
DECOMPOSITIONS AND RESIDUE OF MEROMORPHIC FUNCTIONS WITH
LINEAR POLES

(BASED ON JOINT WORK WITH LI GUO AND BIN ZHANG)

Abstract. Germs of meromorphic functions with linear poles at zero naturally arise in various
contexts in mathematics and physics. We provide a decomposition of the algebra of such germs
into the holomorphic part and a linear complement by means of an inner product using our results
on cones and associated fractions in an essential way. Using this decomposition, we generalize the
graded residue on germs of meromorphic functions in one variable to a graded residue on germs of
meromorphic fractions in several variables with linear poles at zero and prove that it is independent
of the chosen inner product. When this residue is applied to exponential discrete sums on lattice
cones, we obtain exponential integrals, giving a first relation between exponential sums and expo-
nential integrals on lattice cones. On the other hand, this decomposition of meromorphic germs
also provides a key ingredient in the Birkhoff-Hopf type factorization through which we revisited
Berline and Vergne’s Euler-Maclaurin formula on lattice cones, establishing another relation be-
tween exponential sums and integrals.
This is an abridged version of [15].
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2 DECOMPOSITIONS AND RESIDUE OF MEROMORPHIC FUNCTIONS

1. Introduction

Meromorphic functions play a fundamental role in complex geometry, where they relate to
divisors, bundles and sheaves. A special class of meromorphic functions, namely meromorphic
functions with linear poles, arise naturally in various contexts, in perturbative quantum field the-
ory when computing Feynman integrals by means of dimensional regularization (see e.g. [8])
or by means of analytic regularization1 à la Speer [23, 24], in number theory with multiple zeta
functions [17, 26] (see also [16, 20, 21, 27], in the combinatorics on cones when evaluating ex-
ponential integrals or sums on cones following Berline and Vergne [2] (see also [11]).

We study these meromorphic functions locally, that is, we study germs of meromorphic func-
tions (or meromorphic germs in short) with linear poles, with the aim in mind to extend to this
context results which are known for meromorphic germs in one variable. Let us recall some basic
results in one variable of direct interest to us for future generalizations to meromorphic germs in
several variables. The space of germs of meromorphic functions at a point–say 0– which we de-
note byM0(C), coincides with the space of convergent Laurent series at 0 denoted by C{ε−1, ε}}.
A meromorphic germ in one variable has a unique Laurent expansion, so our first task is to es-
tablish a generalized Laurent expansion for meromorphic germs in several variables with linear
poles.

The space C{ε−1, ε}} or its formal version C[ε−1, ε]], or its twisted version g[ε−1, ε]] for a Lie
algebra g, play important roles in various mathematical fields, such as representation theory,
algebraic geometry, mathematical physics. Here are some of its key features:

• It is filtered by the order, say r, of the pole at zero;
• It has a projection: π+ : C{ε−1, ε}} → C{{ε}} giving a decomposition

(1) C{ε−1, ε}} = ε−1C[ε−1] ⊕ C{{ε}};

• The corresponding filtered algebra

F :=
∞⋃

r=0

Fr, Fr := ε−rC{{ε}}

has a residue
Resr

0( f ) = lim
z→0

(zr f (z)) for all f ∈ ε−rC{{ε}}

which is a graded residue in the sense that it induces a map on the corresponding graded
algebra GrF = ⊕∞r=0Fr/Fr−1, which is compatible with the graded product.

The decomposition (1) commonly used in physics is called the minimal subtraction scheme
and follows from the fact that π+ is a Rota-Baxter operator [10, 12], one of the fundamental
algebraic concepts used for the algebraic Birkhoff factorization in the Connes-Kreimer approach
to renormalization [6]. Given the importance of the decomposition and residue of meromorphic
germs in one variable, it is interesting to find their generalizations in the case of several variables.

We provide a decomposition2 (Theorem 5.3) of the algebra of germs of meromorphic functions
in several variables with linear poles at zero into the holomorphic part and its linear complement

1see also recent work by N.V. Dang [9]
2This decomposition compares with a decomposition [3, Theorem 7.3] of the algebra R∆ of rational functions with

linear poles in a finite set ∆ of (linear) hyperplanes. Their result can be compared with the decomposition derived in
in [7, Theorem 8.16] for affine hyperplanes.
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by means of an inner product using previous results on cones and associated fractions [13] in in
an essential way.

This decomposition leads to interesting applications:

• an algebraic Birkhoff factorization for characters with range in meromorphic functions in
several variables [14], which justifies calling renormalization map the projection map π+

which assigns to a function its holomorphic part in the above decomposition
• the factorization property (9) of the projection map π+ which corresponds to locality in

the context of quantum field theory,
• a generalization of the residue (Definition 6.9) by means of which the exponential integral

on a cone can be viewed as the residue of the corresponding exponential sum on the
discrete points of the cone (Corollary 6.19).

