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Abstract:

• Quantum lens spaces as ‘direct sums of line bundles’

‘Total spaces’ of principal bundles over quantum projective spaces

• For each of these QLS a Gysin sequence in KK-theory

Used to compute the KK-theory of the QLS.s

Explicit geometric representatives of the K-theory classes which

are ‘line bundles’ and generically are ‘torsion classes’

• On line bundles on QPS: monopole connections

• On higher rank bundles on QPS: instanton connections



The classical Gysin sequence

Long exact sequence in cohomology; for any sphere bundle

In particular, for circle bundles: U(1)→ E
π−→ X

· · · −→ Hk(E)
π∗−→ Hk−1(X)

∪c1(E)−−−−−→ Hk+1(X)
π∗−→ Hk+1(E) −→ · · ·

complicate to generalize to quantum spaces

rather go to K-theory



Projective spaces and lens spaces

CPn = S2n+1/U(1) and L(n,r) = S2n+1/Zr

assemble in principal bundles : S2n+1 //L(n,r) π //CPn

This leads to the Gysin sequence in topological K-theory:

0 //K1(L(n,r)) δ //K0(CPn) α //K0(CPn) π
∗
//K0(L(n,r)) //0

δ is a ‘connecting homomorphism’

α is multiplication by the Euler class χ(O−r) := 1− [O−r]

From this:

K1(L(n,r)) ' ker(α) and K0(L(n,r)) ' coker(α)

torsion groups



The quantum spheres and the projective spaces

The coordinate algebra O(S2n+1
q ) of quantum sphere S2n+1

q :
∗-algebra generated by 2n+ 2 elements {zi, z∗i }i=0,...,n s.t.:

zizj = q−1zjzi 0 ≤ i < j ≤ n ,
z∗i zj = qzjz

∗
i i 6= j ,

[z∗n, zn] = 0 , [z∗i , zi] = (1− q2)
n∑

j=i+1

zjz
∗
j i = 0, . . . , n− 1 ,

and a sphere relation:

1 = z0z
∗
0 + z1z

∗
1 + . . .+ znz

∗
n .

L. Vaksman, Ya. Soibelman, 1991 ; M. Welk, 2000



The ∗-subalgebra of O(S2n+1
q ) generated by

pij := z∗i zj

coordinate algebra O(CPnq ) of the quantum projective space CPnq

Invariant elements for the U(1)-action on the algebra O(S2n+1
q ):

(z0, z1, . . . , zn) 7→ (λz0, λz1, . . . , λzn), λ ∈ U(1).

the fibration S2n+1
q → CPnq is a quantum U(1)-principal bundle:

O(CPnq ) = O(S2n+1
q )U(1) ↪→ O(S2n+1

q ) .



The C∗-algebras C(S2n+1
q ) and C(CPnq ) of continuous functions:

completions of O(S2n+1
q ) and O(CPnq ) in the universal C∗-norms

these are graph algebras J.H. Hong, W. Szymański 2002

⇒ K0(CPnq ) ' Zn+1 ' K0(C(CPnq ))

F. D’Andrea, G. L. 2010

Generators of the homology group K0(C(CPnq )) given explicitly

as (classes of) even Fredholm modules

µk = (O(CPnq ), H(k), π
(k), γ(k), F(k)) , for 0 ≤ k ≤ n .



Generators of the K-theory K0(CPnq ) also given explicitly as pro-

jections whose entries are polynomial functions:

line bundles & projections

For N ∈ Z, vector-valued functions

ΨN := (ψNj0,...,jn) s.t. Ψ∗NΨN = 1

⇒ PN := ΨNΨ∗N is a projection:

PN ∈MdN
(O(CPnq )), dN :=

(|N |+ n

n

)
,

Entries of PN are U(1)-invariant and so elements of O(CPnq )



Proposition 1. For all N ∈ N and for all 0 ≤ k ≤ n it holds that〈
[µk], [P−N ]

〉
:= TrHk(γ(k)(π(k)(TrP−N)) =

(
N
k

)
,

[µ0], . . . , [µn] are generators of K0(C(CPnq )),

and [P0], . . . , [P−n] are generators of K0(CPnq )

The matrix of couplings M ∈Mn+1(Z) is invertible over Z:

Mij :=
〈
[µi], [P−j]

〉
=
(
j
i

)
, (M−1)ij = (−1)i+j

(
j
i

)
.

These are bases of Zn+1 as Z-modules;

they generate Zn+1 as an Abelian group.



The inclusion O(CPnq ) ↪→ O(S2n+1
q ) is a U(1) q.p.b.

