
Unimodular Gravity
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Linear Theory. Beyond Fierz-Pauli

k = (m, 0, 0, 0)

�A
µ

Massive Spin 1:

�1 � (0, 1, 0, 0)
�2 � (0, 0, 1, 0)
�3 � (0, 0, 0, 1)

Three polarizations

Massless limit
k � (1, 0, 0, 1)

�1 � e1 �2 � e2 �3 � k

The only known way to stay with only two polarizations is to make the identification

� = � + k �µ = �µ + ⇤µ⇥ Longitudinal polarizations are pure gauge. 

:

The origin of gauge 
invariance



Massive photon

Propagators from unitarity

 Transverse on shell "projector"

Lagrangians from propagators



Massive Spin Two Five polarizations

ei ⇥ ej + ej ⇥ ei �
2
3

�
⇤

k

ek ⇥ ek

⇥
�ij

Massless limit

�3 ⇤ k ⇥ e2 + e2 ⇥ k

�4 = k ⇥ e1 + e1 ⇥ k

�5 ⇤ k ⇥ k

�1 ⇤ e1 ⇥ e2 + e2 ⇥ e1

�2 ⇤ e1 ⇥ e1 � e2 ⇥ e2

These two rotate amongst themselves under 
the little group.

The smallest gauge invariance we need to stay with two polarizations is transverse.

��⇥ � ��⇥ + ⌅(�⇥⇥)

k.⇥ = 0



Unitarity again

Using transversality and tracelessness

Dµ⇥⇤⌅ = c1

�
Pµ⇥P⇤⌅ �

3
2

(Pµ⇤P⇥⌅ + Pµ⌅P⇥⇤)
⇥

Dµ⇥⇤⌅ = c1

⇤
PTOS

µ⇥ PTOS
⇤⌅ � 3

2
�
PTOS

µ⇤ PTOS
⇥⌅ + PTOS

µ⌅ PTOS
⇥⇤

⇥⌅

Pµ⇥ � PTOS
µ⇥To find the lagrangian,



Normalization: c1 = �4
3

1
k2 �m2

Computing the inverse of the propagator

L =
1
4
�µh⌅⇧�µh⌅⇧ �

1
2
�µhµ⇧�⌅h⌅⇧

+
1
2
�µh�⌃hµ⌃ �

1
4
�µh�µh

�m2

4
�
h�⇥h�⇥ � h2

⇥

Fierz-Pauli, with the Fierz-Pauli 
mass term



Is it possible to get only the traceless part of the ME?
(We need Weyl)

8Kµ⇥⇤⌅
FP = k2(�µ⇤�⇥⌅ + �µ⌅�⇥⇤ � 2�µ⇥�⇤⌅)� (kµk⇤�⇥⌅ +

k⇥k⌅�µ⇤ + kµk⌅�⇥⇤ + k⇥k⇤�µ⌅ � 2kµk⇥�⇤⌅ � 2k⇤k⌅�µ⇥)

tr Kµ⇥ =
n� 2

4
(kµk⇥ � k2�µ⇥)

Traceless part of Fierz-Pauli

tr tr K = � (n� 1)(n� 2)
4

k2

Kµ⇥⇤⌅
traceless = Kµ⇥⇤⌅ � 1

n
�µ⇥tr K⇤⌅

No lagrangian because it is not symmetric



Qµ⇥⇤⌅ = Kµ⇥⇤⌅ � �µ⇥M⇤⌅ �Mµ⇥�⇤⌅

8Kµ⇥⇤⌅
WT = k2(�µ⇤�⇥⌅ + �µ⌅�⇥⇤)� (kµk⇤�⇥⌅ +

k⇥k⌅�µ⇤ + kµk⌅�⇥⇤ + k⇥k⇤�µ⌅ � 2(n + 2)
n2

k2�µ⇥�⇤⌅ +
4
n

(kµk⇥�⇤⌅ + k⇤k⌅�µ⇥

Mµ⇥ =
1
n

(tr Kµ⇥ � tr M�µ⇥)

Mµ⇥ =
1
n

(tr Kµ⇥ � tr tr K�µ⇥)

The most general symmetric lagrangian

Asking for tracelessness

Linear form of Weyl-transverse



General linear transverse  gauge invariance.