In order to generalize the fraction Resr
0( f )

zr containing the highest order residue Resr
0( f ) to mero-

morphic germs with linear poles, we need a filtration. Using the decomposition of the algebra of
meromorphic germs at zero with linear poles of Theorem 5.3, we first filter the algebra of mero-
morphic germs with linear poles by what we call the p-order (p for polar), which would be r in
the above one variable example. Using again the decomposition of the algebra of meromorphic
germs, we then pick (see Definition 6.9) the highest polar order fractions in the decomposition,
to build the highest polar order residue, or the p-residue in short, which boils down to Resr

0( f )
zr in

the above example. The p-residue is uniquely defined and we show (Proposition 6.11) that it is
independent of the decomposition of f induced by the chosen splitting, and hence is an intrin-
sic invariant of f . Had we instead picked out for the residue the homogeneous part of p-order
1, it would have depended on the choice of splitting for germs with p-order larger than 1. The
p-residue, which is actually a graded residue, is compatible with the product on perpendicular
fractions (Proposition 6.13). Had we picked instead of the highest p-order term, the term of
p-order 1 as a residue, this compatibility would not have held true.

We then apply this p-residue to the exponential sums on lattice cones, which actually was our
original motivation to study the p-residue. Let us recall the one-dimensional Euler-Maclaurin
formula for exponential sums and the generalization to higher dimensional cones by Berline and
Vergne. On the (closed) cone [0,+∞), the exponential sum on the lattice points of the cone (the
lattice given by the natural integer points) S (ε) :=

∑∞
k=0 eεk = 1

1−eε defined for negative ε, relates
to the integral I(ε) :=

∫ ∞
0

eεx dx = −1
ε

by means of the Euler-Maclaurin formula,

S (ε) = I(ε) + µ(ε).

Here µ(ε) = −
∑∞

n=0
Bn+1

(n+1)! ε
n is holomorphic at ε = 0, so the integral I(ε) corresponds to the pole

part of the Laurent expansion of the sum S (ε) at zero.
Similarly, to a lattice cone in a linear space, namely a convex cone equipped with a lattice, one

can assign two meromorphic functions, the exponential integral I on the cone and the exponential
sum S on the lattice points of the cone, which Berline and Vergne could relate by a generalized
Euler-Maclaurin formula ([2, Theorem 19]). One of the motivations for the present paper is to
generalize to higher dimensions, the fact that in the one-dimensional case, I arises as the pole
part of S ; we indeed show that the p-residue of the exponential sum S on a lattice cone is the
exponential integral I. The integrals being p-residues of the discrete sums, our result, like the
Euler-Maclaurin formula, relates discrete sums and the corresponding integrals.

To conclude, we introduce here a new type of residue on meromorphic functions in several vari-
ables with linear poles; those include the ones usually associated with a hyperplane arrangement.
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As previously mentioned, meromorphic functions with linear poles and their generalizations to
meromorphic functions with affine poles, play a role in

• number theory where they arise while regularizing multiple zeta functions; for given com-
plex numbers si, i = 1, . . . , k such that s1 + · · ·+ si = i for some i ∈ {1, . . . , k}, the function

(ε1, . . . , εk) 7−→ ζ(s1 + ε1, . . . , sk + εk) :=
∑

0<nk<···<n1

n−s1−ε1
1 · · · n−εk

k

extends to a meromorphic function with poles corresponding to the linear forms Li : ~ε 7−→
ε1 + · · · + εi, i = 1, . . . , k (see e.g. [20]),
• quantum field theory, while regularizing Feynman integrals analytically [24], see The-

orem 3.1. In this context, the factorization property (9) of the projection map π+ over
orthogonal meromorphic functions corresponds to the locality of the underlying theory
[9],
• but also and maybe more surprisingly, in queuing networks [4].

Our residue does not extend the classical residue of a Laurent expansion and to our knowledge
therefore differs in nature from other generalizations of the classical residue such as Grothendieck’s
residue symbol (see e.g. [18]) (also referred to as the multidimensional residue) which, as the
classical residue does, has an integral realization [25] (see also [22]). Similarly to our residue,
the Grothendieck residue arises in the combinatorics on polytopes since it can be used to count
integer points on certain dilated polytopes [1], leading to a derivation of Erhardt’s polynomial. It
further arises together with its integral representation in the context of queuing networks [4].firs

Our residue uses a decomposition of the space of meromorphic functions with linear poles
induced by an inner product on the underlying space, into the space of holomorphic functions
and its (orthogonal) complement. It differs from the Jeffrey-Kirwan residue which applies to
rational functions with poles in a hyperplane arrangement. Our decomposition of meromorphic
germs with linear poles (see Theorem 5.3) and geometric criterion for non-holomorphicity (see
Theorem 4.9) lead to another proof [15] of the decomposition of the space of rational functions
with poles in a given hyperplane arrangement derived by Brion and Vergne [5].
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2. Germs of meromorphic functions

In this section, we provide some terminology to describe the class of meromorphic functions
under consideration. Here F denotes a subfield of R which will often be chosen to be R.

