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I Equivariant quantization and its derived
products



T he general strategy
[Equivariant quantization in the differentiable setting]
e (M,w) symplectic manifold
o G Lie sub-group of the group of symplectomorphisms
o (Hr,m) projective irreducible unitary representation of G

Definition: A @—equivariant quantization map on M is a continuous
linear map

Q:C(M) — B(Hxr)

satisfying the covariance property:

w(9) UH (" = QF), f7i=|zeMm f(g~ )]



Paradigmatic example: Stratonowich quantization

) = [ f@)2Aa) dua)

o {Q(x)}rem C B(Hr)sa satisfying the covariance property

m(g) Qz) m(g)* = Q(g.z)

e du Liouville measure on M

Most of the known examples of quantization are of this form:
Weyl quantization, Berezin quantization, Coherent states quantiza-
tion, Unterberger’'s Fuch calculus, BCH quantization of coadjoint
orbits of exponential Lie groups.....



To connect equivariant quantization with quantum groups, we need
one extra geometric assumption:

(H1): G possesses a subgroup G acting simply transitively on M
and w|qg still irreducible

Under the identification G ~ M:
e ( is endowed with a left invariant symplectic structure
e [ he Liouville measure du becomes a left Haar measure on GG

e The quantizers read Q2(g) = 7(g9) Z7(g)* with X := Q(e)



HENCE: G-equivariant Stratonowich quantization on symplectic
Lie group G always of the form

P = [ £(9) 7(9) = (g)" (o)
BUT: In the formula above symplectic geometry disappeared from
the picture and provides an ansatz to construct equivariant quanti-
zation on general locally compact groups
e In bad examples (e.g. Berezin), X € K(Hnr)4+

e In good example (e.g. Weyl, Unterberger, BCH), >~ € U(Hx)sa

e Typically, Hr = L?(Q,v), o involution on Q

>y(q) = Jacy)? ¢(o(q))



[Equivariant quantization in the general setting]

e FiXx (G locally compact group, =« projective unitary representation,
> self-adjoint operator on H,

(H2): Q extends to a unitary operator from L2(G) to HS(Hx)

THEN:
e Well-defined associative left-equivariant product [star-product]

x: L2(G) x L2(G) —» L2(G),  (f1,f2) = @*(2(f1) 2(£2))
e x iS associated with a Bruhat distribution K on G x G-

fixfo= [ K(91,92) poy (f1) paa(f2) dM(g1) d(g2)

X
e The tow-point kernel reads [trace in the distributional sense]

K(g1,92) = Tr (Zm(g1) Z7(g7 'g2) T gz )



Derived product #1: dual unitary 2-cocycle

Def: Let G a locally compact quantum group. A dual unitary 2-
cocycle for G is an element F € U(N &N) satisfying

(FRLAQI)(F)=(1 F)(Id® A)(F)

e Natural candidate for a unitary 2-cocycle for G := W*(G):

F:=/ K100 A 1 @A _1dg1) d>
A\ e (91,92) 911® = (g1) d"*(g2)

e 2-cocyclicity is automatic: it is equivalent to associativity of %

e Unitarity has to be checked: matter of domains and computations



Derived product #2: multiplicative unitary

Def: Let H be a Hilbert space. A multiplicative unitary on H is an
element W € U(H ® H) satisfying the pentagonal equation:

WozWio = WioW13Wo3
e W is regular (Baaj-Skandalis) if
CHw@Id(WE), w € B(H)s) = K(H)

e W is manageable (Woronowicz) if there exists 0 < () densely
defined with densely defined inverse and a unitary W on H®H such

that W*(Q Q)W =Q ® Q and

(p1 ® 2, W3 @ pa) = (3 ® Quoa, W(P1 @ Q Lpa))

Both notion leads to a pair of quantum groups in duality



(H3): The operator F) is invertible (on a suitable domain)
e The doubly star-product (on a suitable domain)

f1xa, f2i=mo P\ 1o Fy(f1 ® f2)

e Natural candidate for a multiplicative unitary:

W (p1® 92) = Alp1)(%r, @ %, ) (1 @ 92)

e Pentagonal equation is automatic
e Unitarity on H, the Hilbert space completion of D(G) for

(p1,92) 1= /Gﬁ *),p P2(g9) d°(g)

Provided it is an inner product! True when §5 = 5(1;/2*5(1;/2

e Manageability/Regularity has to be proven...
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Derived product #3: deformation of C*-algebras
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Derived product #4: scalar Fourier transform on G
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II Examples #1: Negatively curved
Kdhlerian Lie groups

Joint with P. Bieliavsky, to appear in MAMS -+ work in progress
with Bieliavsky, Bonneau, D'Andrea
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Structure of Kdhlerian Lie groups

Theorem [Pyatetskii-Shapiro]: The Kdhlerian Lie groups with
negative sectional curvature are of the form:

G = ((SN[XSN—l) Xoee D(SQ> I><S]_
where S; = AN, Iwasawa of SU(1,n) = KAN, N = H(V,wg)

e (7 iIs non-unimodular, solvable and exponential
° Sj IS a symplectic symmetric space and possesses a midpoint map
° Sj = Qj X Yj, Qj also a symmetric space with midpoint, Yj Abelian

e S; has two (classes of) UNIRREPs 74+ on L?(Q,)
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Def: (1) A symmetric space is a manifold M with s: M x M — M
(i) Vo € M, the partial map

Sp M — M, yw— s(z,y)

IS @ smooth involution of M that admits z as isolated fixed point
(ii) Vz,y € M, the following identity holds:

5208y 0 Sz = Sy(ay)

(2) A symplectic symmetric space is a symmetric space (M, s) with
an invariant symplectic form w:

shw = w, VreM

(3) A midpoint map on a symmetric space (M, s):

MxM-— M, (x,y)+— mid(x,y) such that Smid(a:,y)(w) =y
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Quantization of Kdhlerian Lie groups

e Set Zp(q) = ¢(se(q)) on L2(Q), S=Qx Y

Theorem: (i) The map
g€ S Q(g) =n(g) Zm(g)*

is a covariant irreducible unitary representation of (S,w, s):

m(g9) Q(g") 7(9)* = Q2(g9")
VN(Q(z), z€5) =C

Qg)* =Q(g), Q¢)* =1, Qg Q)9 = Qs(g,9))

(Covariance under Aut(S,w,s), which contains S and Sp(V,wq))
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(ii) The modified quantization map
QD) = LDQ), [ [ o) 2s(9) dN9)

Qs(g) :=m(g) o Jacrln/iij 0 Jac},,/2 o> on(g)*

extends to a unitary operator from L2(S) onto HS(L?(Q))

(iii) The two-point kernel reads

1/2 (e,q,q") exp {i@Al’ea (cb_l(e, 9 9/)> }

Kg(g,9") = Jac /5
S

where &g € DIff(S x S x 5)

®5(g,9', ") = (midg(g, "), midg(g', "), mids(g", 9))
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e Let G = 5> x 51, parametrize g € G as g = g192, g; € 5; and set

Qa(g) .= Q2(g92) ® 21(91)
e G acts on L?(Q2 x Q1): 7(g2g1) := m2(g2) @ m1(p(g2)91)

Theorem: (1) The associated quantization map

Q(f) = | £(9)2a(9) d(9)
is a unitary operator from L2(G) to £2(L?(Q> x Q1))

(2) It is covariant under the left action of G

(3) The two-point kernel reads

K;(9192,9195) = Kgs,(92,92)Ks, (91, 91)

(Restricted covariance)
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Quantum Kdhlerian groups

Theorem: (i) [Neshveyev-Tuset] The following defines a unitary
2-cocycle on W*(G x G)

= [ Ka(9,9) A1 ® A1 dN9) d\(g)

(ii) The paring
(£.5) = | Foap F9)d(9)
is positive definite on D(G) and the operator

(W 1 ® @2) = A(@l)(*)\,p ® *)\,p)(l ® p2)
extends to a regular multiplicative unitary

Rem: However, W seems not to be manageable, which will mean
that both constructions do not coincide!
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IIT Example #2: The affine group of a
local field

Joint with D. Jondreville, to appear in JFA + work in progress
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e k be a non-Archimedean local field

o Oy its ring of integers

e I g fixed non trivial unitary additive character

e H C O compact open subgroup of k* such that

i) the map a — a?