To a projection PN there corresponds an associated line bundle

LN ' (O(CPnq ))dNPN ' P−N(O(CPnq ))dN

LN made of elements of O(S2n+1
q ) transforming under U(1) as

ϕN 7→ ϕNλ
−N , λ ∈ U(1)

Each LN is indeed a bimodule over L0 = O(CPnq ); – the bimodule

of equivariant maps for the IRREP of U(1) with weight N . Also,

LN ⊗O(CPnq ) LM ' LN+M



Denote [PN ] = [LN ] in the group K0(CPnq ).

The module LN is a line bundle, in the sense that its ‘rank’ (as

computed by pairing with [µ0]) is equal to 1

Completely characterized by its ‘first Chern number’ (as com-

puted by pairing with the class [µ1]):

Proposition 2. For all N ∈ Z it holds that

〈[µ0], [LN ]〉 = 1 and 〈[µ1], [LN ]〉 = −N .



The line bundle L−1 emerges as a central character:
its only non-vanishing charges are

〈[µ0], [L−1]〉 = 1 〈[µ1], [L−1]〉 = 1

L−1 is the tautological line bundle for CPnq ,

with Euler class

u = χ([L−1]) := 1− [L−1] .

Proposition 3. It holds that

K0(CPnq ) ' Z[u]/un+1 ' Zn+1 .

[µk] and (−u)j are dual bases of K-homology and K-theory



The quantum lens spaces

Fix an integer r ≥ 2 and define

O(L(n,r)
q ) :=

⊕
N∈Z

LrN .

Proposition 4.
O(L(n,r)

q ) is a ∗-algebra; all elements of O(S2n+1
q ) invariant under

the action αr : Zr → Aut(O(S2n+1
q )) of the cyclic group Zr:

(z0, z1, . . . , zn) 7→ (e2πi/rz0, e
2πi/rz1, . . . , e

2πi/rzn) .

The ‘dual’ L(n,r)
q :

the quantum lens space of dimension 2n+ 1 (and index r)

There are algebra inclusions

j : O(CPnq ) ↪→ O(L(n,r)
q ) ↪→ O(S2n+1

q ) .



Pulling back line bundles

Proposition 5. The algebra inclusion j : O(CPnq ) ↪→ O(L(n,r)
q ) is a

quantum principal bundle with structure group Ũ(1) := U(1)/Zr:

O(CPnq ) = O(L(n,r)
q )Ũ(1) .

Then one can ‘pull-back’ line bundles from CPnq to L(n,r)
q .

L̃N
��

LN
j∗oo

��

O(L(n,r)q) O(CPnq ) .
j
oo



Definition 6. For each LN an O(CPnq )-bimodule (a line bundle

over CPnq ), its ‘pull-back’ to L(n,r)
q is the O(L(n,r)

q )-bimodule

L̃N = j∗(LN) := O(L(n,r)
q )⊗O(CPnq ) LN .

The algebra inclusion j : O(CPnq )→ O(L(n,r)
q ) induces a map

j∗ : K0(CPnq )→ K0(L(n,r)
q )



Each LN over CPnq is not free when N 6= 0,

this need not be the case for L̃N over L(n,r)
q :

the pull-back L̃−r of L−r is tautologically free :

L̃−r = O(L(n,r)
q )⊗L0

L−r ' O(L(n,r)
q ) = L̃0 .

⇒ (L̃−N)⊗r ' L̃−rN also has trivial class for any N ∈ Z

L̃−N define torsion classes; they generate the group K0(L(n,r)
q )



Multiplying by the Euler class

A second crucial ingredient

α : K0(CPnq )→ K0(CPnq ),

α is multiplication by χ(L−r) := 1− [L−r]

the Euler class of the line bundle L−r



Assembly these into an exact sequence, the Gysin sequence

0→ K1(L(n,r)
q ) //K0(CPnq ) α //K0(CPnq )

j∗ //K0(L(n,r)
q ) //0

0→ K1(L(n,r)
q )

IndD// K0(CPnq ) // .....

and

..... // K0(L(n,r)
q )

IndD// 0

IndD comes from Kasparov theory



Write A := C(L(n,r)
q ), F := C(CPnq )

The infinitesimal generator of the circle action determines an

unbounded self-adjoint operator

D : Dom(D)→ X

Theorem 7. (Carey, Neshveyev, Nest, Rennie 2011)

The pair (X,D) yields a class in the bivariant KK1(A,F )

the Kasparov product with the class [(X,D)] thus furnishes

IndD : K∗(A)→ K∗+1(F ), IndD(−) := −⊗̂A[(X,D)].



Theorem 8. (Arici, Brain, L.) The Gysin sequence is exact

This leads to a commutative diagram

0 //K0(S(A)) i∗ //K0(M(F,A))ev∗//K0(F ) ∂ //K1(S(A)) //0

id
��

'
��

×[−L−r]��
Bott
��

0 //K1(A)
IndD //K0(F ) α //K0(F )

j∗ //K0(A) //0



Some practical and important applications, notably, the compu-

tation of the K-theory of the quantum lens spaces L(n,r)
q .

