
Model Building in Almost-Commutative Geometry

Model Building in Almost-Commutative
Geometry

Christoph Stephan
Institut für Mathematik
Universität Potsdam

NCG and Particle Physics
Leiden 2013



Model Building in Almost-Commutative Geometry

Overview

1 NCG: Basic Ideas

2 The Standard Model

3 Beyond the Standard Model

4 Conlusions



Model Building in Almost-Commutative Geometry

NCG: Basic Ideas

Overview

1 NCG: Basic Ideas

2 The Standard Model

3 Beyond the Standard Model

4 Conlusions



Model Building in Almost-Commutative Geometry

NCG: Basic Ideas

Analogy: Almost-comm. geometry ↔ Kaluza-Klein space
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Idea:

M → C∞(M), F → some ”finite space”,

differential geometry → spectral triple
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NCG: Basic Ideas

Almost-commutative Geometry
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Replacing manifolds by algebras

extra dimension: F → Af = M1(K) ⊕ M2(K) ⊕ . . .

Kaluza-Klein space: M × F → A = C∞(M) ⊗Af
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NCG: Basic Ideas

General Relativity & Standard Model: The spectral point of view

The almost-commutative standard model automatically
produces:

• The combined Einstein-Hilbert and standard model action

• A cosmological constant

• The Higgs boson with the correct quartic Higgs potential

The Dirac operator plays a multiple role:

D = /∂ ⊗1f + /A + γ5 ⊗Φ

Higgs & Gauge
Bosons

Metric of M,
Internal Metric

Particle Dynamics,
Ferm. Mass Matrix
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NCG: Basic Ideas

Spectral Triples: Input

An even, real spectral triple (A,H, D)

The ingredients (A. Connes):

A real, associative, unital pre-C∗-algebra A
A Hilbert space H on which the algebra A is faithfully
represented via a representation ρ

A self-adjoint operator D with compact resolvent,
the Dirac operator

An anti-unitary operator J on H, the real structure
or charge conjugation

A unitary operator γ on H, the chirality
or volume element
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NCG: Basic Ideas

The Classical Conditions

The axioms of noncommutative geometry (A. Connes):

Axiom 1: Classical Dimension n (we assume n even)

Axiom 2: Regularity

Axiom 3: Finiteness

Axiom 4: First Order of the Dirac Operator

Axiom 5: Reality

Axiom 6: Orientability

Axiom 7: Poincaré Duality
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NCG: Basic Ideas

The Classical Conditions

The Spectral Action (A. Connes, A. Chamseddine 1996)

(Ψ,DΨ) + SD(Λ) with Ψ ∈ H

(Ψ,DΨ) = fermionic action
includes Yukawa couplings
& fermion–gauge boson interactions
+ constraints at Λ

SD(Λ) = ♯ eigenvalues of D up to cut-off ±Λ
= Einstein-Hilbert action + Cosm. Const.

+ full bosonic SM action
+ constraints at Λ

constraints => less free parameters than classical SM
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The Standard Model

The standard model (A. Chamseddine, A. Connes 1996):

Discrete space: C ⊕ H ⊕ M3(C)(⊕C)

Symmetries of discrete space: SU(2) × U(3)

Hilbert space of minimal standard model fermion multiplets

Dirac operator: ordinary Dirac op. + fermionic mass matrix
(CKM/PMNS matrix)

Majorana masses and SeeSaw mechanism for
right-handed neutrinos (J. Barrett & A. Connes 2006)
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The Standard Model

Constraints on the SM parameters at the cut-off Λ:
5
3 g1(Λ)2 = g2(Λ)2 = g3(Λ)2

g2(Λ)2 = Y2(Λ)2

H(Λ)
λ(Λ)
24 = 1

4 Y2(Λ)

g1, g2, g3: U(1)Y , SU(2)w , SU(3)c gauge couplings

λ: quartic SMS coupling

Y2: trace of the Yukawa matrix squared

H: trace of the Yukawa matrix to the fourth power

3 standard model generations
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The Standard Model

Consequences from the SM constraints:

Input:

Big Desert

g1(mZ ) = 0.3575, g2(mZ ) = 0.6514, g3(mZ ) = 1.221

renormalisation group equations

(mtop = 171.2 ± 2.1 GeV)

Output:

g2
2(Λ) = g2

3(Λ) at Λ = 1.1 × 1017 GeV

mtop < 190 GeV

no 4th SM generation

Excluded by Tevatron & LHC since:

mSMS 6= 168.3 ± 2.5 GeV
5
3 g1(Λ)2 6= g2(Λ)2
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Beyond the Standard Model

