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SM and Beyond in NCG 2

1 Motivation
•With the discovery of the Higgs field all the pieces of the SM are now in place.

•Within the SM settings there are many questions begging for an answer such as:

•Why the gauge group is SU(3)× SU(2)× U(1) ?

•Why the Why are there 16 fermions per family in the representations (1, 1, 1) ,
(
1, 2, 1

2

)
,(

3, 1,−2
3

)
,
(
3, 2, 1

3

)
representations of SU(3)× SU(2)× U(1)?

•Why there is one Higgs doublet and how is the spontaneous symmetry breaking

occurs?

• Are the three coupling constants related?

•Why the neutrinos are very light?

•Why there are three families?

•Why there is a very small CP violation of order 10−9?

• Can one predict some of the fermion masses or the Higgs mass?

At present there is no model that can answer few of these questions, and the ones that
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do answer some questions are ruled out or suffer from arbitrariness.

Alain Connes in his talk set the stage for a geometrical unification of all fundamental

interactions including gravity. He showed that the answer cannot be within Reimannian

geometry and one must consider instead noncommutative geometry.

We proceed by assuming that:

1. Space-time is a product of a continuous four-dimensional manifold times a finite

space.

2. One of the algebras M4 (C) is subject to symplectic symmetry reducing it to M2 (H) .

3. The commutator of the Dirac operator with the center of the algebra is non trivial

[D,Z (A)] 6= 0.

4. The unitary algebra U (A) is restricted to SU (A) .

5. There is no fermion doubling problem which restricts the KO dimension of the NC

space to be 2 mod 8.

We have then shown that the first possibility for the NC space is to have the algebra

M2 (H)⊕M4 (C) which is broken by the grading operator γ to H⊕H⊕M4 (C) .
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At this point one imposes the first order condition
[
[D, a] , b̂

]
= 0 which is necessary to

make the inner fluctuations of the Dirac operator linear. As explained in Walter’s talk

this is a condition that could be relaxed as one can show that the order one condition

is not essential to have a consistent model.

Imposing the first order condition reduces the algebra of the finite space to C ⊕ H ⊕
M3 (C).
This then gives rise to the following predictions:

1. The number of fundamental fermions is 16.

2. The algebra of the finite space is C⊕H⊕M3 (C) .

3. One gets the correct representations of the fermions with respect to SU(3)×SU(2)×
U(1).

4. Higgs doublet and spontaneous symmetry breaking mechanism. This is highly

non-trivial especially that the mass term of the Higgs field comes with the correct

negative sign.

5. Mass of the top quark compatible with experiment.
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6. See-saw mechanism to give very light left-handed neutrinos.

7. Vanishing of the θ QCD term εµνρσV m
µνV

m
ρσat tree level and loop corrections can only

change this by orders of less than 10−9.

8. Generating of the Gibbons-Hawking boundary term for gravity with the correct sign

and factor which is necessary for the consistency of obtaining a Hamiltonian for

gravity.

9. Predicting the existence of a scalar field needed to give Majorana masses to the

right-handed neutrinos which in turn solves th problem of the stability of the Higgs

potential preventing the Higgs coupling from turning to negative.

We see that many of the questions asked in the beginning are answered in the NCG

approach to the SM, but many questions still remain.

We have seen from the experimental talks that at present there are no indications of

any new physics beyond the SM, but this does not rule out that some new physics will

appear at very high energies. Indications that this is the case can be seen by the fact

that the three gauge couplings do not meet at high energies as required by the spectral

action. In addition the presence of the sigma field at energies of the order of 1011 Gev

suggests that new physics would start to play a role at such high energies. Accepting
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this lead us to consider relaxing the order one condition and to investigate which model

one gets.

The first order condition is what restricted a more general gauge symmetry based on

the algebra HR ⊕ HL ⊕M4 (C) to the subalgebra C ⊕ H ⊕M3 (C) . It is thus essential

to understand the physical significance of such a requirement. In what follows we shall

examine the more general algebra allowed without the first order condition, and shall

show that the number of fundamental fermions is still dictated to be 16. We determine

the inner automorphisms of the algebraA and show that the resulting gauge symmetry

is a Pati-Salam type left-right model

SU (2)R × SU (2)L × SU (4)

where SU (4) is the color group with the lepton number as the fourth color. In ad-

dition we observe that the Higgs fields appearing in A(2) are composite and depend

quadratically on those appearing in A(1) provided that the initial Dirac operator (with-

out fluctuations) satisfy the order one condition. Otherwise, there will be additional

fundamental Higgs fields. In particular, the representations of the fundamental Higgs

fields when the initial Dirac operator satisfies the order one condition are (2R, 2L, 1) ,
(2R, 1L, 4) and (1R, 1L, 1 + 15) with respect to SU (2)R×SU (2)L×SU (4) . When the or-
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der one condition is not satisfied for the initial Dirac operator, the representations of the

additional Higgs fields are (3R, 1L, 10), (1R, 1L, 6) and (2R, 2L, 1 + 15) . There are simpli-

fications if the Yukawa coupling of the up quark is equated with that of the neutrino and

of the down quark equated with that of the electron. In addition the 1 + 15 of SU (4) de-

couple if we assume that at unification scale there is exact SU (4) symmetry between

the quarks and leptons. The resulting model is very similar to the one considered by

Marshak and Mohapatra.

