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Space-Time

Our knowledge of spacetime is described by two existing

theories :

– General Relativity

– The Standard Model of particle physics

Curved Space, gravitational potential gµν

ds2 = gµνdx
µ dxν

Action principle

SE[ gµν] =
1

G

∫
M
r
√
g d4x

S = SE + SSM
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φ0(ūλj γ

5uλj )−
ig

2

mλ
d

M
φ0(d̄λj γ

5dλj )



Our goal is to express the very elaborate Lagrangian gi-

ven by gravity coupled with the Standard Model, with all

its subtleties (V-A, BEH, seesaw, etc etc...) as pure gra-

vity on a geometric space-time whose texture is slightly

more elaborate than the 4-dimensional continuum.

This requires rethinking completely what Geometry is,

and the simplest manner is to start with the simplest

question :

“Where are we ?”
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Two questions arise :

Find complete invariants of

geometric spaces, of “shapes”

How can we invariantly specify

a point in a geometric space ?
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The music of shapes

Milnor, John (1964), ”Eigenvalues of the Laplace ope-

rator on certain manifolds”, Proceedings of the Natio-

nal Academy of Sciences of the United States of Ame-

rica 51

Kac, Mark (1966), ”Can one hear the shape of a drum ?”,

American Mathematical Monthly 73 (4, part 2) : 1–23
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Spectrum of disk

2.40483, 3.83171, 5.13562, 5.52008, 6.38016, 7.01559,

7.58834, 8.41724, 8.65373, 8.77148, 9.76102, 9.93611,

10.1735, 11.0647, 11.0864, 11.6198, 11.7915, 12.2251,

12.3386, 13.0152, 13.3237, 13.3543, 13.5893, 14.3725,

14.4755, 14.796, 14.8213, 14.9309, 15.5898, 15.7002 ...
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High frequencies
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Vibrations of the square
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Gordon, Web, Wolpert

Gordon, C. ; Webb, D. ; Wolpert, S. (1992), ”Isospec-

tral plane domains and surfaces via Riemannian orbi-

folds”, Inventiones mathematicae 110 (1) : 1–2
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Two shapes with same spectrum (Chapman).
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Shape I
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Shape II
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Spectrum = {
√
x | x ∈ S},
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Same spectrum

{a2 + b2 | a, b > 0} ∪ {c2/4 + d2/4 | 0 < c < d}

=

{e2/4 + f2 | e, f > 0} ∪ {g2/2 + h2/2 | 0 < g < h}
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Three classes of notes

One looks at the fractional part

1
4 : {e2/4 + f2} with e, f > 0 = {c2/4 + d2/4} with c+ d

odd.

1
2 : The c2/4 + d2/4 with c, d odd and g2/2 + h2/2 with
g + h odd.

0 : {a2 + b2 | a, b > 0} ∪ {4c2/4 + 4d2/4 | 0 < c < d} et
{4e2/4 + f2 | e, f > 0} ∪ {g2/2 + h2/2 | 0 < g < h} with
g + h even.
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Possible chords

The possible chords are not the same. Blue–Red is not

possible for shape II the one which contains the rec-

tangle.

22



0 10 20 30 40 50

2

3

4

5



Points

The missing invariant should be interpreted as giving

the probability for correlations between the possible fre-

quencies, while a “point” of the geometric space X can

be thought of as a correlation, i.e. a specific positive

hermitian matrix ρλκ (up to scale) which encodes the

scalar product at the point between the eigenfunctions

of the Dirac operator associated to various frequencies

i.e. eigenvalues of the Dirac operator.
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Redshift

Thanks to great telescopes like Hubble we now have an

“eye” that allows us to look out in space, but what is

striking is that all the information we get is of spectral

nature. It is for instance thanks to the red-shift (which

is a rescaling factor of spectra and can be as large as 10

and possibly a thousand) that we can estimate cosmic

distances.
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Radiations emitted in ultraviolet (1014 cycles per se-
cond) are observed in infrared (1012 cycles per second)
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It is rather convincing also that our faith in outer space

is based on the strong correlations that exist between

different frequencies, as encoded by the matrix gλµ, so

that the picture in infrared of the milky way is not that

different from its visible light counterpart, which can be

seen with a bare eye on a clear night.
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Musical shape ?