Thus

K1(L(n,r)
q ) ' ker(α), K0(L(n,r)

q ) ' coker(α) .

Moreover, geometric generators of the groups

K1(L(n,r)
q ) K0(L(n,r)

q )

for the latter as pulled-back line bundles from CPnq to L(n,r)
q



Explicit generators as integral combinations of powers of the

pull-back to the lens space L(n,r)
q of the generator

u := 1− [L−1]

Example 9. For n = 1

K0(C(L(1,r)
q )) = Z⊕ Zr .

From definition [L̃−r] = 1, thus L̃−1 generates the torsion part.

Alternatively, from u2 = 0 it follows that L−j = −(j−1) + jL−1;

upon lifting to L(1,r)
q , for j = r this yields

r(1− [L̃−1]) = 0

or 1− [L̃−1] is cyclic of order r.



Example 10. If r = 2 L(n,2)
q = S2n+1

q /Z2 = RP2n+1
q ,

the quantum real projective space, we get

K0(C(RP2n+1
q )) = Z⊕ Z2n

Owing to L̃−2 ' L̃0 one has

(1− [L̃−1])2 = 2(1− [L̃−1]),

Since un+1 = 0, with u = 1− [L−1], when pulled back to the lens

space, by iterating this implies that

0 = (1− [L̃−1])n+1 = 2n(1− [L̃−1]);

the generator 1− [L̃−1] is cyclic with the correct order 2n.



Example 11. For n = 2 there are two cases.

Use ũ = 1− [L̃−1]. Conditions [L̃−(r+j)] = [L̃−j] lead to

1
2r(r − 1) ũ2 − r ũ = 0 and r ũ2 = 0 ,

When r = 2k + 1; these say that ũ and ũ2 are cyclic of order r:

r ũ = 0, r ũ2 = 0, K0(L(2,r)
q ) = Z⊕ Zr ⊕ Zr

When r = 2k; (L̃−2)k ' L̃0 ⇒ (1− [L̃−k])2 = 2(1− [L̃−k]), and

0 = (1− [L̃−k])3 = 4(1− [L̃−k]) = 4k ũ− 2k(k − 1) ũ2

This yields ũ2 + 2 ũ of order r/2 and ũ is of order 2r

1
2r (ũ2 + 2 ũ) = 0, 2r ũ = 0, K0(C(L(2,r)

q )) = Z⊕ Z r
2
⊕ Z2r



Example 12. When n = 3 there are four cases

Case r ≡ 0 (mod 6):

K0(C(L(3,r)
q )) = Z⊕ Z r

6
⊕ Z r

2
⊕ Z12r

Case r ≡ 2,4 (mod 6):

K0(C(L(3,r)
q )) = Z⊕ Z r

2
⊕ Z r

2
⊕ Z4r

Case r ≡ 3 (mod 6):

K0(C(L(3,r)
q )) = Z⊕ Z r

3
⊕ Zr ⊕ Z3r

Case r ≡ 1,5 (mod 6):

K0(C(L(3,r)
q )) = Z⊕ Zr ⊕ Zr ⊕ Zr

All with explicit generators



More general scheme: Pimsner algebras M.V. Pimsner ’97

The slogan: a line bundle is a self-Morita equivalence bimodule

E a (right) Hilbert module over B

B-valued hermitian structure 〈·, ·〉 on E

L(E) adjointable operators; K(E) ⊆ L(E) compact operators

with ξ, η ∈ E, denote θξ,η ∈ K(E) defined by θξ,η(ζ) = ξ 〈η, ζ〉

There is an isomorphism φ : B → K(E) and E is a B-bimodule



Comparing with before:

O(CPnq ) ; B and L−r ; E

Look for the analogue of O(L(n,r)
q ) ; OE Pimsner algebra

Define the B-module

E∞ :=
⊕
N∈Z

E⊗̂φN , E0 = B

E ⊗φ E the inner tensor product: a B-Hilbert module with B-
valued hermitian structure

〈ξ1 ⊗ η1, ξ2 ⊗ η2〉 = 〈η1, φ(〈ξ1, ξ2〉)η2〉

E−1 = E∗ the dual module;
its elements are written as λξ for ξ ∈ E : λξ(η) = 〈ξ, η〉



For each ξ ∈ E a bounded adjointable operator

Sξ : E∞ → E∞

generated by Sξ : E⊗̂φN → E⊗̂φ(N+1):

Sξ(b) := ξ b , b ∈ B ,
Sξ(ξ1 ⊗ · · · ⊗ ξN) := ξ ⊗ ξ1 ⊗ · · · ⊗ ξN , N > 0 ,

Sξ(λξ1
⊗ · · · ⊗ λξ−N) := λξ2 φ−1(θξ1,ξ)

⊗ λξ3
⊗ · · · ⊗ λξ−N , N < 0 .

