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Overview

@ Gauge theory from spectral triples
@ Gauge group, semi-group of inner perturbations

@ Examples: Yang—Mills, almost-commutative manifolds, SM



Spectral triples

(A, #,D)

o Extended to real, even spectral triple:

o J:H — H real structure (anti-unitary)
o v:H — H grading v? = 1 (self-adjoint)

such that
J2 =41, JD =+DJ, Jy=+J

e Action of A% on H: a°® = Ja*J~! and
[a°P, b] = 0; a,be A
o D is said to satisfy first-order condition if

[[D,a],bP] =0



Spectral invariants

Tr f(D/A) + %u{/?, DY)

@ Invariant under unitaries u € U(.A) acting as
D UDU*;  U=uJu)!

e Gauge group: G(A) := {udut™t: ucU(A)}.

o Compute rhs:
D — D+ u[D, u*] + 0[D, 0*] + o[u[D, u™], i

with & = JuJ~! and blue term vanishes if D satisfies first-order
condition



Semi-group of inner perturbations

Pert(A Zaj bj.)p : Zajbj =1, Z aj ® bOp Z bf ® a*op
J J

with semi-group law inherited from product in A ® A°P.
e U(A) maps to Pert(.A) by sending u +— u® u*°P
@ Pert(.A) acts on D:
DY a;Db;
Jj
o For real spectral triples we use the map Pert(A) — Pert(A ® A)
sending A — A® A so that

D — Z a,'éij,'lA)j
i7j



Proposition (Chamseddine-Connes-vS, 2013)
If3"; a; @ bj® € Pert(A) then the perturbed operator

= Z a;éij,-IA)j =D+ A(l) + Z(l) + A(2)
i
where

Anyi=_ 3D, b, Agy =) yID,b] = +JAqI

J

J
Az =Y 3[Aw) Z 3;ak[[D, bi], bj].
J.k

J

Gauge transformations D’ — UD’U* implemented by

A(l) — UA(]_)U>‘< + U[D7 U*]
Ay Jud T Ay Ju* I 4 Jud M u[D, u*], Jut I



Example: Yang—Mills theory
On a 4-dimensional background:
o A= C>®(M)® M,(C)
o H =1%(S)® M,(C)
e D=p®l1
e V=711, J=C® ()"

Proposition (Chamseddine-Connes, 1996)
e Tr f(D): pure gravity
@ The self-adjoint operator A1) + Z\(l) with Ay = 7" A, describes an
su(n)-gauge field on M.
e Gauge group G(A) ~ C>*(M, SU(n))
@ The spectral action of perturbed Dirac operator is given by
f(0)




Almost-commutative geometries

A class of examples

(C¥(M)@ Ar, L*(S)®Hr, P®1+75® DF)
with grading v = 5 ® v and real structure J = Jy ® Jr.
e Gauge group G(C*(M) ® Ar) = C=(M,G(AF))
@ Inner perturbations:
D—D =901+~ ®adA,+v5 @

with adA, a g(AF)-gauge potential and ® = Dr + ¢ + J,:(;SJEl a map
7‘[/: — HF
o Explicitly,

Au=—iY a0uby)  ¢=)_ alDr, by
j j

@ As G(Af)-representations:
Ay = uAuu”t — iud,u’, ¢ — UoU*



Almost-commutative geometries

Spectral action

Proposition (Van den Dungen-vS, 2012)

In the above setting,

+ %sﬂ (¢2) + %Tr ((DM(D)(D”(D))‘




The noncommutative Standard Model

(C®(M) @ (C o H @ M3(C)), L2(S) @ He, P &1+ 5 ® Df)

@ Fermions are given by:
Hr = (H) @ Hy @ He & Hq) ™.
@ Algebra acts as:

Hq

il ) ()‘7 q, m) —

(A, g,m) —
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@ Real structure Jr interchanges fermions and anti-fermions.