Definition 2.1. (a) A rational (vector) space is a pair (V,ΛV) where V is a finite dimensional
real vector space and ΛV is a lattice in V , that is, a finitely generated abelian subgroup of
V whose R-linear span is V;

(b) A filtered space is a real vector space V with a filtration V1 ⊂ V2 ⊂ · · · of real vector
subspaces such that V = ∪k≥1Vk. Let jk : Vk → Vk+1 denote the inclusion;

(c) A filtered rational space is a filtered space V = ∪kVk with lattices Λk := ΛVk of Vk

such that Λk+1|Vk = Λk, k ≥ 1. Then we denote the filtered rational space by (V,ΛV) =

∪k(Vk,ΛVk) where ΛV = ∪kΛVk ;
(d) An inner product Q on a filtered space V = ∪k≥1Vk is a sequence of inner products

Qk(·, ·) = (·, ·)k : Vk ⊗ Vk → R, k ≥ 1,

that is compatible with the inclusions jk, k ≥ 1;
(e) An F-inner product on a filtered rational space (V,ΛV) is an inner product {Qk}k≥1 on the

filtered space V = ∪k≥1Vk such that the restriction of Qk to ΛVk ⊗ F and hence ΛVk takes
values in F. A filtered rational space together with an F-inner product is called a filtered
rational F-Euclidean space.

We now assume that V = ∪Vk is a filtered rational F-Euclidean space. Let V∗k be the dual space
of Vk, then a vector v in Vk can be viewed as a linear functional on V∗k

v : V∗k → R, f 7→ f (v).

In particular, for a basis {ei} of Vk with dual basis {e∗i } of V∗k , we have the linear functionals

ei : V∗k → R, u =
∑

i

εie∗i 7→ εi.

Thus we also denote ei by εi, seen as a function on V∗k .

Definition 2.2. Let ∪k(Vk,Λk) be a filtered rational space.
(a) A germ of meromorphic functions at 0 or meromorphic germ in short on V∗k ⊗C is the

quotient of two holomorphic functions in a neighborhood of 0 inside V∗k ⊗ C with respect
to the canonical complex structure on V∗k ⊗ C. So a function on V∗k ⊗ C is holomorphic if
it is holomorphic in the complex coordinates in any dual basis of V∗k .

(b) A germ of meromorphic functions f (~ε) on V∗k ⊗C is said to have linear poles at zero with
coefficients in F if there exist vectors L1, · · · , Ln ∈ ΛVk ⊗ F (possibly with repetitions)
such that f Πn

i=1Li is a holomorphic germ at zero whose Taylor expansion for coordinates
in the dual basis {e∗1, · · · , e

∗
k} of a given (and hence every) basis {e1, · · · , ek} of Λk has

coefficients in F.
(c) A germ of meromorphic functions of the form 1

Ls1
1 ···L

sn
n

with linearly independent vectors
L1, · · · , Ln in Λk ⊗ F and s1, · · · , sn ≥ 1 is called a simplicial fraction with coefficient in
F. Such a fraction is called simple if all s1 = · · · = sn = 1 and multiple otherwise. The
linear space generated by simple simplicial fractions with coefficient in F is denoted by
S (F).
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LetMF(V∗k ⊗ C) be the set of germs of meromorphic functions on V∗k ⊗ C with linear poles at
zero and with coefficients in F, which defines a linear space over F.

The F-inner product Qk : Vk ⊗ Vk → R induces an isomorphism Q∗k : Vk → V∗k . This yields an
embedding V∗k ↪→ V∗k+1 induced from jk : Vk → Vk+1. We refer to the direct limit V~ :=

⋃∞
k=0 V∗k =

lim
−−→

V∗k as the filtered dual space of V and set

MF(V~ ⊗ C) := lim
−→
MF(V∗k ⊗ C) =

∞⋃
k=1

MF(V∗k ⊗ C).

LetMF,+(V∗k ⊗C) denote the space of germs of holomorphic functions at zero in V∗k ⊗C whose
Taylor expansions at zero have coefficients in F under the dual basis of a basis of Λk. We set
MF,+(V~ ⊗ C) :=

⋃∞
k=1MF,+(V∗k ⊗ C).

For V = R∞ equipped with the filtration Vk := Rk with its standard lattice Zk and standard inner
product, the dual rational space V∗k is identified with Rk equipped with the standard lattice. Thus
the spaceMF,+(Ck) :=MF,+(V∗k ⊗C) corresponds to the space of germs of holomorphic functions
at zero in Ck whose Taylor expansions at zero have coefficients in F with respect to the canonical
basis of Rk.

We next identify a class of polar germs (that is, non-holomorphic meromorphic germs) that
will be shown to give a linear complement of the subspaceMF,+(V∗k ⊗ C) (Theorem 5.3). Thus
they can be regarded as purely polar germs. For notational simplicity, we will call them polar
germs.

Definition 2.3. A polar germ with F-coefficients in V∗k ⊗C is a germ of meromorphic functions
at zero of the form

h(`1, · · · , `m)
Ls1

1 · · · L
sn
n

,

where
(a) `1, · · · , `m, L1, · · · , Ln lie in Λk ⊗ F, with L1, · · · , Ln linearly independent, such that

Q(`i, L j) = 0 for all (i, j) ∈ [m] × [n],

where for a positive integer p, we have set [p] = {1, · · · , p},
(b) h lies inMF,+(Cm),
(c) s1, · · · , sn are positive integers.