Unimodular

a=b=1 Fierz-Pauli

Transverse

There is in general an extra scalar mode.

In order for it not no be a ghost

b ⇥ 1� 2a + (n� 1)a2

n� 2

No extra 
scalar mode 

with 
enhanced 
symmetry





Einstein's 1919 theory : “Spielen Gravitationsfelder im 
Aufber der materiellen Elementarteilchen eine 

wesentliche Rolle?” (Sitzungsberichte der Prussischen 
Akad d. Wissenschaften)

(Tracefree piece)

Trace recovered through Bianchi
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Variational principle?

Traceless equations Scale symmetry?

Weyl transformation:

Not good enough



Jordan frame

Einstein frame



Promote the Weyl parameter to a new graviscalar field

The resulting theory is TWG, with pseudo-Weyl symmetry
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We want to study conformal properties in 
the presence of dynamical gravity



(Dirac, Englert et al)

Pseudo Weyl symmetry

Why pseudo? Because one of the fields is an 
spurion than can be eliminated through a field 

redefinition

Pseudo Weyl Dilaton Gravity



HPRW (2013)  claim that a similar action is the UV fixed 
point of  a truncated effective action under a functional 

renormalization group.

In particular the quartic potential 
vanishes asymptotically

Scalar potential in the Jordan frame = Cosmological 
constant in the Einstein frame



Conformal invariance (Weyl)

UG equations of motion are in the gauge fixed sector of 
TWF



Tautological Weyl Gravity/ Dilaton gravity

It contains unimodular gravity in the gauge fixed sector





It is actually possible to work in the Einstein frame

The Einstein metric is a singlet 
(inert under Weyl transformations)

The action then reduces to 
EInstein-Hilbert



There are two Weyl gauge orbits

Isolated point. 
Symmetric Phase

Broken phase

Also in GR it is sometimes possible to define a 
symmetric phase.

Truncation of supergravity superconformal (Kallosh et al)

Phases of Weyl gauge symmetry



TWG reduces classically to GR in the gauge

TWG reduces classically to unimodular gravity (UG) in the 
gauge

In the broken phase



Our aim now is however to study the much more 
interesting unbroken phase, in which the vacuum 
expectation value of the gravitational scalar field 

vanishes.



Change of variables corresponding to a Weyl transformation

Off shell Ward identities

(They generalize to the gravitational case the tracelessness 
of the energy-momentum tensor)



Define the functional integral through the Einstein frame

‘t Hooft and Veltman effective action



This constructs are point Weyl invariant in four and only 
in four dimensions

This means that there is a finite residue from the pole in 
the infinite piece of the effective action when performing a 

Weyl transformation



Specific TWG divergences follow the same pattern



There is a conformal anomaly in TWG given by

This is at variance with some cherished beliefs

Work is in progress to check this by a direct TWG heat 
kernel computation



Beta gauge

Caveat emptor: Gravitational counterterms in arbitrary 
gauges

(Kallosh, Tarasov and Tyutin)

Gauge dependence of the Conformal Anomaly



The result may seem surprising at first sight, but it is a trivial 
consequence of

1.- The counterterm must be conformal invariant.
2.-The only pointwise conformal invariant in four 

dimensions is

The only logical way out would be that either
3.- There is no counterterm, that is the theory is finite

Or else
4.-Give up diffeomorphism invariance.

 Then there are pointwise conformal invariants in 
arbitrary dimension, such as



5.- It is always possible that the formula we have 
used to compute the conformal anomaly does not 

hold for some unknown reason?

