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1 Introduction: the universality problem

“The origin of the quark and lepton masses is shrouded in mystery” [1]. Some thirty years
ago, attempts to solve the enigma based on textures of the quark mass matrices, purposedly
reflecting mass hierarchies and “nearest-neighbour” interactions, were very popular. Now, in
the late eighties, Branco, Lavoura and Mota [2] showed that, within the SM, the zero patterna b 0

c 0 d
0 e 0

 , (1)

a central ingredient of Fritzsch’s well-known Ansatz for the mass matrices, is devoid of any
particular physical meaning. (The top quark is above on top.)

Although perhaps this was not immediately clear at the time, paper [2] marked a water-
shed in the theory of flavour mixing. In algebraic terms, it establishes that the linear subspace
of matrices of the form (1) is universal for the group action of unitaries effecting chiral basis
transformations, that respect the charged-current term of the Lagrangian. That is, any mass
matrix can be transformed to that form without modifying the corresponding CKM matrix.

To put matters in perspective, consider the unitary group acting by similarity on three-by-
three matrices. The classical triangularization theorem by Schur ensures that the zero patternsa 0 0

b c 0
d e f

 ,

a b c
0 d e
0 0 f

 (2)

are universal in this sense. However, proof that the zero patterna b 0
0 c d
e 0 f
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is universal was published [3] just three years ago! (Any off-diagonal n(n−1)/2 zero pattern
with zeroes at some (i j) and no zeroes at the matching ( ji), is universal in this sense, for
complex n×n matrices.)

Fast-forwarding to the present time, notwithstanding steady experimental progress [4]
and a huge amount of theoretical work by many authors, we cannot be sure of being any
closer to solving the “Meroitic” problem [5] of divining the spectrum behind the known data.
Disappointingly, textures are still going strong in some quarters [6,7]. However, it seems fair
to state that the focus of attention in the search for underlying symmetry and/or dynamics has
turned to the mixing matrix VCKM itself —or the lepton mixing matrix VPMNS, for that matter.

Models seeking to discern finite groups of “horizontal symmetry” behind the mixing pat-
terns [8–10] and studies such as [11] of empirical mass relations do appear to respond to that
type of investigation. There are of course many other ideas hawked in the market.

Still, “the Higgs boson must know something we do not know”,1 and we would dearly
like to know it. Perhaps it is time again that we bend the stick again towards the issue of the
mass matrices. A perennial question in flavour-mixing theory is the following. Suppose the
mass eigenvalues and the empirical mixing matrix, or equivalent data for fermion multiplets,
are given: what is the space of mass matrices compatible with these data?

A possible path towards the answer to that question involves a detour through the realm
of noncommutative geometry (NCG). In [12], when grappling with the classification prob-
lem for Riemannian manifolds, Connes dubbed the CKM construction a “toy model” for
geometrical placement problems in general. His abstract formulation of the latter helps to
inject some fresh thinking into the subject. We make no apology for this relatively high-brow
approach to such an apparently simple matter.

2 Relative spectrum in finite dimensions

As is famously known [13], the spectrum of the Laplacian (or Dirac operator) is not enough
to solve the classification problem for Riemannian manifolds. On the other hand, it is now a
theorem that a (compact, boundaryless) Riemannian manifold is retrievable from a “spectral
triple” [14, 15]. Such a triple (M,H,D) consists of an infinite-dimensional Hilbert space H,
as a tabula rasa; an unbounded self-adjoint operator D on H with compact resolvent; and a
continuous2 abelian von Neumann subalgebra M of the algebra of bounded operators L(H).
The operator D has a discrete spectrum of eigenvalues of finite multiplicity, and thus the von
Neumann algebra N generated by D has many minimal projectors, subordinate to the spectral
projectors of D. Here again, N is abelian.