Remark 2.4. Without loss of generality we can assume that `1, · · · , `m are linearly independent.

Definition 2.5. We letMQ
F,−(V

∗
k ⊗ C) denote the F-span of polar germs inMF(V∗k ⊗ C) and set

M
Q
F,−(V

~ ⊗ C) :=
∞⋃

k=1

M
Q
F,−(V

∗
k ⊗ C).

Remark 2.6. Whereas the spaceMQ
F,−(V

∗
k ⊗C) depends on the choice of the inner product Q, the

spaceMF,+(V∗k ⊗ C) does not.

Example 2.7. (a) For linearly independent vectors L1, · · · , Lk ∈ Λk ⊗ F and s1, · · · , sk > 0,
1

Ls1
1 · · · L

sk
k

lies inMQ
F,−(V

∗
k ⊗ C) for any inner product Q.

(b) Let Q := (·, ·) be the canonical Euclidean inner product on R∞. Then the functions

f (ε1e∗1 + ε2e∗2) =
(ε1 − ε2)t

(ε1 + ε2)s , s > 0, t ≥ 0, lie inMQ
Q,−((R

2)∗ ⊗ C).
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3. From cones to fractions

In this section we recall from [13] how, by means of Laplace type transforms, the geometry
of cones can be used for the decomposition of fractions. Propostion 3.7 provides a geometric
criterion for the linear independence of certain fractions arising from expopential integrals on
cones.

Consider a filtered rational space V = ∪k≥1Vk, with a fixed ordered basis (e1, e2, · · · ) such that
(e1, e2, · · · ) ∩ Vk = (e1, · · · , ek) is a basis of Λk. A (closed convex polyhedral) cone in Vk is the
set

(2) 〈v1, · · · , vn〉 := R≥0v1 + · · · + R≥0vn,

where vi ∈ Vk, i = 1, · · · , n. It is called an F-cone if the vi’s in Eq. (2) are in Λk⊗F. If F = Q, then
it is called rational. The dimension is defined as the dimension of the linear subspace spanned
by the vi’s. A cone is called strongly convex if it does not contain any nonzero linear subspace.
A cone is simplicial if it is generated by R-linearly independent vectors, so a simplicial cone is
strongly convex. A rational cone is smooth if it is generated by part of a basis of Λk.

A subdivision of a cone C is a set {C1, · · · ,Cr} of cones such that
(i) C = ∪r

i=1Ci,
(ii) C1, · · · ,Cr have the same dimension as C, and

(iii) C1, · · · ,Cr intersect along their faces,
i.e., for 1 ≤ i, j ≤ r, Ci ∩C j is a face of both Ci and C j .

A subdivision is called simplicial (resp. smooth, in the case when C is rational) if all Ci’s are
simplicial (resp. smooth). An F-subdivision of an F-cone is a subdivision such that every Ci is
an F-cone.

A proper subdivision of a family of cones {Ci} is a set {D1, · · · ,Dr} of cones such that
(a) D1, · · · ,Dr intersect along their faces,
(b) for any i, there is Ii ⊂ [r] such that {Dl}l∈Ii is a subdivision of Ci, and
(c) ∪iIi = [r].

A proper F-subdivision of a family of F-cones is a proper subdivision such that every Di is an
F-cone.

We now rephrase results in [13].

Lemma 3.1. [13, Lemma 2.3]
(a) Any finite family {Ci} of cones in Vk has a simplicial proper subdivision.
(b) Any finite family of rational cones in Vk has a smooth proper subdivision.

As a subfield of R, F contains Q, so Λk ⊗ F is dense in Vk. Adapting the proof of [13, Lemma
2.3(a)], we obtain

Lemma 3.2. Any finite family {Ci}
m
1 of F-cones has a simplicial proper F-subdivision.

We now assign to each cone a fraction by means of the Laplace transform of the characteristic
function of the cone.

Let C be a simplicial cone in Vk with R-linearly independent generators v1, · · · vn expressed

in the fixed basis {e1, · · · , ek} as vi =
k∑

j=1
a jie j, for 1 ≤ i ≤ n. Define linear functions Li(~ε) :=
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Lvi(~ε) :=
k∑

j=1
a jiε j, where ~ε :=

∑k
i=1 ε je∗j ∈ V∗k ⊗ C and {e∗1, · · · , e

∗
k} is the dual basis in V∗k . Let

AC = [ai j] denote the associated matrix in Mk×n(R) with vi as column vectors. Let w(v1, · · · , vn)
or w(C) denote the sum of absolute values of the determinants of all minors of AC of rank n. As
in [13], define , using the symbol I (for ”integral”)

(3) I(C) :=
w(v1, · · · , vn)

L1 · · · Ln
,

which is in S (R) introduced in Definition 2.2 (c). For a simplicial F-cone C, I(C) is in S (F).
Further for any cone C, define I(C) :=

∑
i I(Ci) where {Ci} is a simplicial subdivision of C. As

shown in [13], thanks to the following lemma, I is well-defined, independently of the choice of
the chosen simplicial subdivision.