6.- BUT, It is unclear what is the physical meaning 
of an anomaly that is not gauge-independent



Backup slides



k⇥Kµ⇥⇤⌅h⇤⌅ = �2m2 (k⇤h⇤µ � kµh)

�

k2h = k�k⇥h�⇥

�µ⇥Kµ⇥⇤⌅h⇤⌅ = �2(1� n)m2h

�

h = kµk⇥hµ⇥ = 0
kµhµ⇥ = 0

�
� + m2

⇥
hµ⇥ = 0

Divergence of the field equation

Trace of the field equation

Klein-Gordon









Some comments on gauge fixing

U(1)  Lorenz gauge

How to recover the full covariant and gauge 
invariant Maxwell equations given four solutions of 

the Klein Gordon equation?
Perform an arbitrary gauge transformation



Eliminating the gauge parameter Maxwell is 
easily recovered

If the gauge parameter is restricted (harmonic, for 
example) we DO NOT recover Maxwell.

Out of the same gauge fixed theory, several gauge 
invariant theories can be obtained depending on  the 

assumed gauge symmetry.



Belaboring:  Weyl gauge



Covariant form of Maxwell



Back to basics: The linear theory.
Fierz-Pauli and beyond

k = (m, 0, 0, 0)

�A
µ �1 � (0, 1, 0, 0)

�2 � (0, 0, 1, 0)
�3 � (0, 0, 0, 1)

Three polarizations

k � (1, 0, 0, 1)

�1 � e1 �2 � e2 �3 � k

The only known way to stay with only two polarizations is to make the identification

� = � + k �µ = �µ + ⇤µ⇥ Longitudinal polarizations are pure gauge. 

:



Massive photon

Propagators from unitarity

 Transverse on shell "projector"

Lagrangians from propagators



Massive Spin Two Five polarizations

ei ⇥ ej + ej ⇥ ei �
2
3

�
⇤

k

ek ⇥ ek

⇥
�ij

Massless limit

�3 ⇤ k ⇥ e2 + e2 ⇥ k

�4 = k ⇥ e1 + e1 ⇥ k

�5 ⇤ k ⇥ k

�1 ⇤ e1 ⇥ e2 + e2 ⇥ e1

�2 ⇤ e1 ⇥ e1 � e2 ⇥ e2

These two rotate amongst themselves under 
the little group.

The smallest gauge invariance we need to stay with two polarizations is transverse.

��⇥ � ��⇥ + ⌅(�⇥⇥)

k.⇥ = 0



Unitarity again

Using transversality and tracelessness

Dµ⇥⇤⌅ = c1

�
Pµ⇥P⇤⌅ �

3
2

(Pµ⇤P⇥⌅ + Pµ⌅P⇥⇤)
⇥

Dµ⇥⇤⌅ = c1

⇤
PTOS

µ⇥ PTOS
⇤⌅ � 3

2
�
PTOS

µ⇤ PTOS
⇥⌅ + PTOS

µ⌅ PTOS
⇥⇤

⇥⌅

Pµ⇥ � PTOS
µ⇥To find the lagrangian,



Normalization: c1 = �4
3

1
k2 �m2

Computing the inverse of the propagator

L =
1
4
�µh⌅⇧�µh⌅⇧ �

1
2
�µhµ⇧�⌅h⌅⇧

+
1
2
�µh�⌃hµ⌃ �

1
4
�µh�µh

�m2

4
�
h�⇥h�⇥ � h2

⇥

Fierz-Pauli, with the Fierz-Pauli 
mass term



k⇥Kµ⇥⇤⌅h⇤⌅ = �2m2 (k⇤h⇤µ � kµh)

�

k2h = k�k⇥h�⇥

�µ⇥Kµ⇥⇤⌅h⇤⌅ = �2(1� n)m2h

�

h = kµk⇥hµ⇥ = 0
kµhµ⇥ = 0

�
� + m2

⇥
hµ⇥ = 0

Divergence of the field equation

Trace of the field equation

Klein-Gordon



Is it possible to get only the traceless part of the ME?
(We need Weyl)