Definition 13. The Pimsner algebra OE of the pair (φ,E) is

the smallest subalgebra of L(E∞) which contains the operators

Sξ : E∞ → E∞ for all ξ ∈ E.

Pimsner: universality of OE



There is a natural inclusion

B ↪→ OE a generalized principal circle bundle

roughly: as a vector space OE ' E∞ and

E⊗̂φN 3 η 7→ ηλ−N , λ ∈ U(1)

Two natural classes in KK-theory:

1. the class [E] ∈ KK0(B,B)
of the even Kasparov module (E, φ,0) (with trivial grading)

the map 1− [E] has the role of the Euler class χ(E) := 1− [E]

of the line bundle E over the ‘noncommutative space’ B



2. the class [∂] ∈ KK1(OE, B)

of the odd Kasparov module (E∞, φ̃, F ):

F := 2P − 1 ∈ L(E∞) of the projection P : E∞ → E∞ with

Im(P ) =
(
⊕∞N=0 E

⊗̂φN
)
⊆ E∞

and inclusion φ̃ : OE → L(E∞).

The Kasparov product induces group homomorphisms

[E] : K∗(B)→ K∗(B) , [E] : K∗(B)→ K∗(B)

and

[∂] : K∗(OE)→ K∗+1(B) , [∂] : K∗(B)→ K∗+1(OE) ,



Associated six-terms exact sequences Gysin sequences:
in K-theory:

K0(B)
1−[E]−−−−→ K0(B)

i∗−→ K0(OE)

[∂]

x y[∂] ;

K1(OE) ←−
i∗

K1(B) ←−−−−
1−[E]

K1(B)

the corresponding one in K-homology:

K0(B) ←−−−−
1−[E]

K0(B) ←−
i∗

K0(OE)y[∂] [∂]

x .

K1(OE)
i∗−→ K1(B)

1−[E]−−−−→ K1(B)

In fact in KK-theory



Quantum weighted projective lines and lens spaces:

B = O(Wq(k, l)) = quantum weighted projective line
the fixed point algebra for a weighted circle action on O(S3

q )

z0 7→ λkz0 , z1 7→ λlz1 , λ ∈ U(1)

The corresponding universal enveloping C∗-algebra C(Wq(k, l))
does not in fact depend on the label k: isomorphic to the uni-
talization of l copies of K = compact operators on l2(N0)

C(Wq(k, l)) = ⊕̃ls=0K

Then: K0(C(Wq(k, l))) = Zl+1 , K1(C(Wq(k, l))) = 0

a partial resolution of singularity, since classically

K0(C(W (k, l))) = Z2 .



OE = O(Lq(lk; k, l)) = quantum lens space

Indeed, a vector space decomposition

O(Lq(lk; k, l)) = ⊕N∈ZO(N)(k, l) ,

with E = O(1)(k, l) a right finitely projective module

O(1)(k, l) := (z∗1)k · O(Wq(k, l)) + (z∗0)l · O(Wq(k, l))

Also, O(Lq(lk; k, l)) the fixes point algebra of a cyclic action

Z/(lk)Z× S3
q → S3

q

z0 7→ exp(
2πi

l
) z0 , z1 7→ exp(

2πi

k
) z1 .



K-theory and K-homology of quantum lens space

Denote the diagonal inclusion by ι : Z → Zl, 1 7→ (1, . . . ,1) with
transpose ιt : Zl → Z, ιt(m1, . . . ,ml) = m1 + . . .+ml.

Theorem 14. (Arici, Kaad, L.) With k, l ∈ N coprime:

K0

(
Lq(lk; k, l))

)
' coker(1− E) ' Z⊕

(
Zl/Im(ι)

)
K1

(
Lq(lk; k, l))

)
' ker(1− E) ' Zl

as well as

K0
(
Lq(lk; k, l))

)
' ker(1− Et) ' Z⊕

(
ker(ιt)

)
K1

(
Lq(lk; k, l))

)
' coker(1− Et) ' Zl .

Again there is no dependence on the label k.



‘grand motivations / applications’ :

Gauge fields on noncommutative spaces

T-duality for noncommutative spaces

Chern-Simons theory

A Gysin sequence for U(1)-bundles

relates H-flux (three-forms on the total space E) to line bundles

(two-forms on the base space M) also giving an isomorphism

between Dixmier-Douady classes on E and line bundles on M



Summing up:

many nice and elegant and useful geometry structures

hope you enjoyed it ; more to come soon



Thank you !!