The ear is sensitive to ratios of frequencies.

The two sequences

{440,440,440,493,552,493,440,552,493,493,440}

{622,622,622,697,780,697,622,780,697,697,622}

are in the ratio ∼
√

2.

log 3

log 2
∼ 1 +

1

1 + 1
1+ 1

2+1
2

=
19

12

28



Towards a musical shape

{qn | n ∈ N} , q = 2
1

12

21/12 = 1.05946... , 31/19 = 1.05953...
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The sphere ?

Spectrum of sphere = {
√
j(j + 1) | j ≥ 0} looks like this

for small values
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The quantum sphere S2
q

Poddles, Dabrowski, Sitarz, Landi, Wagner, Brain...

{
qj − q−j

q − q−1
| j ∈ N} with multiplicity O(j)
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L. Dabrowski, A. Sitarz, Dirac operator on the stan-

dard Podles’ quantum sphere. Noncommutative geo-

metry and quantum groups (Warsaw, 2001), 49–58,

Banach Center Publ., 61, Polish Acad. Sci., Warsaw,

2003.

L. Dabrowski, F. D’Andrea, G. Landi, E.Wagner, Dirac

operators on all Podles quantum spheres J. Noncomm.

Geom. 1 (2007) 213–239 arXiv :math/0606480

S. Brain, G. Landi, The 3D Spin geometry of the quan-

tum 2-sphere Rev. Math. Phys. 22 (2010) 963–993

arXiv :1003.2150
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d(A,B) = Inf
∫
γ

√
gµ ν dxµ dxν
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Dirac’s square root of the Laplacian
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Spectral triples

(A,H, D) , ds = D−1 ,

d(A,B) = Sup {|f(A)− f(B)| ; f ∈ A , ‖[D, f ]‖ ≤ 1 }

Meter → Wave length (Krypton (1967) spectrum of 86Kr then

Caesium (1984) hyperfine levels of C133)
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Gauge transfos = Inn(A)

Let us consider the simplest example

A = C∞(M,Mn(C)) = C∞(M)⊗Mn(C)

Algebra of n× n matrices of smooth functions on ma-

nifold M .

The group Inn(A) of inner automorphisms is locally iso-

morphic to the group G of smooth maps from M to the

small gauge group SU(n)

1→ Inn(A)→ Aut(A)→ Out(A)→ 1

becomes identical to

1→Map(M,G)→ G → Diff(M)→ 1.
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Einstein–Yang-Mills

We have shown that the study of pure gravity on this

space yields Einstein gravity on M minimally coupled

with Yang-Mills theory for the gauge group SU(n). The

Yang-Mills gauge potential appears as the inner part of

the metric, in the same way as the group of gauge

transformations (for the gauge group SU(n)) appears

as the group of inner diffeomorphisms.
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Reconstruction Theorem

The restriction to spin manifolds is obtained by requi-

ring a real structure i.e. an antilinear unitary operator J

acting in H which plays the same role and has the same

algebraic properties as the charge conjugation operator

in physics.

In the even case the chirality operator γ plays an impor-

tant role, both γ and J are decorations of the spectral

triple.
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The following further relations hold for D, J and γ

J2 = ε , DJ = ε′JD, J γ = ε′′γJ, Dγ = −γD

The values of the three signs ε, ε′, ε′′ depend only, in the

classical case of spin manifolds, upon the value of the

dimension n modulo 8 and are given in the following

table :

n 0 1 2 3 4 5 6 7

ε 1 1 -1 -1 -1 -1 1 1
ε′ 1 -1 1 1 1 -1 1 1
ε′′ 1 -1 1 -1
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Metric dimension and KO-dimension

In the classical case of spin manifolds there is thus a

relation between the metric (or spectral) dimension gi-

ven by the rate of growth of the spectrum of D and

the integer modulo 8 which appears in the above table.