2 Doing calculations
Although it is possible to use matrix notation to deal with the physical model, the fact

that the matrix representation (which is a product of matrices) is 384× 384 dimensional

making the task daunting and not very transparent, although only involving products

of matrices. We find it much more efficient and practical to use a tensorial notation

which simplifies greatly the algebraic operations. This also has the added advantage

of allowing to check all the steps using computer programs with algebraic manipulations

such as Mathematica and Maple.

We will restrict to the case where Z (AC) = C⊕ C. An element of the Hilbert space
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Ψ ∈ H is represented by

ΨM =

(
ψA
ψA′

)
, ψA′ = ψcA (1)

where ψcA is the conjugate spinor to ψA. Thus all primed indices A′ correspond to the

Hilbert space of conjugage spinors. It is acted on by both the left algebra M2 (H) and

the right algebra M4 (C). Therefore the index A can take 16 values and is represented

by

A = αI (2)

where the index α is acted on by quaternionic matrices and the index I by M4 (C) ma-

trices. Moreover, when grading breaks M2 (H) intoHR⊕HL the index α is decomposed

to α =
.
a, a where

.
a =

.
1,

.
2 (dotted index) is acted on by the first quaternionic algebra

HR and a = 1, 2 is acted on by the second quaternionic algebra HL . When M4 (C)
breaks into C⊕M3 (C) (due to symmetry breaking or through the use of the order one

condition) the index I is decomposed into I = 1, i where the 1 is acted on by the C and
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the i by M3 (C) . Therefore the various components of the spinor ψA are

ψαI =

(
νR uiR νL uiL
eR diR eL diL

)
= (ψ .

a1, ψ .
ai, ψa1, ψai) , a = 1, 2, a =

.
1,

.
2, i = 1, 2, 3.

The power of the abstract notation can be seen by noting that the Dirac action takes

the very simple form

Ψ∗MD
N
MΨN (3)

which could be expanded to give

ψ∗AD
B
AψB + ψ∗A′D

B
A′ψB + ψ∗AD

B
′

A ψB′′ + ψ∗A′D
B′

A′ψB′ (4)

The Dirac operator can be written in matrix form

D =

(
DB
A DB

′

A

DB
A′
DB

′

A′

)
, (5)
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where

A = αI, α = 1, · · · , 4, I = 1, · · · , 4 (6)

A′ = α′I ′, α′ = 1′, · · · , 4′, I = 1′, · · · , 4′ (7)

Thus DB
A = DβJ

αI . Elements of the algebra

A = M4 (C)⊕M4 (C) (8)

are represented by

a =

(
Xβ
αδ

J
I 0

0 δβ
′

α′Y
J ′

I ′

)
(9)

where the first block is the tensor product of elements of M4 (C) ⊗ 14 and the second

blcok is the tensor product of elments of 14 ⊗M4 (C) . The reality operator J is anti-

linear and interchange the first and second blcoks and satsify J2 = 1. It is represented

by

J =

(
0 δβ

′

α δ
J ′

I

δβα′δ
J
I ′ 0

)
× complex conjugation (10)
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In this form

ao = Ja∗J−1 =

(
δβαY

tJ
I 0

0 X tβ′

α′ δ
J ′
I′′

)
(11)

where the superscript t denotes the transpose matrix. This clearly satisfies the com-

mutation relation

[a, bo] = 0. (12)

Writing

b =

(
Zβ
αδ

J
I 0

0 δβ
′

α′W
J ′

I ′

)
(13)

then

bo =

(
δβαW

tJ
I 0

0 Ztβ′

α′ δ
J ′
I′

)
(14)
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and so [[D, a] , bo] is equal to(
[[D,X ] ,W t]

B
A ((DY −XD)Zt −W t (DY −XD))

B′

A

((DX − Y D)W t − Zt (DX − Y D))
B
A′ [[D, Y ] , Zt]

B′

A′

)
(15)

The order one condition is

[[D, a] , bo] = 0 (16)

have only one solution with non-zero mixing between primed and unprimed indices:

Dβ′K ′

αI = δ
.
1
αδ

β′
.

1′
δ1
Iδ
K ′

1′ k
∗νRσ (17)

where the k∗νR are matrices in generation space which will be assumed to be 3× 3. We

also note that the property that DJ = JD implies that

D B′

A′ = D
B
A.