Thus the situation one is faced with, when attempting to identify Riemannian manifolds,
is roughly as follows. One lays out a complete, commuting set of eigenprojectors on H

1Dixit M. Veltman, as quoted in [1].
2An abelian von Neumann algebra is “continuous” if it contains no minimal projectors.
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(including a few for the finite-dimensional kernel of D, if it is nonzero), generating an abelian
von Neumann algebra N. The other abelian von Neumann algebra M acts by multiplication
operators M f on H. But now one must “diagonalize” the second algebra properly, so that the
commutators like [D,M f ] —which contain the metric information— give the correct results
in L(H). In [12, Sect. 3], a Riemannian invariant SpecN(M), called the relative spectrum, is
described which, in the presence of N and H, allows one to build the algebra M. One can
freely allow an overall conjugation by a unitary element of N, since this amounts to adjusting
the chosen eigenvectors of D by phase factors. Therefore SpecN(M) must be defined modulo
an action of the unitary group U(N).

Still following Connes, we may look at the parallel role of the CKM matrix. Let there be
given two sets of n minimal projectors (ketbras of rank one), commuting within each set, but
not globally as n×n matrices. Choosing one set as the diagonal matrices will “undiagonalize”
the other. Of course, a change of orthonormal basis is given by a unitary matrix, which is
what we must exhibit; but there is the nuance that adjusting the phase factors in either basis is
deemed irrelevant, so we quotient these adjustments out. The problem is codified as follows.

Lemma. On H ' Cn, choose two sets of minimal projectors, {e1, . . . ,en} and { f1, . . . , fn},
orthogonal among themselves (eie j = 0 = fi f j for i 6= j). Suppose that e1 f j 6= 0 for each j
and ei f1 6= 0 for each i. One can find orthonormal bases for H of eigenvectors {ξi} with
eiξi = ξi and {η j} with f jη j = η j; by suitably adjusting their phases, one can also ensure
that each 〈ξ1 |η j〉 > 0 and each 〈ξi |η1〉 > 0. This may be done uniquely, up to an overall
phase. Let V denote the unitary change-of-basis matrix for ξi 7→ η j. Then Ve jV † = f j.

This is Lemma 2.1 of [12]. Here M = span〈e1, . . . ,en〉 and N = span〈 f1, . . . , fn〉 are max-
imal abelian von Neumann subalgebras of L(H)' Cn×n, in “general position” with respect
to each other. We note that |vi j|2 = tr(ei f j).

Evidently V is a CKM matrix by another name. It does not conform to the conventions
of the Review of Particle Properties [16]; nevertheless, the condition that the first row and
column of V be positive is a well-known device in particle physics to reduce the number of
its phase factors. Except for trivial sign changes, it does coincide with the recommended
parametrization for CKM matrices in [5], when keeping the top on top. Checking the para-
meter count is routine: assume that the 2n−1 positive numbers are given:

α1 = β1 = 〈ξ1 |η1〉; α j := 〈ξ j |η1〉; βk := 〈ξ1 |ηk〉; with
n

∑
1

α
2
j =

n

∑
1

β
2
k = 1.

Then η1 is completely fixed relative to {ξi}, with expenditure of 2n−3 degrees of freedom.
The constraints on η2 are: |η2| = 1; η2 ⊥ η1; 〈ξ1 | η2〉 = β2. This takes 2n− 5 degrees
of freedom. Successively, the constraints on η3 are: |η3| = 1; η3 ⊥ η1,η2; 〈ξ1 |η3〉 = β3,
yielding 2n− 7 degrees of freedom; and so on. Therefore, we obtain ∑

n−1
l=1 (2n− 2l− 1) =

(n−1)2 as expected.
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The next procedure in [12] is to suppress the “row labels” of V while keeping enough
information about the “relative position” of the algebras M and N, acting on H. We regard
the representation of N as fixed and given, with f j = |η j〉〈η j|. Any row of V determines an
element of N, namely ∑ j vi j f j ∈ N; the corresponding row vector ∑ j vi j η j lies in the unit
sphere SN ' S2n−1. Denote by M̃ ⊂ SN the set of unit vectors coming from M in this way.
Suppressing one phase, we land in PN ' CPn−1, the projective space with n− 1 complex
dimensions. Call p : SN → PN the usual quotient map. Then we mod out by the “gauge”
action of the unitary group U(N) 'U(1)n, which affects the representation of N on H by
adjusting the isomorphism H ' Cn while preserving its rays.

