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This is a short survey on the derivation of the Standard model from a noncom-
mutative manifold.

1. Noncommutative manifolds and gauge field theory

The starting point is a noncommutative spin manifold as described by a spectral
triple [3] (A,H, D) consisting of

• a ∗-algebra A of bounded operators on
• a Hilbert space H, and
• a self-adjoint operator in H such that

– [D, a] is bounded for any a ∈ A
– the resolvent of D is compact.

This structure can be further enriched by introducing a grading γ on H and an
anti-linear isometry J (real structure) in H such that

[a, [D, b]] = [JaJ−1, [D, b]] = 0

Moreover, we demand that γD = Dγ, Jγ = ±γJ , J2 = ± and JD = ±DJ . The
±-signs determine the KO-dimension; they can be found in [4].

The main idea is that the above consists of all structure necessary to define
a gauge theory. In fact, the group U(A) of unitary elements in the algebra A
naturally acts on the Hilbert space and as intertwiners on the representation of A
and D. More precisely,

ψ 7→ Uψ; a 7→ UaU∗; D 7→ UDU∗; (ψ ∈ H, a ∈ A),

where U = uJuJ∗ is the adjoint representation of u ∈ U(A). It is then only natural
to look for invariants under this group action and we work with the following
combination

SΛ[D,ψ] := 〈ψ,Dψ〉+ Tr f(D/λ)
considered as a physical action functional on D and ψ. Here f is an even function,
and is such that the trace is well-defined. There are now two ways of introducing
gauge fields, the first of physical origin and the second of mathematical.

Observe that the unitaries u ∈ U(A) act as

D 7→ UDU∗ = D + u[D,u∗]± Ju[D,u∗]J−1.

Thus, as usual in minimal coupling, one replaces D by the operator D+A±JAJ−1

where a =
∑
aj [D, bj ] with aj , bj now arbitrary elements in A. This is our gauge

field, which transforms in the usual way:

A 7→ uAu∗ + u[D,u∗].

From a mathematical point of view there is a nice interpretation of gauge fields
as inner fluctuations, generated by Morita equivalence. It is based on the follow-
ing question: given a spectral triple (A,H, D) and an algebra B that is Morita
equivalent to A, is it possible to construct a spectral triple (B,H′, D′)?
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Not surprisingly, the answer is yes [4]. We will not give the details here, but
note that in the case that B = A there is still freedom in choosing D′ different
from D. These are precisely the inner fluctuations, and correspond to choosing a
connection one-form of the form

A =
∑
j

aj [D, bj ]; (aj , bj ∈ A).

The operator D then becomes DA := D+A±JAJ−1 and A transforms as above.
In the rest of this note, we will compute in several examples the leading terms

of the spectral action, as an expansion in Λ. The main techniques we will use are
the Laplace transform and heat kernel expansions, as we will now briefly sketch.
We will write

f(x) =
∫
t>0

k(t)e−tx
2
.

Also define f0 = f(0), and fα =
∫∞

0
f(y)yα−1dy. Thus, in determing Tr f(DA/Λ)

we have to compute the heat kernels Tr e−tD
2
A . This is achieved trough a theorem

by Gilkey [6]. In fact, in all our examples D2
A is of the following form ∇∗∇ + E.

For such an operator with ∇ a connection on a vector bundle, we have

Tr e−tD
2
A ∼

∑
n≥0

t
n−m

2

∫
M

an(x,D2
A)
√
gdmx

where m is the dimension of the manifold M . The Seeley-de Witt coefficients
an(D2

A) vanish for odd values of n. The first three an’s for n even are:

a0(x,D2
A) = (4π)−m/2 Tr(1) a2(x,D2

A) = (4π)−m/2 Tr
(
−R

6
+ E

)
a4(x,D2

A) = (4π)−m/2
1

360
Tr
(
− 60RE + 180E2 + 60E;µ µ + 30Ωµν Ωµν

− 12R;µ µ + 5R2 − 2RµνRµν + 2RµνρσRµνρσ
)

We will now consider several examples of noncommutative manifolds and present
the leading terms in the spectral action. For the details, we refer to [2] and [5].

1.1. Einstein’s general theory of relativity. Consider a compact 4-dimensional
Riemannian spin manifold (M, g); there is a canonical spectral triple

(C∞(M), L2(M,S), ∂/ ),

where ∂/ is the ordinary Dirac operator on the spinor bundle S → M . Further,
there is a grading given by γ5 and a real structure by charge conjugation JM . Since
the algebra is commutative the inner fluctuations are trivial. With Lichnerowicz
formula one expresses ∂/ 2 = ∆− 1

4R in terms of the scalar curvature, resulting in

Tr f(∂/ /Λ) =
1

4π2

∫
M

(
2Λ4f4 +

Λ2f2

6
R− f0

80
CµνρσC

µνρσ

)
+O(Λ−2)
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in terms of the Weyl curvature tensor Cµνρσ. This action is recognized as the
Einstein–Hilbert action, plus additional higher-order gravitational terms.