Lemma 3.3. [13, Lemma 3.2] Let C be a simplicial cone and {C1, · · · ,Cr} be a simplicial subdi-

vision of C, then I(C) =
r∑

i=1
I(Ci).

Let C be the set of cones in V , and RC be the vector space with basis C. We obtain a linear map

I : RC→ S (R).

Definition 3.4. A family of cones is said to be properly positioned if the cones meet along faces
and the union does not contain any nonzero linear subspace.

Example 3.5. Any subdivision of a strongly convex cones yields a properly positioned family of
cones.

Adapting the proof of [13, Lemma 2.3 (a)] we get the following result.

Proposition 3.6. A family of F-cones whose union does not contain any nonzero linear subspace,
can be subdivided into a properly positioned set of simplicial F-cones.

We have the following geometric criterion for the linear independence of fractions which fol-
lows from a slight reformulation of Lemma 3.5 in [13].

Proposition 3.7. Let {Ci} be a set of properly positioned simplicial cones each of whose elements
Ci spans the same linear subspace. Then the set {I(Ci)} of fractions is linearly independent.

4. From polar germs to cones

In this section, we start from fractions to which we assign (under certain technical condi-
tions) cones called supporting cones. Proposition 4.7 gives for a family of polar germs, sufficient
conditions on their supporting cones for the linear independence of the germs, thus providing a
geometric criterion for the linear independence. Theorem 4.9 gives sufficient conditions on the
supporting cones for the non holomorphicity of polar germs.

Partial differentiation on the space of fractions carries over to cones. For the fixed basis
{e1, e2, · · · }, let {e∗1, e

∗
2, · · · } be the dual basis, and ~ε =

∑
εie∗i be an element in V~ ⊗ C. We

define the differential operators

∂i = −
∂

∂εi
:MF(V~ ⊗ C)→MF(V~ ⊗ C).

The following proposition follows from straightforward computations.
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Proposition 4.1. ([13, Proposition 4.8]) For a fraction 1
Ls1

1 ···L
sk
k

, let {L∗i =
∑

j ci je∗j}i be dual to {Li}i

in the sense that (Li, L∗j) = δi j, 1 ≤ i, j ≤ k. Define ∂L∗i =
∑

j ci j∂ j. Then we have

(4)
1

Ls1
1 · · · L

sk
k

=
1

(s1 − 1)! · · · (sk − 1)!
∂s1−1

L∗1
· · · ∂sk−1

L∗k

1
L1 · · · Lk

.

The following lemma is proved by induction on the total order s := s1 + · · · + sn of the poles.

Lemma 4.2. If a polar germ can be written as h(`1,··· ,`m)
Ls1

1 ···L
sn
n

and g(`′1,··· ,`
′
k)

(L′1)t1 ···(L′
`
)t` , both in a form satisfying

the conditions in Definition 2.3, then k = `, and L′1, · · · , L
′
` can be rearranged in such a way that

Li is a multiple of L′i and si = ti for 1 ≤ i ≤ k.

The following definition will be justified with the subsequent lemma.

Definition 4.3. (a) A vector v of V is called pseudo-positive (with respect to the chosen
basis) if the first nonzero coefficient of v under the ordered basis (e1, e2, · · · ) is 1.

(b) Let
h(`1, · · · , `m)

Ls1
1 · · · L

sn
n

,

be a polar germ such that the vectors L1, · · · , Ln are pseudo-positive. Then the cone
〈L1, · · · , Ln〉 is called the supporting cone of the germ.

Example 4.4. The supporting cone of the germ
1

(ε1 + ε2)2(ε2 − ε1)
is the cone 〈e1 + e2, e1 − e2〉.

Example 4.5. Let C be a simplicial cone. The supporting cone of the germ I(C) clearly is the
cone C.

The following lemma justifies the introduction of the notion of pseudo-positive vectors.

Lemma 4.6. If {L1, · · · , Ln} is a set of pseudo-positive vectors, then the cone 〈L1, · · · , Ln〉 is
strongly convex.

With the concept of supporting cone at hand, we can now restate Proposition 3.7 in terms of a
geometric criterion for the linear independence of fractions the proof of which is similar to that
of Lemma 4.9 in [13].

Proposition 4.7. (a) Simple simplicial fractions not pairwise proportional whose supporting
cones are properly positioned and span the same linear subspace are linearly indepen-
dent.

(b) More generally any set of simplicial fractions not pairwise proportional whose supporting
cones are properly positioned and span the same linear subspace are linearly indepen-
dent.

Example 4.8. Given two R-linearly independent linear forms L1, L2, then the fractions 1
Ls1

1 (L1+L2)s2

and 1
(L1+L2)r1 Lr2

2
are R-linearly independent for any (r1, r2) and (s1, s2) in N2 since their supporting

cones 〈L1, L1 + L2〉 and 〈L2, L1 + L2〉 span the same linear space and are properly positioned.