We further impose the condition of symplectic isometry on the first M4 (C)

(σ2 ⊗ 1) (a) (σ2 ⊗ 1) = a, a ∈M4 (C)
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which reduces M4 (C) to M2 (H). From the property of commutation of the grading

operator Gβ
α with M2 (H)

[G,X ] = 0

where Gβ
α =

(
12 0
0 −12

)
, reduces the algebra M2 (H) to HR⊕HL. Thus we now have

Xβ
α =

(
X

.

b
.
a

0
0 Xb

a

)
, Xb

a =

(
X1

1 X2
1

−X2
1 X

1
1

)
∈ HL

and similarly for X
.

b
.
a
∈ HR. In matrix form the operator DF has the sub-matrices

D β1
α1 =

(
0 D

.

b1
a1

Db1
.
a1

0

)
, D

.

b1
a1 =

(
Db1

.
a1

)∗ ≡ D
.

b
a(l)

D βj
αi =

(
0 D

.

b
a(q)δ

j
i

Db
.
a(q)
δji 0

)
, Db

.
a(q) =

(
D

.

b
a(q)

)∗
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where

D
.

b1
a1 = D

.

b
a(l) =

(
k∗ν 0
0 k∗e

)
, a = 1, 2,

.

b =
.
1,

.
2

and

D
.

b
a(q) =

(
k∗u 0
0 k∗d

)
.

The Yukawa couplings kν, ke, ku, kd are 3× 3 matrices in generation space. Notice that

this structure gives Dirac masses to all the fermions, but Majorana masses only for the

right-handed neutrinos. This was shown in to be the unique possibility consistent with

the first order condition on the subalgebra (??). We can summarize all the information

about the finite space Dirac operator without fluctuations, in the tensorial equation

(DF ) βJ
αI =

(
δ1
αδ

β
.
1
k∗ν + δ

.
1
αδ

β
1k

ν + δ2
αδ

β
.
2
k∗e + δ

.
2
αδ

β
2k

e
)
δ1
Iδ
J
1

+
(
δ1
αδ

β
.
1
k∗u + δ

.
1
αδ

β
1k

u + δ2
αδ

β
.
2
k∗d + δ

.
2
αδ

β
2k

d
)
δiIδ

J
j δ

j
i

(DF ) β′K ′

αI = δ
.
1
αδ

β′
.
1
′ δ

1
Iδ
K ′

1′ k
∗νR
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where kνR are Yukawa couplings for the right-handed neutrinos. One can also consider

the special case of lepton and quark unification by equating

kν = ku, ke = kd

where we expect some simplifications. From the previous discussion, it will be clear

that the Dirac operator DA including inner fluctuations U = u Ju J−1, u ∈ U (A) would

not obey the first order condition.

3 Dirac operator and Inner fluctuations on

HR ⊕HL ⊕M4 (C)

When one considers inner fluctuations of the Dirac operator one finds that the gauge

transformation takes the form

DA → UDAU
∗, U = u Ju J−1, u ∈ U (A)

which implies that

A→ uAu∗ + uδ (u∗) .
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This in turn gives

A(1) → uA(1)u
∗ + u [D, u∗] ∈ Ω1

D (A)

A(2) → Ju J−1A(2)Ju
∗ J−1 + Ju J−1

[
u [D, u∗] , Ju ∗J−1

]
where the A(2) in the right hand side is computed using the gauge transformed A(1).

Thus A(1) is a one-form and behaves like the usual gauge transformations. On the

other hand A(2) transforms non-linearly and includes terms with quadratic dependence

on the gauge transformations.

We now proceed to compute the Dirac operator on the product space M × F . The

initial operator is given by

D = γµDµ ⊗ 1 + γ5DF

where γµDµ = γµ
(
∂µ + 1

4ω
ab

µ γab
)

is the Dirac operator on the four dimensional spin

manifold. Then the Dirac operator including inner fluctuations is given by

DA = D + A(1) + JA(1)J
−1 + A(2)
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A(1) =
∑

a [D, b]

A(2) =
∑

a
[
JA(1)J

−1, b
]
.

The computation is very involved thus for clarity we shall collect all the details in the

appendix and only quote the results in what follows. The different components of the

operator DA are then given by

(DA)
.

bJ
.
aI = γµ

(
Dµδ

.

b
.
aδ
J
I −

i

2
gRW

α
µR (σα)

.

b
.
a δ

J
I − δ

.

b
.
a

(
i

2
gV m

µ (λm)
J

I +
i

2
gVµδ

J
I

))
(DA)bJaI = γµ

(
Dµδ

b
aδ
J
I −

i

2
gLW

α
µL (σα)ba δ

J
I − δba

(
i

2
gV m

µ (λm)
J

I +
i

2
gVµδ

J
I

))
where the fifteen 4× 4 matrices (λm)

J

I are traceless and generate the group SU (4) and

W α
µR, W

α
µL, V

m
µ are the gauge fields of SU (2)R, SU (2)L, and SU (4) . The requirement

that A is unimodular implies that

Tr (A) = 0
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which gives the condition

Vµ = 0.