Definition. The relative spectrum SpecN(M) is the finite (n-element) subset of projective
space p(M̃)⊂ PN , modulo the action of U(N).

This definition makes sense since (a) it is invariant under all permissible phase changes;
and (b) it allows one to recover the representation of M from the known representation of N.
We can indeed go back to the subset M̃, up to phases, by selecting arbitrary phases from
U(N). From a vector ∑ j vi j η j in M̃ we can reconstruct an element ei := ∑ j vi j |η j〉〈η j| ∈M,
since the standard basis diagonalizing N is known; and thus we land on a set of minimal
projectors which generate M.

3 Quick rewording of the standard procedure

The mass terms in the Yukawa sector of the Lagrangian (say, for quarks) are a priori of the
form

Lmass = d̄′L Md d′R + ū′L Mu u′R ; (3)

where the “mass matrices” Md , Mu are in principle arbitrary (although we always suppose
them nonsingular with distinct eigenvalues), reality of the Lagrangian being attained by
adding the conjugate terms. In the SM the left-handed and right-handed fermion fields
are treated as unrelated to each other. Thus we regard Md , Mu as nL× nR matrices (with
nL = nR = n) in generation space.

We naturally diagonalize the mass matrices. Common knowledge holds that the best we
can do in this respect is the singular value decomposition, called by physicists a biunitary
transformation. We formulate this diagonalization in line with the development in the previ-
ous section. By definition, a set of operators {Pi}n

i=1 is a complete set of minimal, pairwise
orthogonal partial isometries if

P†
i Pj = PiP

†
j = 0 for i 6= j,

and P†
i Pi, PiP

†
i are minimal projectors.
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We let henceforth n = 3 pour les besoins de la cause. Generically, the singular value
decomposition is of the form

Mu = muPu +mcPc +mtPt ; Md = mdPd +msPs +mbPb;

where the operators Pu, Pc, etc. may be expressed obviously in the form:

Pu = |uL〉〈uR|, Pc = |cL〉〈cR|, Pt = |tL〉〈tR| ; Pd = |dL〉〈dR|, Ps = |sL〉〈sR|, Pb = |bL〉〈bR|.

However, note that the vectors uL,uR,cL, . . . are not uniquely defined; only the partial isome-
tries are. This is the most intrinsic formulation of a biunitary transformation. Note that taking
the masses mu,mc, . . . to be positive is just a convention; obviously the decomposition works
with any sign (or even phase) of the masses.

One then chooses pairs (uL,cL, tL)(uR,cR, tR) —and similarly for the d-type quarks— and
fabricates unitary matrices U (u)

L , U (d)
L , U (u)

R , U (d)
R with these as columns, obtaining

U (u)†
L MuU (u)

R = diag(mu,mc,mt , . . .) =: Du ;

U (d)†
L MdU (d)

R = diag(md,ms,mb, . . .) =: Dd ;

Thus Du and Dd yield the quark-mass abelian von Neumann algebra. Clearly the U (q)
L , with q

standing for either u or d, diagonalize the |M†
q |2 and the U (q)

R diagonalize |Mq|2. In fact, the

columns of U (q)
L and U (q)

R are eigenvectors for |M†
q | and |Mq|, respectively. By writing

u′L =U (u)
L uL ; u′R =U (u)

R uR , d′L =U (d)
L dL ; d′R =U (d)

R dR ,

we appreciate that there is every reason to work with the diagonalized matrices when describ-
ing the coupling of quarks to gluons.

There are however in the SM Lagrangian, among the weak vertices, the charged-current
terms:

LqW =
g√
2

W+
µ ū′L γ

µ d′L +
g√
2

W−µ d̄′L γ
µ u′L. (4)

On the face of it, this becomes

LqW =
g√
2

W+
µ ūL γ

µVCKM dL +
g√
2

W−µ d̄L γ
µV †

CKM uL,

where VCKM :=U (u)†
L U (d)

L is by the definition the CKM matrix, just called V henceforth:

V =

vtb vts vtd

vcb vcs vcd

vub vus vud

 .