1.2. Yang–Mills action. We make the spectral triple of the previous section
‘mildly’ noncommutative and consider

(C∞(M,MN (C)), L2(M,S)⊗MN (C), ∂/ ⊗ 1).

In addition, there exist a grading γ = γ5⊗1 and a real structure J = JM ⊗ (·)∗. It
turns out that the inner fluctuations are parametrized by a SU(N)-gauge field Aµ,
the group of unitaries is C∞(M,U(N)) acting in the adjoint on the Hilbert space.
Actually, the fact that the fermions are in the adjoint representation is the origin
of supersymmetry in this model as was suggested in [2] and worked out in detail
in [1]. One computes that in this case the spectral action contains the Yang–Mills
action

SΛ[A,ψ] = − f0

24π2

∫
M

TrFµνFµν + 〈ψ, (∂/ + iγµ adAµ)ψ〉+O(Λ−2),

in addition to the gravitational terms considered in the previous subsection.

1.3. The Standard Model of high-energy physics. The previous model gen-
eralizes to actually geometrically describe the full Standard Model, including Higgs
boson. The spectral triple is now given by

(C∞(M)⊗ (C⊕H⊕M3(C), L2(M,S)⊗ C96, ∂/ ⊗ 1 + γ5 ⊗DF ).

Here 96 is 2 (particles and anti-particles) times 3 (families) times 4 leptons times
4 quarks with 3 colors each. We write the representation of A in terms of the
suggestive basis of C96: ( νL eL νR eR uL dL uR dR ν̄L ēL ν̄R ēR ūL d̄L ūR d̄R )t. Then,
for an element (λ, q,m) ∈ C⊕H⊕M3(C)

π(λ, q,m) =


q h

λ
λ̄

i
q⊗13 h

λ
λ̄

i
⊗13

λ14
14⊗m̄


Here, the quaternion q is considered as a 2× 2-matrix. The 96× 96-matrix DF is
of the following form: DF =

(
S T∗

T S̄

)
where

S =


h

Υv
Υe

i
»

Υ∗
v

Υ∗
e

–
h

Υu⊗13
Υd⊗13

i
»

Υ∗
u⊗13

Υ∗
d⊗13

–

 ; T =

[ 0
0

ΥR
0

]
04



in terms of the 3× 3 Yukawa-mixing-matrices Υν ,Υe,Υu,Υd and a real constant
ΥR responsible for neutrino mass terms.
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One can further enrich this spectral triple by a grading γF which is +1 on all
L-particles, and −1 on all R-particles; the total grading is then γ5⊗γF . The anti-
linear operator J is a combination of charge conjugation on S and the (anti-linear)
matrix JF =

(
148

148

)
.

The rest then follows from a long calculation; the inner fluctuations are DA =
∂/ + iγµAµ + γ5(DF + M(Φ)) with

Aµ =
( g1

2 Bµ−
g2
2 Wµ 0 0

0 0 0
0 0 g1Bµ

)
⊕

(
− g22 Wµ⊗13− g16 Bµ⊗3 0 0

0 − 2g1
3 Bµ⊗13 0

0 0
g1
3 Bµ⊗13

)
− 14 ⊗

g3

2
Vµ

M(Φ) =

(
Υνφ1 Υνφ2

−Υeφ̄2 Υeφ̄1

(h.c.)

)
⊕

(
Υuφ1 Υuφ2

−Υdφ̄2 Υdφ̄1

(h.c.)

)
Here Bµ,Wµ, Vµ are U(1), SU(2) and SU(3)-gauge fields, resp. and Φ = (φ1 φ2)t

two scalar (Higgs) fields. The spectral action is modulo gravitational terms:

SΛ =
−2af2Λ2 + ef0

π2

∫
|φ|2 +

f0

2π2

∫
a|Dµφ|2 −

f0

12π2

∫
aR|φ|2

− f0

2π2

∫ (
g2

3G
i
µG

µi + g2
2F

a
µF

µνa +
5
3
g2

1BµB
µ

)
+

f0

2π2

∫
b|φ|4 +O(Λ−2)

with a, b, c, d, e constants depending on the Yukawa parameters. For example,

a = Tr (Υ∗νΥν + Υ∗eΥe + 3 (Υ∗uΥu + Υ∗dΥd))

b = Tr
(
(Υ∗νΥν)2 + (Υ∗eΥe)2 + 3

(
(Υ∗uΥu)2 + (Υ∗dΥd)2

))
When we add the fermionic term 〈Jψ,DAψ〉 to SΛ, we obtain the Standard

Model Lagrangian, including the Higgs boson, provided we have

g2
3f0

2π2
=

1
4

g2
3 = g2

2 =
5
3
g2

1 .

These GUT-type relations between the coupling constants allows for predictions.
For example, one identifies the mass of the W as 2MW =

√
a/2 so that the Higgs

vacuum reads 2M/g2. The above relation for a then gives a postdiction for the
mass of the top quark as mt ≤ 180 GeV. Moreover, the mass of the Higgs is
mH = 8λM2/g2

2 with λ = g2
3b/a

2 resulting in a prediction of mH ∼ 168 GeV.
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