In addition we have

(DA)bJ.aI = γ5

((
kνφb.a + keφ̃

b
.
a

)
ΣJ
I +

(
kuφb.a + kdφ̃

b
.
a

) (
δJI − ΣJ

I

))
≡ γ5ΣbJ

.
aI (18)

(DA)
.

b
′
J ′
.
aI = γ5k

∗νR∆ .
aJ∆ .

bI
≡ γ5H .

aI
.

bJ

where the Higgs field φb.a is in the
(
2R, 2L, 1

)
of the product gauge group SU (2)R ×

SU (2)L×SU (4), and ∆ .
aJ is in the (2R,, 1L, 4) representation while ΣJ

I is in the (1R, 1L, 1 + 15)

representation. The field φ̃
b
.
a is not an independent field and is given by

φ̃
b
.
a = τ 2φ

b
.
aτ 2.

Note that the field ΣJ
I decouples (and set to δ1

Iδ
J
1 ) in the special case when there is

lepton and quark unification of the couplings

kν = ku, ke = kd.

In case when the initial Dirac operator satisfies the order one condition, then the A(2)
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part of the connection becomes a composite Higgs field where the Higgs field ΣbJ
.
aI

is

formed out of the products of the fields φb.a and ΣJ
I while the Higgs field H .

aI
.

bJ
is made

from the product of ∆ .
aJ∆ .

bI
. For generic initial Dirac operators, the field

(
A(2)

)bJ
.
aI

be-

comes independent. The fields ΣbJ
.
aI

and H .
aI

.

bJ
will then not be defined through equa-

tion 18 and will be in the (2R, 2L, 1 + 15) and (3R, 1L, 10) + (1R, 1L, 6) representations of

SU (2)R × SU (2)L × SU (4) . In addition, for generic Dirac operator one also generate

the fundamental field (1, 2L, 4) . The fact that inner automorphisms form a semigroup

implies that the cases where the Higgs fields contained in the connections A(2) are ei-

ther independent fields or depend quadratically on the fundamental Higgs fields are

disconnected. The interesting question that needs to be addressed is whether the

structure of the connection is preserved at the quantum level. This investigation must

be performed in such a way as to take into account the noncommutative structure of the

space. At any rate, we have here a clear advantage over grand unified theories which

suffers of having arbitrary and complicated Higgs representations . In the noncommu-

tative geometric setting, this problem is now solved by having minimal representations

of the Higgs fields. Remarkably, we note that a very close model to the one deduced

here is the one considered by Marshak and Mohapatra where the U (1) of the left-right
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model is identified with the B − L symmetry. They proposed the same Higgs fields

that would result starting with a generic initial Dirac operator not satisfying the first or-

der condition. Although the broken generators of the SU (4) gauge fields can mediate

lepto-quark interactions leading to proton decay, it was shown that in all such types of

models with partial unification, the proton is stable. In addition this type of model arises

in the first phase of breaking of SO (10) to SU (2)R × SU (2)L × SU (4) and these have

been extensively studied. The recent work in considers noncommutative grand unifica-

tion based on the k = 8 algebra M4 (H)⊕M8 (C) keeping the first order condition.

4 The Spectral Action for the SU (2)R × SU (2)L × SU (4)

model
Having determined the Dirac operator acting on the Hilbert space of spinors in terms

of the gauge fields of SU (2)R × SU (2)L × SU (4) and Higgs fields, some of which

are fundamental while others are composite, the next step is to study the dynamics of

these fields as governed by the spectral action principle. The geometric invariants of

the noncommutative space are encoded in the spectrum of the Dirac operator DA. The
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bosonic action is given by

Trace (f (DA/Λ))

where Λ is some cutoff scale and the function f is restricted to be even and positive.

Using heat kernel methods the trace can be expressed in terms of Seeley-de Witt

coefficients an :

Trace f (DA/Λ) =

∞∑
n=0

F4−nΛ4−nan

where the function F is defined by F (u) = f (v) where u = v2, thus F (D2) = f (D). We

define

fk =

∞∫
0

f (v) vk−1dv, k > 0
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then

F4 =

∞∫
0

F (u)udu = 2

∞∫
0

f (v)v3dv = 2f4

F2 =

∞∫
0

F (u)du = 2

∞∫
0

f (v)vdv = 2f2

F0 = F (0) = f (0) = f0

F−2n = (−1)n F (n) (0) =

[
(−1)n

(
1

2v

d

dv

)n
f

]
(0) n ≥ 1.