Note however, that U (u)†
L and U (d)

L belong to different spaces. Only the identification between
u-and d-quarks provided by the sesquilinear form (4) allows us to multiply them.

In summary, the CKM matrix describes the placement problem for the von Neumann
algebras corresponding to the two invoked pieces (3) and (4) of the Lagrangian.
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4 A remarkable matrix

Consider the Fourier transform for the group Z3, given by the symmetric unitary matrix

Ṽ =
1√
3

1 1 1
1 ω ω

1 ω ω

 , where ω = e2πi/3. (5)

The pair of maximal abelian subalgebras on l2(Z3) consists of the algebra N of multiplication
operators and the algebra M of convolution operators. The three rows of Ṽ , which are unit
vectors in C3, determine a set of three pairwise orthogonal points in the projective space CP2.
This set is the relative spectrum for this particular CKM matrix.

This example is invoked in different roles; at least by:

• Connes in [12]; it is special in that M and N are mutually orthogonal as von Neumann
algebras.

• In physics it is well known that the maximum possible absolute value for the Jarlskog
invariant —yielding maximal CP violation— is attained with this spectrum.

• As indicated before, finite discrete groups of symmetry are all the rage to explain the
patterns (?) in the fermion mass matrices. One of the most popular is the humble
alternating group A4. As it turns out, Ṽ plays a role in its representation theory —see
the next section.

• The (in)famous Koide formula [17] for the masses of the charged leptons is given by(√
me +

√mµ +
√

mτ

)2

me +mµ +mτ

=
3
2
.

At the moment of its inception, the mass of the tau lepton was not yet determined
very precisely, so this was a prediction, that came out right on the mark, even if his
rationale for it then has been deservedly forgotten. Clearly, the formula was equivalent
to an exact angle between the vector of square roots of the masses and the permutation
invariant tuple: (

me,mµ ,mτ

)
∠(1,1,1) =

π

4
.

to allow a phase angle to parametrize the cone around (1,1,1). Note that
√

M
(
1−1/

√
2,1−1/

√
2,1+

√
2
)

is a Koide tuple. Therefore: for k = 1,2,3, with ω = e2πi/3 and (e,µ,τ)≡ (1,2,3) —or
any permutation thereof:

√
mk =

√
M
(
1+
√

2ℜ
(
ω

k + eiδ)) (6)
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is a Koide tuple. We see the cubic roots of 1 to emerge again! I may quote the following
“experimental” values: M ' 313.8Mev and δ ' 0.2222324' 2/9.

Exercice 1. Derive the fact√
Ṽ =

1
4
√

3

2
√

3+2+2(
√

3−1)i 2−2i 2−2i
2−2i (

√
3+
√

6−1)+(
√

3+
√

6+1)i (
√

3−
√

6−1)+(
√

3−
√

6+1)i
2−2i (

√
3−
√

6−1)+(
√

3−
√

6+1)i (
√

3+
√

6−1)+(
√

3+
√

6+1)i

 .

Exercice 2. Prove the assertion on maximal CP violation for the matrix of (5). Or check it in
reference [18, Ch. 13].

5 Horizontal symmetry

By definition, a (pure) horizontal symmetry is a unitary matrix F3×3 commuting with both
|Mu|2 and |Md|2. This implies that these two matrices have the same eigenspaces, which in
case that the eigenvalues of F are non-degenerate results in no mixing. If one eigenvalue is
doubly degenerate, still one of the quarks does not mix.

So let us consider two unitary matrices F,G, respectively commuting with |Mu|2 and
|Md|2, and assume that they are “residual” symmetries of a bigger group of matrices H,
assumed finite, which must contain the finite group generated by F,G, and of course possess
a faithful 3-dimensional representation. We work in the base in which MuM†

d is diagonal,
equal to D2

u. Therefore the eigenvalues of G are given by the columns of V . There must be an
integer k such that its eigenvalues are k-roots of unity, by the finiteness assumption. Similarly
for F , that moreover has to be diagonal. For obvious reasons, F has to be non-degenerate.
One can handle either the case in which G has two coincident eigenvalues or the case in
which all three are different.