ST*

@ Dirac operator is



The noncommutative Standard Model

The finite Dirac operator

S T
m“:<T5>

@ The operator S is given by

0 0V 0 0 0VY,0
e oo e o0 o0y
=Sk =1 ys 0 0 0 |0 2®B=5 =y 0 0 0
0 Y0 0 0 Y;0 0

where Yy, Ye, Y, and Yy are 3 x 3 mass matrices acting on the three
generations.
@ The symmetric operator T only acts on the right-handed

(anti)neutrinos, Trg = YgUR for a 3 x 3 symmetric Majorana mass
matrix Yg, and Tf = 0 for all other fermions f # vg.



The noncommutative Standard Model

The spectral action

Proposition (Chamseddine-Connes—Marcolli, 2007)

In the above setting,
@ The unimodular gauge group
SG(CaHa M3(C)) = U(1) x SU(2) x SU(3)
@ The inner perturbations of ) ® 1 + 5 ® D are parametrized by
U(1),SU(2) and SU(3) gauge fields A, Q,,, V,, and a Higgs doublet H

@ The spectral action is given by

Tr f(%) ()4 fjr‘;)(l%ww T (Qu@™) + Tr (Vi V™))

3
bf(0) —2afA\? + ef(0)
A =222 L
chN?  df(0)  af(0) 2, cf(0) af(0) 5
— H D,H|".
72 + 472 + 1272 sIHI+ 47T2S 2 D H|




Example beyond first-order
[Chamseddine-Connes—vS, 2013]

F=Cr®CL® My(C),
HF = (Cr®CL) ® (C°)° & C*® (C ® CY),

JF= <(1) (1)> oC (C : complex conjugation),

0 ke @ 15 %g 0
Dp — ke ® 1o 0 0
o 0 0 1o @ ky
0 0 1o @ ky 0

The algebra action of (Ag, AL, m) € A on H is given explicitly by

ARrL> m* ¢
o
ﬂ-()‘Rv AL? m) - ( Mz m ) T ()\R’ )\L’ m) = " ArL2 ’
m Arls



Proposition

The largest (even) subalgebra Ar C A = Cr & C & Mo(C) for which the
first-order condition holds (for the above Hg, Dr and Jr) is given by

Af = {</\R,)\L, <)‘OR 2>> : ()\R,)\[_,,u) cCrpCy @(C}

Proposition

The inner perturbed Dirac operator D' is parametrized by three complex
scalar fields ¢, 01,02 entering in A1y and Ay):

0 ke(14+4)®12  kyvvt 0
~ _ | k(1+o)®1 0 0
Dr +Aq) +Aq) +Ap) = (kyv A 0 Lk(1+9)
0 0 1Lo®kx(14+9¢) 0

with v = <1 * Ul).
02




Spectral action
Spectral action gives rise to a scalar potential

f2
V(6,01,02) = =5 A (4lke 2|61 + [ky[P(I1 + 01 + [o2f*)?)

fo
s (4l 10+ 4P P10 + 0 + [’

4+@WH+mF+wﬁf)




Spontaneous symmetry breaking to first-order

Proposition

The potential V(¢ = 0,01,02) has a local minimum at
(01,02) = (=14 /w,0) with w = \/26N? /(fy|ky|?) and this point
spontaneously breaks the symmetry group U(Af) to U(AF).




“Usual” SSB

After the fields (01, 07) have reached their vevs (—1 + /w, 0), there is a
remaining potential for the ¢-field:

2f

fo
V() = =S Nk P10 + =5 kel 0]
T T

0.2p

-0.2F

—04af

-06F

—-08F

-1.0F

Selecting one of the minima of V/(¢) spontaneously breaks the symmetry
further from U(Ar) = U(1)g x U(1). x U(1) to U(1). x U(1), and
generates mass terms for the L — R abelian gauge field.



Spectral action: pure gravity

Proposition

For the canonical triple (C>*(M), L2(M, S),d), the spectral action is

i Nt HRAN2 F(0) /1 1 11
T (F(5) ) ~ - —As— —Cpuypo CHP7 + ——R*R*).
' ( (/\) 22 247r25+167r2<30 70 e 360 )




Coefficients NCSM

=Tr (Y*Y + Y Ye+3Y, Y, —|-3Yde)
=Tr ((Y;Y2)? + (YaYe)? +3(Y; Ya)?
=Tr (YiYr),
((YRYR) )a
(YRYRY*Y)

3( Yj Yd)2)>