Using the same notation and formulas as in reference [?], the first Seeley-de Witt coef-
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ficient is

a0 =
1

16π2

∫
d4x
√
gTr (1)

=
1

16π2
(4) (32) (3)

∫
d4x
√
g

=
24

π2

∫
d4x
√
g

where the numerical factors come, respectively, from the traces on the Clifford algebra,

the dimensions of the Hilbert space and number of generations. The second coefficient

is

a2 =
1

16π2

∫
d4x
√
gTr

(
E +

1

6
R

)
where E is a 384×384 matrix over Hilbert space of three generations of spinors, whose
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components are derived and listed in the appendix. Taking the various traces we get

a2 =
1

16π2

∫
d4x
√
g
(

(R(−96 + 64)− 8
(
H .
aI

.
cKH

.
cK

.
aI + 2ΣcK

.
aI Σ

.
aI
cK

))
= − 2

π2

∫
d4x
√
g

(
R +

1

4

(
H .
aI

.
cKH

.
cK

.
aI + 2ΣcK

.
aI Σ

.
aI
cK

))
.

It should be understood in the above formula and in what follows, that whenever the

matrices kν, ku, ke, kd and kνR appear in an action, one must take the trace over gen-

eration space. When the initial Dirac operator without fluctuations is taken to satisfy

the order one condition, the fields H .
aI

.
cK and ΣcK

.
aI

will become dependent on the fun-

damental Higgs fields. In this case, the mass terms can be expressed in terms of the

fundamental Higgs field to give

H .
aI

.
cKH

.
cK

.
aI = |kνR|2

(
∆ .
aK∆

.
aK
)2
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and

2ΣcK
.
aI Σ

.
aI
cK = 2

((
(kν − ku)φc.a +

(
ke − kd

)
φ̃
c
.
a

)
ΣK
I +

(
kuφc.a + kdφ̃

c
.
a

)
δKI

)
((

(k∗ν − k∗u)φ
.
a
c +
(
k∗e − k∗d

)
φ̃
.
a

c

)
ΣI
K +

(
k∗uφ

.
a
c + k∗dφ̃

.
a

c

)
δIK

)
.

The next coefficient is

a4 =
1

16π2

∫
d4x
√
gTr

(
1

360

(
5R2 − 2R2

µν + 2R2
µνρσ

)
1 +

1

2

(
E2 +

1

3
RE +

1

6
Ω2
µν

))
where Ωµν is the 384×384 curvature matrix of the connection ωµ. Using the expressions

for the matrices E and Ωµν derived in the appendix, and taking the traces, we get

a4 =
1

2π2

∫
d4x
√
g

[
−3

5
C2
µνρσ +

11

30
R∗R∗ + g2

L

(
W α

µνL

)2
+ g2

R

(
W α

µνR

)2
+ g2

(
V m
µν

)2

+∇µΣ
.
cK
aI ∇µΣaI

.
cK +

1

2
∇µH .

aI
.

bJ
∇µH

.
aI

.

bJ +
1

12
R
(
H .
aI

.
cKH

.
cK

.
aI + 2ΣcK

.
aI Σ

.
aI
cK

)
+

1

2

∣∣∣H .
aI

.
cKH

.
cK

.

bJ
∣∣∣2 + 2H .

aI
.
cKΣ

.
cK
bJ H

.
aI

.

dLΣbJ
.

dL
+ Σ

.
cK
aI ΣbJ

.
cKΣ

.

dL
bJ ΣaI

.

dL

]
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where Cµνρσ is the Weyl tensor. Thus the bosonic spectral action to second order is

given by

S = F4Λ4a0 + F2Λ2a2 + F0a4 + · · ·

which finally gives

Sb =
24

π2
F4Λ4

∫
d4x
√
g

− 2

π2
F2Λ2

∫
d4x
√
g

(
R +

1

4

(
H .
aI

.
cKH

.
cK

.
aI + 2ΣcK

.
aI Σ

.
aI
cK

))
+

1

2π2
F0

∫
d4x
√
g

[
1

30

(
−18C2

µνρσ + 11R∗R∗
)

+ g2
L

(
W α

µνL

)2
+ g2

R

(
W α

µνR

)2
+ g2

(
V m
µν

)2

+ ∇µΣ
.
cK
aI ∇µΣaI

.
cK +

1

2
∇µH .

aI
.

bJ
∇µH

.
aI

.

bJ +
1

12
R
(
H .
aI

.
cKH

.
cK

.
aI + 2ΣcK

.
aI Σ

.
aI
cK

)
+

1

2

∣∣∣H .
aI

.
cKH

.
cK

.

bJ
∣∣∣2 + 2H .

aI
.
cKΣ

.
cK
bJ H

.
aI

.

dLΣbJ
.

dL
+ Σ

.
cK
aI ΣbJ

.
cKΣ

.

dL
bJ ΣaI

.

dL

]
.