Based on this, we prove the following non-holomorphicity of polar germs.

Theorem 4.9. Let
{

hi

Lsi1
i1 ···L

sini
ini

}
1≤i≤p

be a set of polar germs with coefficients in F such that
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• for any 1 ≤ i , j ≤ p, the two functions Lsi1
i1 · · · L

sini
ini

and Ls j1

j1 · · · L
s jn j

jn j
are not proportional

to each other,
• the supporting cones for hi

Lsi1
i1 ···L

sini
ini

, 1 ≤ i ≤ p, are properly positioned.

If a linear combination

(5)
p∑

i=1

ai
hi

Lsi1
i1 · · · L

sini
ini

, ai ∈ F, 1 ≤ i ≤ p,

is holomorphic, then ai = 0 for 1 ≤ i ≤ p.

Proof. The proof is carried out ad absurdum. Suppose that the theorem does not hold. Then there
is a linear combination of the form described in Eq. (5) with nonzero real coefficients ai, 1 ≤ i ≤ p,
and a germ of holomorphic functions h0 such that the germ

(6)
p∑

i=1

ai
hi

Lsi1
i1 · · · L

sini
ini

− h0 = 0

vanishes in a neighborhood of zero. From there one extracts a family of fractions 1
Lsi1

i1 ···L
sini
ini

, 1 ≤ i ≤

t, that satisfies the conditions in Proposition b which implies that the coefficients ai, 1 ≤ i ≤ t, are
zero leading to a contradiction. �

The non-holomorphicity theorem 4.9 is used to prove the uniqueness of the decomposition.

5. A decomposition of the space of meromorphic germs at zero with linear poles

In this section, we establish our decomposition of the space of meromorphic germs. Again fix
a subfield F of R.

We begin with a reduction of a general fraction to a linear combination of simplicial fractions.

Lemma 5.1. Let L1, · · · , Ln be vectors in Λk ⊗ F and s1, · · · , sk be positive integers. Then the
fraction 1

Ls1
1 ···L

sn
n

can be rewritten as a linear combination∑
i

ai

Mti1
i1 · · ·M

tini
ini

,

with ai ∈ F and a subset {Mi1, · · · ,Mini} of linearly independent subset of {L1, · · · , Lk}.

We leave out the proof which can be carried out by induction on the difference d := n −
dim(lin{L1, · · · , Ln}) and instead choose to illustrate the lemma with an example.

Example 5.2. Given two linearly independent linear forms L1, L2, since 1
L1L2(L1+L2) = 1

L1(L1+L2)2 +
1

L2(L1+L2)2 we have the following decomposition of 1
L2

1L2
2(L1+L2) into simple simplicial fractions:

1
L2

1L2
2(L1 + L2)

=

(
1

L1(L1 + L2)
+

1
L2(L1 + L2)

)2 1
L1 + L2

=
1

L2
1(L1 + L2)3

+
2

L1L2(L1 + L2)3 +
1

L2
2(L1 + L2)3

=
1

L2
1(L1 + L2)3

+
2

L1(L1 + L2)4 +
2

L2(L1 + L2)4 +
1

L2
2(L1 + L2)3

.
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The following decomposition, which is our first main result, generalizes the Laurent expansion
of meromorphic functions in one variable and the Rota-Baxter decompositionM(C) =M−(C) ⊕
M+(C) of the space of Laurent series at 0 given by the projection onto the holomorphic part of
the Laurent series.

Theorem 5.3. Let (V,ΛV) be a filtered rational F-Euclidean space, we have
(a) For 1 ≤ k < ∞, we have the direct sum decomposition

MF(V∗k ⊗ C) =MF,−(V∗k ⊗ C) ⊕MF,+(V∗k ⊗ C).

In particular, an element f = h
L1···Ln

inMF(V∗k ⊗ C) can be written as a sum

(7) f =
∑

i

hi(~̀i)
~L~si

i

+ φi(~̀i, ~Li)


where for each i,
(i) |~si| > 0,

(ii) ~Li = (Li1, · · · , Limi) where {Li1, · · · , Limi} is a linear independent subset of {L1, · · · , Lk},
(iii) ~̀i = (`i(mi+1), · · · `ik) where {`i(mi+1), · · · `ik} is a basis with F-coefficients of the orthog-

onal complement of the subspace spanned by ~Li with respect to the inner product
Q,

(iv) hi(~̀i) is holomorphic in the independent variables ~̀i (reduced to constant when k = 1)
whose Taylor series expansion has coefficients in F, so that hi(~̀i)

~L~si
i

lies inMF,−(V∗k ⊗C),

(v) φi is a germ of holomorphic function in the independent variables ~̀i and ~Li.
(b) Taking a direct limit yields

MF(V~ ⊗ C) =MF,−(V~ ⊗ C) ⊕MF,+(V~ ⊗ C).