A Classification of Almost-Commutative Spectral Triples

A Classification of the internal spaces

classify Af = M1(K) ⊕ M2(K) ⊕ . . .

with respect to the number of summands in the algebra

with respect to physical criteria

Physicist’s “shopping list” (B. Iochum, T. Schücker, C.S. 2003)

The physical models are required to

be irreducible i.e. to have the smallest possible internal
Hilbert space (minimal approach)

have a non-degenerate Fermionic mass spectrum

be free of harmful anomalies

have unbroken colour groups

possess no uncharged massless Fermions
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Beyond the Standard Model

A Classification of Almost-Commutative Spectral Triples

Classification Results (B.Iochum, J.-H. Jureit, T.Schücker, C.S.
2003-2008):

# sum. in Af KO 0 KO 6
1 no model no model
2 no model no model
3 SM2 no model
4 SM2, SM2,

el.-str.1 el.-str.1

6 SM2 + el.-str.1,
2 × el.-str.1

1 Electro-Strong Model: ”electron+proton”, no Higgs,
Af = C ⊕ C ⊕ C ⊕ MC(C),
Ggauge = U(1) × SU(C)/SO(C)/Sp(C)

2 first family, colour group = SU(C)/SO(C)/Sp(C)
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Beyond the Standard Model

Constraints from the finite Geometry

Going beyond the Standard Model

Idea: Use models from classification as basic building blocks

The geometric setup imposes constraints:

mathematical axioms
→ Restrictions on particle content

symmetries of finite space
→ determines gauge group

representation of matrix algebra
→ representation of non-abelian gauge sub-group

Dirac operator → allowed mass terms / scalar fields
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Beyond the Standard Model

Constraints from Physics

General requirements for Particle Models:

“minimality” requirement for internal space
→ Standard Model is a sub-model

no harmful (Yang-Mills) anomalies
→ representation of abelian gauge sub-group

Dirac-Yang-Mills-Scalar action from Spectral Action
→ high energy effective action + constraints

low energy physics by renormalisation group flow

Experimental requirements at mZ :

g1(mZ ) = 0.3575, g2(mZ ) = 0.6514, g3(mZ ) = 1.221

mW± = 80.39 GeV

mtop = 172.9 ± 1.5 GeV

mSMS = 125.5 ± 1.1 GeV
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Beyond the Standard Model

Constraints from Physics

The Spectral Action (A. Connes, A. Chamseddine 1996)

(Ψ,DΨ) + SD(Λ) with Ψ ∈ H

(Ψ,DΨ) = fermionic action
includes Yukawa couplings
& fermion–gauge boson interactions
+ constraints at Λ

SD(Λ) = ♯ eigenvalues of D up to cut-off ±Λ
= Einstein-Hilbert action + Cosm. Const.

+ full bosonic SM action
+ constraints at Λ

constraints => less free parameters than classical SM
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Beyond the Standard Model

Constraints from Physics

Beyond SM: the general strategy (bottom-up approach)

find finite geometry that has SM as sub-model (tricky)
=> particle content, gauge group & representation

make sure everything is anomaly free

compute the spectral action => constraints on parameters

determine the cut-off scale Λ with suitable sub-set
of the constraints

use renorm. group equations to obtain low energy values
of (hopefully) interesting parameters
(scalar couplings, Yukawa couplings)

check with experiment!
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Beyond the Standard Model

The BSM failures

Excluded models:

Extensions of the Standard Model:

AC-model (C.S. ’05):
new particles (A and C) with opposite hypercharge
dark matter as bound AC-states (Fargion,Khlopov,C.S. ’05)

θ-model (C.S. ’07): new particles with SUc(D)-colour

Vector-Doublet Model (Squellari, C.S. ’07):
new SUw(2)-vector doublets

Problem for models: • mSMS ≥ 170 GeV
• constraints on g1, g2, g3 at Λ.

Saving these models?

Some of these models, e.g. the AC-model may perhaps be
extended to comply with experimental data!
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Beyond the Standard Model

New Scalars

SM + U(1)X scaler field + U(1)X fermion singlet (C.S. 2009):

Discrete space: C ⊕ M2(C) ⊕ M3(C) ⊕ C ⊕ C ⊕ C

Gauge group: U(1)Y × SU(2)w × SU(3)c × U(1)X

New fermions: U(1)X -vector singlets (X -particles)
neutral w.r.t SM gauge group , MX ∼ Λ

New scalar: U(1)X singlet σ, neutral w.r.t SM gauge group

Lscalar = −µ2
1|H|2 + λ1

6 |H|4 − µ2
2|σ|2 + λ2

6 |σ|4 + λ3
3 |H|2|σ|2

U(1)Y × SU(2)w × SU(3)c × U(1)X → U(1)el . × SU(3)c

Lferm+gauge = X̄LMX XR +gν,X ν̄RσXL + h.c. +1/g2
4Fµν

X FX ,µν
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Beyond the Standard Model