The physical content of this action is a cosmological constant term, the Einstein Hilbert

term R, a Weyl tensor square term C2
µνρσ, kinetic terms for the SU (2)R × SU (2)L ×
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SU (4) gauge fields, kinetic terms for the composite Higgs fields H .
aI

.

bJ
and Σ

.
cK
bJ as well

as mass terms and quartic terms for the Higgs fields. This is a grand unified Pati-Salam

type model with a completely fixed Higgs structure which we expect to spontaneously

break at very high energies to the U (1) × SU (2) × SU (3) symmetry of the SM. We

also notice that this action gives the gauge coupling unification

gR = gL = g.

A test of this model is to check whether this relation when run using RG equations

would give values consistent with the values of the gauge couplings for electromag-

netic, weak and strong interactions at the scale of the Z -boson mass. Having de-

termined the full Dirac operators, including fluctuations, we can write all the fermionic
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interactions including the ones with the gauge vectors and Higgs scalars. It is given by∫
d4x
√
g

{
ψ∗.aIγ

µ

(
Dµδ

.

b
.
aδ
J
I −

i

2
gRW

α
µR (σα)

.

b
.
a δ

J
I − δ

.

b
.
a

(
i

2
gV m

µ (λm)
J

I +
i

2
gVµδ

J
I

))
ψ .

bJ

+ ψ∗aIγ
µ

(
Dµδ

b
aδ
J
I −

i

2
gLW

α
µL (σα)ba δ

J
I − δba

(
i

2
gV m

µ (λm)
J

I +
i

2
gVµδ

J
I

))
ψbJ

+ψ∗.aIγ5ΣbJ
.
aIψbJ + ψ∗aIγ5Σ

.

bJ
aIψ .

bJ
+ Cψ .

aIγ5H
.
aI

.

bJψ .

bJ
+ h.c

}
Truncation to the Standard Model.

It is easy to see that this model truncates to the Standard Model. The Higgs field φb.a
= (2R, 2L, 1) must be truncated to the Higgs doublet H by writing

φb.a = δ
.
1
.
aε
bcHc.

The other Higgs field ∆ .
aI = (2R, 1, 4) is truncated to a real singlet scalar field

∆ .
aI = δ

.
1
.
aδ

1
I

√
σ.
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These then imply the relations

ΣbJ
.
aI =

(
δ
.
1
.
ak

νεbcHc + δ
.
2
.
aH

b
ke
)
δ1
Iδ
J
1 +

(
δ
.
1
.
ak

uεbcHc + δ
.
2
.
ak

dH
b
)
δiIδ

J
j δ

j
i

H .
aI

.

bJ
= δ

.
1
.
aδ

.
1
.

b
kνRδ1

Iδ
J
1σ

gRW
3
µR = g1Bµ, W±

µR = 0√
3

2
gV 15

µ = −g1Bµ (Vµ)i1 = 0

where V 15
µ is the SU(4) gauge field corresponding to the generator

λ15 =
1√
6

diag (3,−1,−1,−1)

which could be identified with the B−L generator. In particular the components (DA)
.
11
.
11
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and (DA)
.
21
.
21

of the Dirac operator simplify to

(DA)
.
11
.
11

= γµ
(
Dµ −

i

2
gRW

α
µR (σα)

.
1
.
1
−
(
i

2
gV m

µ (λm)
1

1

))
= γµ

(
Dµ −

i

2
gRW

3
µR −

(
i

2
gV 15

µ

√
3

2

))
= γµDµ

(DA)
.
21
.
21

= γµ
(
Dµ −

i

2
gRW

α
µR (σα)

.
2
.
2
−
(
i

2
gV m

µ (λm)
1

1

))
= γµ

(
Dµ +

i

2
gRW

3
µR −

(
i

2
gV 15

µ

√
3

2

))
= γµ (Dµ + ig1Bµ)

which are identified with the Dirac operators acting on the right-handed neutrino and

right-handed electron. Similar substitutions give the action of the Dirac operators on

the remaining fermions and give the expected results. We now compute the various
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terms in the spectral action. First for the mass terms we have

1

4
H .
aI

.

bJ
H

.

bJ
.
aI =

1

4

(
δ1
.
aδ

1
.

b
kνRδ1

Iδ
J
1σ
)(

δ
.
a
1δ

.

b
1δ
I
1δ
J
1k
∗νRσ

)
=

1

4
tr |kνR|2 σ2 =

1

4
cσ2

1

2
ΣcK

.
aI Σ

.
aI
cK =

1

2

∣∣∣(δ .1.akνεbcHc + δ
.
2
.
aH

b
ke
)
δ1
Iδ
J
1 +

(
δ
.
1
.
ak

uεbcHc + δ
.
2
.
ak

dH
b
)
δiIδ

J
j δ

j
i

∣∣∣2
=

1

2
aHH

where

a = tr
(
k∗νkν + k∗eke + 3

(
k∗uku + k∗dkd

))
c = tr (k∗νRkνR)