8Kµ⇥⇤⌅
FP = k2(�µ⇤�⇥⌅ + �µ⌅�⇥⇤ � 2�µ⇥�⇤⌅)� (kµk⇤�⇥⌅ +

k⇥k⌅�µ⇤ + kµk⌅�⇥⇤ + k⇥k⇤�µ⌅ � 2kµk⇥�⇤⌅ � 2k⇤k⌅�µ⇥)

tr Kµ⇥ =
n� 2

4
(kµk⇥ � k2�µ⇥)

Traceless part of Fierz-Pauli

tr tr K = � (n� 1)(n� 2)
4

k2

Kµ⇥⇤⌅
traceless = Kµ⇥⇤⌅ � 1

n
�µ⇥tr K⇤⌅

No lagrangian because it is not symmetric



Qµ⇥⇤⌅ = Kµ⇥⇤⌅ � �µ⇥M⇤⌅ �Mµ⇥�⇤⌅

8Kµ⇥⇤⌅
WT = k2(�µ⇤�⇥⌅ + �µ⌅�⇥⇤)� (kµk⇤�⇥⌅ +

k⇥k⌅�µ⇤ + kµk⌅�⇥⇤ + k⇥k⇤�µ⌅ � 2(n + 2)
n2

k2�µ⇥�⇤⌅ +
4
n

(kµk⇥�⇤⌅ + k⇤k⌅�µ⇥

Mµ⇥ =
1
n

(tr Kµ⇥ � tr M�µ⇥)

Mµ⇥ =
1
n

(tr Kµ⇥ � tr tr K�µ⇥)

The most general symmetric lagrangian

Asking for tracelessness

Linear form of Weyl-transverse



General linear transverse  gauge invariance.

WTDiff

a=b=1 Diff

TDiff

There is in general an extra scalar mode.

In order for it not no be a ghost

b ⇥ 1� 2a + (n� 1)a2

n� 2

No extra 
scalar mode 

with 
enhanced 
symmetry



Coming back to Weyl transverse...

This (purely gravitational) 
symmetry is incompatible with 

a cosmological constant

Lowest order effective lagrangian...

No allowed dimension zero operators:



Dimension two operators:



Second dimension two operator

The variation still vanishes for Weyl transformations

because

EM are traceless up to a total derivative only



Einstein frame:

Unimodular variational principle would yield 
Einstein's 1919  EM (This is not what he had in mind)

Einstein metric is unimodular



A different viewpoint

Owing to the auxiliary fields, we can introduce 
unconstrained Einstein metric:

Scalar-tensor lagrangian

Quantum effects give Lagrange multipliers propagators





Conclusions

More work is needed before it can be 
assessed whether TG is a useful alternative

There are no natural models.

Too much arbitrariness?



Newtonian limit

ST ⇥ �mT c

�
f(g)ds ⇤ �mT c

�
f(1 + �|h|)

⇤
1 + �h00 �

v2

c2
dt

f(g) ⇥ fm(g)⇥
|g|

SNR = �m

⇤
dt

�
c2 � v2

2
+ �N + . . .

⇥

mT f(1) = m

�h00 =
2f(1)

(f(1) + f �(1))c2

�
�N � �c2 f �(1)

f(1)

⇤
hi

i

⇥

In order for the transverse action to get the correct Newtonian limit

Potential in terms of the metric



T00 = f(g)⇥T c2 = (f(1) + �f �(1)h) ⇥T c2

R00 �
�

⇥i�i
00 �

�

2
⇥h00

R00 =
c�2

2
T00 �⇥N � f(1)

2
c3�2⇥T

�2 =
8⇥G

c3

Einstein's equations

reduce to Poisson's equation provided



T00 = f(g)⇥T c2 = (f(1) + �f �(1)h) ⇥T c2

R00 �
�

⇥i�i
00 �

�

2
⇥h00

R00 =
c�2

2
T00 �⇥N � f(1)

2
c3�2⇥T

�2 =
8⇥G

c3

Einstein's equations

reduce to Poisson's equation provided



The matter part is Diff. invariant
�

�
|ḡ|⇥̄µTµ⇥ = �µ�

�̄µTµ⇥ = 0

� = const

Integrability of Einstein's equations
�

�
Just shifts height and position of 

minima of the potential

The full action, before multiplier condensation, is only TDiff 
invariant



WTDiff: Einstein's 1919

Rµ⇥ �
1
n

Rgµ⇥ = �

�
Tµ⇥ �

1
n

Tgµ⇥

⇥

(Trace-free piece of EE; cc disappears)