(c) The projection map

(8) π+ :MF(V∗ ⊗ C)→MF,+(V∗ ⊗ C)

onto MF,+(V~ ⊗ C) along MF,−(V~ ⊗ C) factorizes on perpendicular functions. More
precisely, with the notation of Eq. (7), let

(9) f =
∑

i

hi(~̀i)
~L~si

i

+ φi(~̀i, ~Li)

 and g =
∑

j

k j(~m j)

~M
~t j

j

+ ψ j(~m j, ~M j)


be two germs of functions inMF(V~⊗C) with the property that the linear forms in {~Li, ~̀i}

are perpendicular to those in { ~M j, ~m j} for any i, j. We have

(10) π+( f g) = π+( f ) π+(g).

Remark 5.4. This factorization property applied to analytically regularized Feynman integrals
[23] says that integrals corresponding to a concatenation of Feynman diagrams factorize so that
independent events can be observed independently (see also the recent work by N.V. Dang [9]).

Before giving the proof, let us illustrate the statement with an example.
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Example 5.5. Take the standard inner product. Since 1
L1L2(L1+L2) = 1

L1(L1+L2)2 + 1
L2(L1+L2)2 , for any

real number c we have

fc :=
(L1 + L2 + c)3

L1L2(L1 + L2)
=

(L1 + L2)3 + 3c (L1 + L2)2 + 3c2 (L1 + L2) + c3

L1L2(L1 + L2)

= 2 +
L2

L1
+

3c
L1

+
3c2

L1(L1 + L2)
+

c3

L1(L1 + L2)2

+
L1

L2
+

3c
L2

+
3c2

L2(L1 + L2)
+

c3

L2(L1 + L2)2 .

Hence π+( fc) = 2.

Remark 5.6. The holomorphic functions hi and φi in the decomposition (7) depend on the choice
of inner product Q.

Proof. (a) We prove the statement for 1 ≤ k < ∞. Then taking the direct limit gives the result for
any filtered space.

Let 1 ≤ k < ∞ be given. We first verify the decomposition

MF(V∗k ⊗ C) =MF,−(V∗k ⊗ C) +MF,+(V∗k ⊗ C).

Thanks to Lemma 5.1, without loss of generality we can reduce the proof to germs of functions
of the type

f =
h

Ls1
1 · · · L

sm
m

with h ∈ MF,+(V∗k ⊗ C), linearly independent linear forms L1, · · · , Lm ∈ Λk ⊗ F and s1, · · · , sm

positive integers. Then we extend {L1, · · · , Lm} to a basis {L1, · · · , Lm, `1, · · · , `k−m} of Λk⊗F with
the additional property that

Q(Li, ` j) = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ k − m.

Note that for k = 1, this decomposition corresponds to the minimal subtraction scheme decom-
position h(L1)

L1
=

h(0)
L1

+
h(L1)−h(0)

L1
. To prove the general case we proceed by induction on the sum

s = s1 + · · · + sm. If s = 1, then m = 1, and s1 = 1. We write

h(L1, `1, · · · , `k−1)
L1

=
h(0, `1, · · · , `k−1)

L1
+

h(L1, `1, · · · , `k−1) − h(0, `1, · · · , `k−1)
L1

.

The first term lies in MF,−(Ck) as a consequence of the orthogonality of L1 with the `i’s. The
second term

h(L1, `1, · · · , `k−1) − h(0, `1, · · · , `k−1)
L1

=
h(L1, `1, · · · , `k−1)(ε1L∗1 + ε2`

∗
1 + · · · + εk`

∗
k−1) − h(L1, `1, · · · , `k−1)(ε2`

∗
1 + · · · + εk`

∗
k−1)

ε1

is holomorphic at 0. This yields the required decomposition.
Assume that the decomposition exists for all element with s ≤ t where t ≥ 1 and consider

f = h
Ls1

1 ···L
sm
m

with s = s1 + · · · + sm = t + 1. We note that

f := g0 + g1 + · · · + gm,
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where we have set

gi :=


h(0, · · · , 0, `1, · · · , `k−m)

Ls1
1 · · · L

sm
m

, i = 0,

fi

Ls1
1 · · · L

si−1
i · · · Lsm

m

, 1 ≤ i ≤ m,

with

fi :=
h(L1, · · · , Li, 0, · · · , 0, `1, · · · , `k−m) − h(L1, · · · , Li−1, 0, · · · , 0, `1, · · · , `k−m)

Li
, 1 ≤ i ≤ m.

Then g0 lies inMF,−(V∗k ⊗ C). Further, for i = 1, · · · ,m, fi is holomorphic at 0. Thus it follows
from the induction hypothesis that gi lies in MF,−(V∗k ⊗ C) + MF,+(V∗k ⊗ C). Hence f lies in
MF,−(V∗k ⊗C)+MF,+(V∗k ⊗C). This completes the proof for the sum decompositionMF(V∗k ⊗C) =

MF,−(V∗k ⊗ C) +MF,+(V∗k ⊗ C).

We next show that MF,−(V∗k ⊗ C) ∩ MF,+(V∗k ⊗ C) = {0}. Suppose that there is 0 , f ∈
MF,−(V∗k ⊗ C) ∩ MF,+(V∗k ⊗ C). Then f is holomorphic. On the other hand, by Lemma ??, the
element f ∈ MF,−(V∗k ⊗ C) can be written as a linear combination

∑
i aiS i of polar germs S i

with supporting cones satisfying the condition in Theorem 4.9. Then applying Theorem 4.9 to∑
i aiS i = f , we get ai = 0 for all i. This is a contradiction.