Next for the a4 term, starting with the gauge kinetic energies we have

g2
L

(
W α

µνL

)2
+ g2

R

(
W α

µνR

)2
+ g2

(
V m
µν

)2 → g2
L

(
W α

µνL

)2
+

5

3
g2

1B
2
µν + g2

3

(
V m
µν

)2

where m = 1, · · · , 8 for V m
µν restricted to the SU(3) gauge group. Next for the Higgs

NCG and PP Lorentz Center



SM and Beyond in NCG 32

kinetic and quartic terms we have

∇µΣ
.
cK
aI ∇µΣaI

.
cK → a∇µH∇µH

1

2
∇µH .

aI
.

bJ
∇µH

.
aI

.

bJ → 1

2
c∂µσ∂

µσ

1

12
R
(
H .
aI

.
cKH

.
cK

.
aI + 2ΣcK

.
aI Σ

.
aI
cK

)
→ 1

12
R
(
2aHH + cσ2

)
1

2

∣∣∣H .
aI

.
cKH

.
cK

.

bJ
∣∣∣2 → 1

2
dσ4

2H .
aI

.
cKΣ

.
cK
bJ H

.
aI

.

dLΣbJ
.

dL
→ 2eHHσ2

Σ
.
cK
aI ΣbJ

.
cKΣ

.

dL
bJ ΣaI

.

dL
→ b

(
HH

)
.2
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Collecting all terms we end up with the bosonic action for the Standard Model:

Sb =
24

π2
F4Λ4

∫
d4x
√
g

− 2

π2
F2Λ2

∫
d4x
√
g

(
R +

1

2
aHH +

1

4
cσ2

)
+

1

2π2
F0

∫
d4x
√
g

[
1

30

(
−18C2

µνρσ + 11R∗R∗
)

+
5

3
g2

1B
2
µν + g2

2

(
W α

µν

)2
+ g2

3

(
V m
µν

)2

+
1

6
aRHH + b

(
HH

)2
+ a |∇µHa|2 + 2eHH σ2 +

1

2
d σ4 +

1

12
cRσ2 +

1

2
c (∂µσ)2

]
where

b = tr

(
(k∗νkν)2 + (k∗eke)2 + 3

(
(k∗uku)2 +

(
k∗dkd

)2
))

d = tr

(
(k∗νRkνR)2

)
e = tr (k∗νkνk∗νRkνR) .

This action completely agrees with the results in reference.
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5 The potential and symmetry breaking
We now study the resulting potential and try to investigate the possible minima:

V =
F0

2π2

(
1

2

∣∣∣H .
aI

.
cKH

.
cK

.

bJ
∣∣∣2 + 2H .

aI
.
cKΣ

.
cK
bJ H

.
aI

.

dLΣbJ
.

dL
+ Σ

.
cK
aI ΣbJ

.
cKΣ

.

dL
bJ ΣaI

.

dL

)
− F2

2π2

(
H .
aI

.
cKH

.
cK

.
aI + 2ΣcK

.
aI Σ

.
aI
cK

)
.

However, the Higgs field here are not fundamental and we have to express the potential

in terms of the fundamental Higgs fields φc.a, ∆ .
aK and ΣI

K. Expanding the composite

Higgs fields in terms of the fundamental ones, we have for the quartic terms

1

2

∣∣∣H .
aI

.
cKH

.
cK

.

bJ
∣∣∣2 =

1

2
|kνR|4

(
∆ .
aK∆

.
aL

∆ .

bL
∆

.

bK
)2
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Σ
.
cK
aI ΣbJ

.
cKΣ

.

dL
bJ ΣaI

.

dL
=

((
(k∗ν − k∗u)φ

.
c
a +
(
k∗e − k∗d

)
φ̃
.
c

a

)
ΣK
I +

(
k∗uφ

.
c
a + k∗dφ̃

.
c

a

)
δKI

)
((

(kν − ku)φb.c +
(
ke − kd

)
φ̃
b
.
c

)
ΣJ
K +

(
kuφb.c + kdφ̃

b
.
c

)
δJK

)
((

(k∗ν − k∗u)φ
.

d
b +
(
k∗e − k∗d

)
φ̃

.

d

b

)
ΣL
J +

(
k∗uφ

.

d
b + k∗dφ̃

.

d

b

)
δLJ

)
((

(kν − ku)φa.
d

+
(
ke − kd

)
φ̃
a
.

d

)
ΣI
L +

(
kuφa.

d
+ kdφ̃

a
.

d

)
δIL

)
2H .

aI
.
cKΣ

.
cK
bJ H

.
aI

.

dLΣbJ
.

dL
= 2 |kνR|2

(
∆ .
aK∆

.
aL

∆ .
cI∆

.

dI
)

((
(k∗ν − k∗u)φ

.
c
b +
(
k∗e − k∗d

)
φ̃
.
c

b

)
ΣK
J +

(
k∗uφ

.
c
b + k∗dφ̃

.
c

b

)
δKJ

)
((

(kν − ku)φb.
d

+
(
ke − kd

)
φ̃
b
.

d

)
ΣJ
L +

(
kuφb.

d
+ kdφ̃

b
.

d

)
δJL

)
.