Bianchi

cc reappears as an
 integration constant

Can't be obtained from
 an unconstrained variational principle



S =
⇤

dnx

�
� 1

2�2
f(g)R + fm(g)Lm(gµ⇥ , ⇥)

⇥
Some simple models:

Tdiff viewed as Diff in the unitary gauge C=1

S =
⇤

dnx
1

C(x)

�
� 1

2�2
f(gC2)R + fm(gC2)Lm(gµ⇥ , ⇥)

⇥

C=Compensator

Potential energy does not weigh. Solves the active CC 
problem (but creates others)

fm(g) = 1 (Extreme example)



Masses

Sm ⇥
⇥

dnx fm(g)
�

i

(gµ⇥⇥µ�i⇥
⇥�i � V (�i))

Eikonal approximation

gµ⇥kµk⇥ = m2

k̇µ = 0

�
mp = mI � m

Passive gravitational mass equal to inertial mass



Energy-momentum tensors

Active:

TDiff ⇥⇥

�
T ⇥

µ⇤
|g|

⇥
=

1⇤
|g|

�µ�

T a
µ⇥ ⇥

�Sm

gµ⇥
= fm

�Lm

�gµ⇥
� gf �

mLmgµ⇥

(It is not automatically conserved)

Rosenfeld does not reduce to Belinfante in flat space

T Bel
µ⇥ ⇥ ⇤µ⇥⇤⇥⇥� 1

2
Lm�µ⇥

fm(g) = 1

(The second piece is missing in the active EMT)



Fluid approximation

ma(GR) = Tµ⇥uµu⇥ � �

ma =
fm(g)⇤

|g|
� +

�
fm(g)⇤

|g|
� 2

⇤
|g|f �

m(g)

⇥
p

� ⇥ ma �ma(GR)
ma(GR)

=
p

⇥

fm � 2gf �
m�

|g|
+

fm �
�

|g|�
|g|

Experimental bound �� ⇥ �1 � �2 ⇤ 10�13

Dipolar gravitational radiation



One-loop ultraviolet divergences

S = � 1
2�2

⇤
dnx

⇥
g�

�
f(g�)R� + 2f�(g�)� +

1
2
f⌅(g�)gµ⇤

� ⇥µg�⇥⇤g�

⇥

�⇥ � g⇥C
2

gµ⇤ � �2g⇥µ⇤

�n�2 � f(�⇥)
F�(�) � ��nf�(f�1(�n�2))

⇤
2(n� 1)(n� 2)

�2
� �2�nf⇤(f�1(�n�2))

�
⇥f�1(�n�2)

⇥�

⇥2
⌅

gµ⇥⇥µ�⇥⇥� ⇥ gµ⇥⇥µ�⇥⇥�

Sg = � 1
2�2

�
dnx

⇥
g (R + 2F�(⇥)�) +

1
2�2

�
dnx

⇥
g
1
2
gµ⇤⇤µ⇥⇤⇤⇥

Several changes of 
frame and variable

"Equivalent" scalar-tensor theory



Counterterm:

� = 0
f = f� = 1

When there is no cosmological constant we recover the old results of 't Hooft -Veltman



There are only two cases in which the theory 
is one-loop finite on-shell (without cc)

1.-GR

2.-WTDiff

2(n� 1)f�1 (f ⇥)2 � (n� 2)f� = 0

f(g�) = g
2�n
2n�

(Diff. invariance)

(Weyl invariance)

Einstein, 1915

Einstein, 1919





Scalar fields:

No allowed Weyl invariant interactions with the measure

Nonminimal terms are allowed

Also allowed interactions decoupled from gravitation:

Potential energy does not weigh (an overkill)