Following Lam [19] and Altarelli and Feruglio [8], we choose to investigate H= A4, the
tetrahedron motion group. It is generated by two basic even permutations of {1234},

G = {4321}; F = {2314}, with G2 = F3 = 1 = (GF)3.

There are four conjugacy classes. Besides C1 := {1234}:

C2 := {G,GFG2,F2GF }; C3 := {F,GF,FG,GFG}; C4 := {F2,GF2,F2G,GF2G}.

Thus there are four characters,

χ
0 = (1,1,1,1); χ

1 = (1,1,ω,ω); χ
2 = (1,1,ω,ω); χ

3 = (3,−1,0,0),

with a self-evident notation. Note their orthogonality properties. The group has thus four
inequivalent representations, of dimensions 1,1,1,3 : 12 + 12 + 12 + 32 = 12. They corre-
spond to (with some abuse of notation):

G = 1, F = 1; G = 1, F = ω; G = 1, F = ω; F =

1 0 0
0 ω 0
0 0 ω

 , G =
1
3

−1 2 2
2 −1 2
2 2 −1

 ;
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choosing for the last a basis in which F is diagonal. Note that G is symmetric. From this one
has the twelve matrices of the 3-dimensional irrep of A4. That old acquaintance of ours, the
matrix Ṽ , intertwines this representation with an equivalent one in which G is diagonal.

Now, in the lepton sector the following PMNS matrix, called of “tribimaximal mixing”,
has been popular for over ten years [20]:

V =


√

2/
√

3 1/
√

3 0
−1/
√

6 1/
√

3 −1/
√

2
−1/
√

6 1/
√

3 1/
√

2

 ;

The order here is: {e,µ,τ }. In this example sin2
θ12 = 4sin2

θ12 cosθ12 = 8/9. One may
have, more generally,

V =

 cosθ12 sinθ12 0
−sinθ12/

√
2 cosθ12/

√
2 −1/

√
2

−sinθ12/
√

2 cosθ12/
√

2 1/
√

2

 .

Working in the basis in which the charged leptons “are diagonal”, and certainly invariant
under conjugation by F , the neutrino mass pattern corresponding to the last matrix is conven-
tionally3 of the form cosθ12 sinθ12 0

−sinθ12/
√

2 cosθ12/
√

2 −1/
√

2
−sinθ12/

√
2 cosθ12/

√
2 1/

√
2

m1 0 0
0 m2 0
0 0 m3

cosθ12 −sinθ12/
√

2 −sinθ12/
√

2
sinθ12 cosθ12/

√
2 cosθ12/

√
2

0 −1/
√

2 1/
√

2


=

 m1 cosθ12 m2 sinθ12 0
−m1 sinθ12/

√
2 m2 cosθ12/

√
2 −m3/

√
2

−m1 sinθ12/
√

2 m2 cosθ12/
√

2 m3/
√

2

cosθ12 −sinθ12/
√

2 −sinθ12/
√

2
sinθ12 cosθ12/

√
2 cosθ12/

√
2

0 −1/
√

2 1/
√

2

 ,

=

m2
1 cos2 θ12 +m2 sin2

θ12 (m2−m1)sinθ12 cosθ12 (m2−m1)sinθ12 cosθ12

(m2−m1)sinθ12 cosθ12 m2
1 sin2

θ12 +m2
2 cos2 θ12 +m2

3 m2
1 sin2

θ12 +m2
2 cos2 θ12−m2

3
(m2−m1)sinθ12 cosθ12 m2

1 sin2
θ12 +m2

2 cos2 θ12−m2
3 m2

1 sin2
θ12 +m2

2 cos2 θ12 +m2
3

 .

This is invariant under conjugation by G! Thus we have realized a reflection symmetry
in the neutrino sector and a Z3 symmetry in the charged lepton sector, both allegedly coming
from the breaking of a A4 symmetry.

Now, after the Daya Bay experiment, it is known that θ13 6= 0. Even so, tribimaximal
mixing is perhaps not completely ruled out, since a correction for it, of the order of the
Cabibblo angle, is expected [8].
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