For more general spaces however the two notions of

dimension (the dimension modulo 8 is called the KO-

dimension because of its origin in K-theory) become

independent since there are spaces F of metric dimen-

sion 0 but of arbitrary KO-dimension.
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Fine Structure

Starting with an ordinary spin geometry M of dimen-

sion n and taking the product M × F , one obtains a

space whose metric dimension is still n but whose KO-

dimension is the sum of n with the KO-dimension of

F .

As it turns out the Standard Model with neutrino mixing

favors the shift of dimension from the 4 of our familiar

space-time picture to 10 = 4 + 6 = 2 modulo 8.
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Finite spaces

In order to learn how to perform the above shift of di-

mension using a 0-dimensional space F , it is important

to classify such spaces. This was done in joint work with

A. Chamseddine. We classified there the finite spaces

F of given KO-dimension. A space F is finite when the

algebra AF of coordinates on F is finite dimensional.

We no longer require that this algebra is commutative.
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Classification

We classified the irreducible (A,H, J) and found out

that the solutions fall into two classes. Let AC be the

complex linear space generated by A in L(H), the alge-

bra of operators in H. By construction AC is a complex

algebra and one only has two cases :

1. The center Z (AC) is C, in which case AC = Mk(C)

for some k.

2. The center Z (AC) is C⊕ C and AC = Mk(C)⊕Mk(C)

for some k.
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Moreover the knowledge of AC = Mk(C) shows that A
is either Mk(C) (unitary case), Mk(R) (real case) or,

when k = 2` is even, M`(H), where H is the field of

quaternions (symplectic case). This first case is a minor

variant of the Einstein-Yang-Mills case described above.

It turns out by studying their Z/2 gradings γ, that these

cases are incompatible with KO-dimension 6 which is

only possible in case (2).
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KO-dimension 6

If one assumes that one is in the “symplectic–unitary”

case and that the grading is given by a grading of the

vector space over H, one can show that the dimension

of H which is 2k2 in case (2) is at least 2×16 while the

simplest solution is given by the algebra A = M2(H) ⊕
M4(C). This is an important variant of the Einstein-

Yang-Mills case because, as the center Z (AC) is C⊕ C,

the product of this finite geometry F by a manifold

M appears, from the commutative standpoint, as two

distinct copies of M .
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Reduction to SM gauge group

We showed that requiring that these two copies of M

stay a finite distance apart reduces the symmetries from

the group SU(2) × SU(2) × SU(4) of inner automor-

phisms of the even part of the algebra to the symme-

tries U(1)×SU(2)×SU(3) of the Standard Model. This

reduction of the gauge symmetry occurs because of the

order one condition

[[D, a], b0] = 0 , ∀ a, b ∈ A
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Spectral Model

Let M be a Riemannian spin 4-manifold and F the finite

noncommutative geometry of KO-dimension 6 descri-

bed above. Let M × F be endowed with the product

metric.

1. The unimodular subgroup of the unitary group ac-

ting by the adjoint representation Ad(u) in H is the

group of gauge transformations of SM.

2. The unimodular inner fluctuations of the metric give

the gauge bosons of SM.

3. The full standard model (with neutrino mixing and

seesaw mechanism) minimally coupled to Einstein
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gravity is given in Euclidean form by the action func-

tional

S = Tr(f(DA/Λ)) +
1

2
〈 J ξ̃,DA ξ̃〉 , ξ̃ ∈ H+

cl ,

where DA is the Dirac operator with the unimodular

inner fluctuations.