Next we have the mass terms

H .
aI

.
cKH

.
cK

.
aI = |kνR|2

(
∆ .
aK∆

.
aK
)2
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and

2ΣcK
.
aI Σ

.
aI
cK = 2

((
(kν − ku)φc.a +

(
ke − kd

)
φ̃
c
.
a

)
ΣK
I +

(
kuφc.a + kdφ̃

c
.
a

)
δKI

)
((

(k∗ν − k∗u)φ
.
a
c +
(
k∗e − k∗d

)
φ̃
.
a

c

)
ΣI
K +

(
k∗uφ

.
a
c + k∗dφ̃

.
a

c

)
δIK

)
.

The potential must be analyzed to determine all the possible minima that breaks the

symmetry SU (2)R× SU (2)L× SU (4) . In this respect it is useful to determine whether

the symmetries of this model break correctly at high energies to the Standard Model.

Needless to say that it is difficult to determine all allowed vacua of this potential, espe-

cially since there is dependence of order eight on the fields. It is possible, however, to

expand this potential around the vacuum that we started with which breaks the gauge

symmetry directly from SU (2)R × SU (2)L × SU (4) to U (1)em × SU (3)c. Explicitly, this

vacuum is given by〈
φb.a
〉

= vδ
.
1
.
aδ
b
1

〈
ΣI
J

〉
= uδI1δ

1
J 〈∆ .

aJ〉 = wδ
.
1
.
aδ

1
J .

We have included several plots of the scalar potential in the ∆ȧJ-directions in Figure. A

computation of the Hessian in the ∆-directions shows that the SM-vev is indeed a local

minimum.
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The first order condition now arises as a vacuum solution of the spectral action as

follows. We let the ∆-fields take their vev according to the scalar potential, i.e. ∆ .
aJ =

wδ
.
1
.
aδ

1
J . Since ∆ȧJ is in the (2R, 1L, 4) representation of SU (2)R× SU (2)L× SU (4), this

vacuum solution is only invariant under the subgroup{((
λ 0
0 λ̄

)
, uL, λ⊕ λ−1/3u

)
: λ ∈ U(1), uL ∈ SU(2), u ∈ SU(3)

}
⊂ SU (2)R×SU (2)L×SU (4) .

This is the spontaneous symmetry breaking to U(1)× SU(2)L× SU(3)c, thus selecting

the subalgebra (??). Note that unimodularity on U(A) naturally induces unimodularity

of the spectral Standard Model, hence it generates the correct hypercharges for the

fermions.

After the ∆ and Σ-fields have acquired their vevs, there is a remaining scalar potential

for the φ-fields, which is depicted in Figure
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. As with the Standard Model Higgs sector, the selection of a minimum further breaks

the symmetry from U(1) × SU(2)L × SU(3)c to U(1)em × SU(3)c. The plot on the right

in Figure

suggests that, instead of the SM-vacuum, the vevs of the φ-fields can also be taken of

the form 〈
φb.a
〉

= vδ
.
1
.
aδ
b
1 + v′δ

.
2
.
aδ
b
2.

Let us see which of the gauge fields acquire non-zero mass after spontaneous sym-
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metry breaking, by expanding around the Standard Model vacuum

φb.a = vδ
.
1
.
aδ
b
1 + Hb

.
a

ΣI
J = uδI1δ

1
J + MJ

I

∆ .
aJ = wδ

.
1
.
aδ

1
J + N .

aJ

and keep only terms of up to order 4.

6 Conclusions
Relaxing the order one condition which may be required in the process of renormalizing

the spectral action leads uniquely to the Pati-Salam model with SU (2)R × SU (2)L ×
SU (4) symmetry unifying leptons and quarks with the lepton number as the fourth

color. The Higgs fields are fixed and belong to the 16 × 16 and 16 × 16 products with

respect to the Pati-Salam group. Because of the semi-group structure of the inner

fluctuations the Higgs fields may all be independent of each other, or the A(2) part of

the connection depending on the A(1) parts provided that the initial Dirac operator is

taking to satisfy the order one condition with respect to the SM algebra. The model,

unlike other unification models does not suffer from prton decay and is not ruled out
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experimentally. A lot of work remains to be done to investigate this model and study all

its possible breakings from the high energy to low energies. Of interest is to determine

whether the additional fields present will modify the running of the gauge couplings

allowing for the meetings of these couplings at very high energies.
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