IS @ homeomorphism
i) o(H) is a subgroup of Oy, where ¢ : H — Oy, a+—>a—a~

Example: H =14 p"Z, if k =Q,

1
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e Let G:= H x k (since H C Oy, G is unimodular)

e Square integrable irreducible representation © of G on L2(H):
m(a,t)p(ag) 1= W(aag't) p(a ap)

e “¢(a) == ¢(a 1)

o P:=Fioxyum) °Fp - € ZWH(G)

Remark: ¢ PW*(G)P ~ W*(@Q) where G := H x (k/¢(H))
o f k=0Qp and H =1 + p"Zyp then

G = (14 p"Zp) x (Qp/p "Zp) ~ Zp % Ly
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Theorem: i) The quantization map

QD) - BLAH),  fr [ f(9)29)dN9)
satisfies
Qo P =
and extends to unitary operator PL2(G) — HS(L2(H))

ii) The two point kernel reads

K((a1,t1), (a2, t2)) = W(¢(a1)t2 — p(az)t1)

iii) The element

F\ = /K(glagz)kg—l ® A _1dg1dgo
1 92
commutes with P ® P and defines a unitary element of W*(G x @)
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IV Examples #3: Playing with involutions

Work in progress with P. Bieliavsky and D. Jondreville
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The BCH quantization of an exponential Lie group
e Let G be an exponential Lie group with g its Lie algebra

e Assume G possesses a coadjoint orbit @O C g* on which G acts
simply transitively

o Let mp the KKS representation of GG
o For f € C*(0O) C C(g*) define

Q0(f) = | F(DOO mo(exp(X}) dX

e After identification G ~ O, get a GG-covariant quantization on G
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e T hese assumptions are satisfied for G = R x R. In this case, two
possible orbits My ;= {(z,y) € g* : &y > 0}

e [ he quantization map reads

()= [ 1) mle) Trelg)dg.

RxR
e where, realizing H+ as L2(R), we have

So(t) = V)] (@),
e o0 is the involutive diffeomorphism of R given by
c=Id—v:R—R
and ~ is the inverse diffeomorphism of logoA : R — R where

MR- RY, tet(l—e 7!
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Non-geometric variations
e G=RxR, (a,t)(d,t) = (a+ a’,e_a/t + ')

e 1 representation on L2(R)

w(a, t)p(ag) ‘= e Cp(ag — a)

e Let o € DIiff(R) be an involution such that

(1) v := o — Id € Diff(R)

(2) ¢ = [a > e — e7(@)] € Diff(R)

(3) 3! solution k : R xR x R — R to the functional equation

o(o(o(k(a1,an,a3) —a1) +ay —az) +ap —az) + a3z —k(ay,az,a3) =0

Set Zy(a) := Jacy/?(a) Jac}/?(a) p(o(a))
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T heorem:

(i) The R x R-covariant quantization map on R x R associated with
(7,X) defines a unitary operator from L?(R x R) to HS(L2(R))

(ii) The associated 2-points kernel reads (k := (e, q1,92))

\Jaci/QJac;/ﬂ (k) }Jaci/QJacqlb/Q\ (0(k) — a1) ]Jaci/QJac;/ﬂ (o0(k — a2))

11— Jacs(k)Jacs(o(k) — a1)Jacs(o(k — az2))|
x exp{op(a1 — o(k))t1 + ¢(ax — k)t }

(iii) The 2-cocycle

Ks(a1,t1;an,t2) =

. . / /
Fy = /(RIXR)Q Ks(e; g,q9") )\g_l ® )‘g’—l dgdg

is a unitary element of W*((Rx R) x (R x R)) if and only if o = —Id
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Remark: 1) Point (iii) above has the following interpretation:
Unitarity for the 2-cocycle selects the symplectic symmetric space

structure

2) There is good hopes that it also yields a regular multiplicative
unitary
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