its deceivingly simple form it is a highly complicated object and in the cases that are of
interest to us, we can only handle it by means of an asymptotic expansion in Λ.8 In the case that M
is a four-dimensional manifold9 and D meets the right conditions10 this expansion reads:

Tr
[
f(D2

A/Λ
2)
]
∼ Λ4f4a0(D2

A) + Λ2f2a2(D2
A) + f(0)a4(D2

A) +O(Λ−2),

where f2,4 are the second and fourth moments of f :

fp ≡
∫ ∞
0

f(x)xp−1dx

and the (Seeley-DeWitt) coefficients a0,2,4(D2
A) only depend on the square of the Dirac operator.

Now a second way to get an action (one that features spinors) is to use the inner product 〈., .〉 on
the Hilbert spaceH:

1
2 〈Jψ,DAψ〉 ψ ∈ H. (3)

Note the resemblance of this term with the expression

ψ(x)γµ(∂µ +Aµ)ψ(x)

that you might know from quantum field theory. Now the spectral action principle states that to-
gether (2) and (3) constitute the total action corresponding to a spectral triple. Note that —in con-
trast to ‘normal’ high energy physics— there’s (for example) no question of adding some terms
to the action in order to make something work: a particular term is simply in the action or it’s not.

In the beginning I made a comment on NCG being a generalization of the theory of General
Relativity. With this I mean that if you would compute the spectral action (2) in the example
that I gave before, you exactly get the Einstein-Hilbert action which, in turn, gives you the field
equations of General Relativity, including a cosmologial constant!

The spectral triple for the Standard Model

Now what does this mean for particle physics? We can use the fact that the tensor product of two
spectral triples is again a spectral triple: given (A1,2,H1,2, D1,2; J1,2, γ1,2) we can form

(A1 ⊗A2,H1 ⊗H2, D1 ⊗ 1 + γ1 ⊗D2, J1 ⊗ J2, γ1 ⊗ γ2),

where J1γ1 = γ1J1 is assumed. It follows that the KO-dimension of the tensor product of two
spectral triples is the sum of the KO-dimensions of the separate spectral triples. Now for that first

8So it might only be a good approximation for particular (in this case: large enough) values of Λ.
9Actually there is a wealth of theory about when such an expansion exists at all and if so, which terms it comprises of.

10I will suffice by saying that in the cases under consideration, it does.
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spectral triple we can take the motivating example (1) and as for the second we can start with the
algebra

A2 = C⊕H⊕M3(C),

where with H we mean the quaternions. The diligent reader has already noted the resemblance
between this algebra and the gauge group of the Standard Model. Note that it is this second al-
gebra that makes the resulting spectral triple a noncommutative geometry11. A representation of
that algebra (i.e. the Hilbert space) is exactly the particle content of the Standard Model. We can
construct a grading γ2 that distuinguishes between left- and right-handed particles. This Hilbert
space describes only one generation of particles so we need to take three copies of it. So the first
Hilbert space L2(M,S) takes into account that fermions are spinors and the second Hilbert space
describes the internal structure (e.g. color) of the particles.

Then there is the Dirac operator D2 for the second spectral triple. Employing all the demands on
the Dirac operator, this actually leaves not that much freedom for it. The only thing we need to
put in by hand is the fact that we need a massless photon. The result is a Dirac operator that maps
between the left- and right-handed particles. Having fully specified the spectral triple, we can
check that not only SU(A2) equals the gauge group of the Standard Model SU(3)×SU(2)×U(1)

but also that the resulting hypercharges of the representations match those of the particles of the
Standard Model. We’re on the right track!

A second step is to calculate the inner fluctuations of the two Dirac operators that we have. For
the first one /∂ these turn out to describe exactly the gauge bosons of the Standard Model (the
photon, W , Z and gluons) and the inner fluctuations of the second are seen to describe a scalar
field that maps between left- and right-handed particles: this is the infamous Higgs field giving
mass to the various particles. This still looks very promising.

We are now ready to determine the spectral action for this spectral triple and what we find is
rather amazing: not only do we find the action of the full Standard Model but again the Einstein-
Hilbert action of General Relativity pops out too. Now the absolute bonus is that all these dif-
ferent terms are accompanied by specific coefficients that are characteristic for NCG (e.g. the
moments fn). Now if you normalize these results such that the coefficients match those of the
Standard Model, you automatically find the relation

g23 = g22 = 5
3g

2
1

between the three coupling constants. This relation says that at the energy our theory lives on
all the three forces (electromagnetic, weak and strong) are of the same strength. This means that
the value of Λ must be the GUT-energy. Given this fact, the coefficients in front of the various
terms of the Lagrangian are not independent and we can find relations between SM-parameters
that aren’t present in the ‘normal’ Standard Model itself. Rather miraculously this allows you to
(more or less) determine the masses of the top-quark and Higgs boson. The values that are found
are . 180 GeV and 168 GeV respectively.

This would be a perfect end to the story, if it wasn’t for two things: first of all, though we pre-
tended that the three forces are of equal strength at one specific energy-scale Λ, we know from
experiment that they in fact aren’t completely. Secondly, this specific value for the Higss mass is
more or less (more more than less) ruled out by experiment. So apparently the story isn’t com-
plete yet ...

Are you the one to write the final chapter?
11Hence the name ’almost commutative geometry’ is sometimes used.
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