Standard Model Spectral Action

Higgs Boson Inner metric(0,1)

Gauge bosons Inner metric(1,0)

Fermion masses Dirac(0,1) in ↑
u, ν

CKM matrix Dirac(0,1) in (↓ 3)
Masses down

Lepton mixing Dirac(0,1) in (↓ 1)
Masses leptons e
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Standard Model Spectral Action

Majorana Dirac(0,1) on
mass matrix ER ⊕ JFER

Gauge couplings Fixed at
unification

Higgs scattering Fixed at
parameter unification

Tadpole constant −µ2
0 |H|2
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First interplay with experiment

Historically, the search to identify the structure of the

noncommutative space followed the bottom-up approach

where the known spectrum of the fermionic particles

was used to determine the geometric data that defines

the space.

This bottom-up approach involved an interesting inter-

play with experiments. While at first the experimental

evidence of neutrino oscillations contradicted the first

attempt, it was realized several years later in 2006 that

the obstruction to get neutrino oscillations was natu-

rally eliminated by dropping the equality between the

metric dimension of space-time (which is equal to 4 as
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far as we know) and its KO-dimension which is only

defined modulo 8. When the latter is set equal to 2

modulo 8 (using the freedom to adjust the geometry

of the finite space encoding the fine structure of space-

time) everything works fine, the neutrino oscillations are

there as well as the see-saw mechanism which appears

for free as an unexpected bonus. Incidentally, this also

solved the fermionic doubling problem by allowing a si-

multaneous Weyl-Majorana condition on the fermions

to halve the degrees of freedom.



Second interplay with experiment

The second interplay with experiments occurred a bit

later when it became clear that the mass of the Brout-

Englert-Higgs boson would not comply with the restric-

tion (that mH � 170 Gev) imposed by the validity of

the Standard Model up to the unification scale.

We showed that the inconsistency between the spec-

tral Standard Model and the experimental value of the

Higgs mass is resolved by the presence of a real sca-

lar field strongly coupled to the Higgs field. This scalar

field was already present in the spectral model and we

wrongly neglected it in our previous computations.
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It was shown recently by several authors, independently

of the spectral approach, that such a strongly coupled

scalar field stabilizes the Standard Model up to unifica-

tion scale in spite of the low value of the Higgs mass.

In our recent work, we show that the noncommutative

neutral singlet modifies substantially the RG analysis,

invalidates our previous prediction of Higgs mass in the

range 160–180 Gev, and restores the consistency of the

noncommutative geometric model with the low Higgs

mass.
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Lesson

One lesson which we learned on that occasion is that

we have to take all the fields of the noncommutative

spectral model seriously, without making assumptions

not backed up by valid analysis, especially because of

the almost uniqueness of the Standard Model (SM) in

the noncommutative setting.
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New developments

(AC)2 + Walter van Suijlekom

The SM continues to conform to all experimental data.

The question remains whether this model will continue

to hold at much higher energies, or whether there is a

unified theory whose low-energy limit is the SM. One

indication that there must be a new higher scale that

effects the low energy sector is the small mass of the

neutrinos which is explained through the see-saw me-

chanism with a Majorana mass of at least of the order

of 1011Gev. In addition and as noted above, a scalar

field which acquires a vev generating that mass scale
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can stabilize the Higgs coupling and prevent it from

becoming negative at higher energies and thus make it

consistent with the low Higgs mass of 126 Gev. Ano-

ther indication of the need to modify the SM at high

energies is the failure (by few percent) of the three

gauge couplings to be unified at some high scale which

indicates that it may be necessary to add other matter

couplings to change the slopes of the running of the

RG equations.



This leads us to address the issue of the breaking from

the natural algebra A which results from the classifica-

tion of irreducible finite geometries of KO-dimension 6

(modulo 8), to the algebra corresponding to the SM.

This breaking was effected using the requirement of the

first order condition on the Dirac operator. The first or-

der condition is the requirement that the Dirac operator

is a derivation of the algebra A into the commutant of

Â = JAJ−1 where J is the charge conjugation opera-

tor. This in turn guarantees the gauge invariance and

linearity of the inner fluctuations under the action of

the gauge group given by the unitaries U = uJuJ−1 for

any unitary u ∈ A. This condition was used as a mathe-

matical requirement to select the maximal subalgebra

C⊕ H⊕M3(C) ⊂ HR ⊕ HL ⊕M4(C)
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which is compatible with the first order condition and

is the main reason behind the unique selection of the

SM.