New Scalars

The constraints at Λ:

only top-quark & ντ

valid at g2 = g3

=> Λ = 1.1 × 1017 GeV

g2
2 = λ1

24
(3g2

t +g2
ν
)2

3g4
t +g4

ν

g2
2 = λ2

24

g2
2 = λ3

24
3g2

t +g2
ν

g2
ν

g2
2 = 1

4 (3g2
t + g2

ν )

free parameters: |〈σ〉|, g4

Problem:
√

5/3g1 6= g2 = g3
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Mass EVs of scalar fields for
v2 =

√
2 |〈σ〉|,√

2|〈H〉| = 246 GeV, g4(mZ ) = 0.3



Model Building in Almost-Commutative Geometry

Beyond the Standard Model

New Scalars

SM + U(1)X scalar field + new fermions (C.S. ’13):

SM as a sub-model: comme il faut!

gauge group: U(1)Y × SU(2)w × SU(3)c × U(1)X

new fermions in each SM-generation:

X 1
l ⊕ X 2

l ⊕ X 3
l : (0, 1, 1,+1) ⊕ (0, 1, 1,+1) ⊕ (0, 1, 1, 0)

X 1
r ⊕ X 2

r ⊕ X 3
r : (0, 1, 1,+1) ⊕ (0, 1, 1, 0) ⊕ (0, 1, 1,+1)

V w
ℓ , V w

r : (0, 2̄, 1, 0)
V c

ℓ , V c
r : (−1/6, 1, 3̄, 0)

new scalar: σ : (0, 1, 1,+1)
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Beyond the Standard Model

New Scalars

The Lagrangian (scalar potential & new terms):

Lscalar = −µ2
1|H|2 − µ2

2|σ|2 + λ1
6 |H|4 + λ2

6 |σ|4 + λ3
3 |H|2|σ|2

Lferm = gν,X1 ν̄rσX 1
ℓ + X̄ 1

ℓ mX X 1
r + gX2 X̄ 2

ℓ σX 2
r

+gX3 X̄ 3
ℓ σX 3

r + V̄ c
ℓ mcV c

r + V̄ w
ℓ mw V w

r + h.c.

Lgauge = 1
g2

4
Fµν

X FX ,µν

Symmetry breaking:
U(1)Y ×SU(2)w ×SU(3)c×U(1)X → U(1)eℓ.×SU(3)c×Z2
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Beyond the Standard Model

New Scalars

The constraints at Λ:

g2(Λ) = g3(Λ) =
√

7
6 g1(Λ) =

√

4
3 g4(Λ)

λ1(Λ) = 36 H
Y2

g2(Λ)2, λ2(Λ) = 36
tr(g4

ν,X1 )

tr(g2
ν,X1 )2 g2(Λ)2

λ3(Λ) = 36 tr(g2
ν
)

Y2
g2(Λ)2

Y2(Λ) = tr(g2
ν,X1)(Λ) + tr(g2

X1)(Λ) + tr(g2
X2)(Λ) = 6 g2(Λ)2

Some simplifications:

Y2 ≈ 3gtop + gντ

tr(g2
X1)(Λ) ≈ tr(g2

X2)(Λ) ≈ 0

tr(g2
ν,X1)(Λ) ≈ gν,X (Λ)2 = 6 g2(Λ)2

(mw )ij ≈ Λ, (mc)ij ≈ 1015 GeV
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Beyond the Standard Model

New Scalars

Results for 1-loop renormalisation groups:

Constraints
=> Λ ≈ 2 × 1018 GeV

mtop ≈ 172.9 ± 1.5 GeV

mσ1,SMS ≈ 125 ± 1.1 GeV

mσ2 ≈ 445 ± 139 GeV

mZX
≈ 254 ± 87 GeV

g4(mZ ) ≈ 0.36

mX2,X3
- 50 GeV

free parameter: |〈σ〉|
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Beyond the Standard Model

New Scalars
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Abbildung: Running of the gauge couplings with normalisation factors.
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Conlusions

Questions & to-do-list

Is the SM + scalar model compatible with LHC-data?

Does the SM + scalar model contain viable dark matter
candidates?

Explore parameter space (gν,X1 , g2
X2 , g2

X3 , mX1 , mV w , mV c )

Extend renormalisation group analysis to n-loop, n ≥ 2

Is the geometry a “sub-geometry” of a Connes-
Chamseddine-type geometry?
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