The existence of examples of noncommutative spaces

where the first order condition is not satisfied such as

quantum groups and quantum spheres provides a mo-

tive to remove this condition from the classification

of noncommutative spaces compatible with unification.

This study was undertaken in a companion paper where

it was shown that in the general case the inner fluctua-

tions of D with respect to inner automorphisms of the

form U = uJuJ−1 are given by

DA = D +A(1) + Ã(1) +A(2)
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where

A(1) =
∑
i

ai [D, bi]

Ã(1) =
∑
i

âi
[
D, b̂i

]
, âi = JaiJ

−1, b̂i = JbiJ
−1

A(2) =
∑
i,j

âiaj
[[
D, bj

]
, b̂i
]

=
∑
i,j

âi
[
A(1), b̂i

]
.

Clearly A(2) which depends quadratically on the fields in

A(1) vanishes when the first order condition is satisfied.



Our point of departure is that one can extend inner

fluctuations to the general case, i.e. without assuming

the order one condition. It suffices to add a quadratic

term which only depends upon the universal 1-form ω ∈
Ω1(A) to the formula and one restores in this way,
– The gauge invariance under the unitaries U = uJuJ−1

– The fact that inner fluctuations are transitive, i.e.

that inner fluctuations of inner fluctuations are them-

selves inner fluctuations.
We show moreover that the resulting inner fluctuations

come from the action on operators in Hilbert space of

a semi-group Pert(A) of inner perturbations which only

depends on the involutive algebra A and extends the

unitary group of A. This opens up two areas of inves-

tigation, the first is mathematical and the second is

directly related to particle physics and model building :
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1. Investigate the inner fluctuations for noncommuta-

tive spaces such as quantum groups and quantum

spheres.

2. Compute the spectral action and inner fluctuations

for the model involving the full symmetry algebra

H⊕H⊕M4(C) before the breaking to the Standard

Model algebra.



(i) The following map η is a surjection

η : {
∑

aj ⊗ bop
j ∈ A⊗ Aop |

∑
ajbj = 1} → Ω1(A),

η(
∑

aj ⊗ bop
j ) =

∑
ajδ(bj).

(ii) One has

η
(∑

b∗j ⊗ a
∗op
j

)
=
(
η
(∑

aj ⊗ bop
j

))∗
(iii) One has, for any unitary u ∈ A,

η
(∑

uaj ⊗ (bju
∗)op

)
= γu

(
η
(∑

aj ⊗ bop
j

))
where γu is the gauge transformation of potentials.
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(i) Let A =
∑
aj ⊗ bop

j ∈ A ⊗ Aop normalized by the

condition
∑
ajbj = 1. Then the operator D′ = D(η(A))

is equal to the inner fluctuation of D with respect to

the algebra A⊗ Â and the 1-form η(A⊗ Â), that is

D′ = D +
∑

aiâj[D, bîbj]

(ii) An inner fluctuation of an inner fluctuation of D is

still an inner fluctuation of D, and more precisely one

has, with A and A′ normalized elements of A ⊗ Aop as

above,

(D(η(A))) (η(A′)) = D(η(A′A))

where the product A′A is taken in the tensor product

algebra A⊗ Aop.
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(i) The self-adjoint normalized elements of A⊗Aop form

a semi-group Pert(A) under multiplication.

(ii) The transitivity of inner fluctuations (i.e. the fact

that inner fluctuations of inner fluctuations are inner

fluctuations) corresponds to the semi-group law in the

semi-group Pert(A).

(iii) The semi-group Pert(A) acts on real spectral triples

through the homomorphism

µ : Pert(A)→ Pert(A⊗ Â)

given by

A ∈ A⊗ Aop 7→ µ(A) = A⊗ Â ∈
(
A⊗ Â

)
⊗
(
A⊗ Â

)op
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