(b) The statement follows from the compatibility of the decomposition with the filtration.

(c) Let f and g be as in Eq. (9). We have

f g =
∑

i, j

hi(~̀i)
~L~si

i

k j(~m j)

~M
~t j

j

+ φi(~̀i, ~Li)
k j(~m j)

~M
~t j

j

+
hi(~̀i)
~L~si

i

ψ j(~m j, ~M j) + φi(~̀i, ~Li)ψ j(~m j, ~M j)

 .
The first three terms in each sum lie in MF,−(V~ ⊗ C) and the last term lies in MF,+(V~ ⊗ C).
Hence

π+( f g) =
∑

i, j

φi(~̀i, ~Li)ψ j(~m j, ~M j) =

∑
i

φi(~̀i, ~Li)


∑

j

ψ j(~m j, ~M j)

 = π+( f )π+(g).

�

Combining the previous results leads to the following existence and uniqueness result. The
existence is a direct consequence of Theorem 5.3.

Corollary 5.7. Any element f ofMF(V~ ⊗ C)) can be written as

f =
∑

i

S i + h,

where h is holomorphic and the S i’s are polar germs satisfying the following requirements

• their supporting cones are properly positioned,
• their denominators are pairwise not proportional,
• the linear forms in their denominators are pseudo-positive.

If two such decompositions have the same properly positioned supporting cones, then they are the
same decomposition.
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6. Residue for germs of meromorphic functions at zero with linear poles

Based on the decomposition in Section 5, we now introduce a filtered structure onMF(V~⊗C),
define p-orders and p-residues for germs of meromorphic functions at zero with linear poles. We
only deal with real coefficients since the results for coefficients in a subfield F immediately follow
from the case F = R.

Let us first define the p-order of germs of meromorphic functions with linear poles.

Definition 6.1. The polar order, or p-order in short, of the germ h(`1,··· ,`m)
Ls1

1 ···L
sn
n

is defined to be

p-ord
h(`1, · · · , `m)

Ls1
1 · · · L

sn
n

:=
n∑

i=1

si.

Definition 6.2. Let f ∈ M(V~ ⊗ C). By Corollary 5.7 f decomposes as

(11) f =

n∑
i=1

S i + h.

In particular, h is a holomorphic germ and S i, i = 1, · · · , n, are polar germs whose denominators
are not proportional to each other and whose supporting cones are properly positioned. We define
the polar order, or p-order in short, of f to be

p-ord( f ) := Max(p-ord(S i)).

Example 6.3. The p-order of fc in Example 5.5 is 1 if c = 0 and 3 otherwise.

Lemma 6.4. Any two sets of cones with pseudo-positive generators have a common subdivision
that is properly positioned.

Proof. Since the generators of any cone in the family are pseudo-positive, the union of any set
of faces can not contain a nonzero linear subspace. Thus the proof is the same as that of Lemma
3.1. �

Lemma 6.4 is one of the ingredients used to prove that the p-order is well-defined.

Proposition 6.5. The p-order of a germ of meromorphic function with linear poles does not
depend on any choice of a decomposition of the germ in Eq. (11).

We next establish the independence of the p-order on the choice of inner product.

Proposition 6.6. The p-order of a meromorphic germ with linear poles does not depend on the
choice of an inner product in the decomposition ofM(V~ ⊗ C) in Theorem 5.3.

Proof. For an inner product Q in V , and f ∈ M(V~ ⊗ C) with p-ord( f ) = p, let

f =

r∑
i=1

S i +

n∑
i=r+1

S i + h

be a decomposition of f into polar germs S i and a holomorphic function h as in Definition 6.4,
with polar germs with the highest order in the first sum and those with lesser order in the second
sum.

Now consider a different inner product R on V . For this inner product, an S i might not be a
polar germ. Set

S i =
hi(`i1, · · · , `imi)

Lsi1
i1 · · · L

sini
ini

,
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with Q(`ip, Liq) = 0. For j = 1, · · · ,mi, we have

`i j = `′i j −

ni∑
k=1

ak
i jLik,

where R(`′i j, Lik) = 0 for k = 1, · · · , ni. Then

S i =
hi(`′i1, · · · , `

′
imi

)

Lsi1
i1 · · · L

sini
ini

+ terms of lower denominator degrees.

Thus

(12) f =

r∑
i=1

hi(`′i1, · · · , `
′
imi

)

Lsi1
i1 · · · L

sini
ini

+ terms of lower denominator degrees.

This gives a decomposition of f into a linear combination of polar germs for the inner product R.
Note the supporting cones in the above sum are faces of the supporting cones in the decomposi-

tion of f under the inner product Q. So they remain properly positioned. Since hi(`i1, · · · , `imi) ,
0, we also have hi(`′i1, · · · , `

′
imi

) , 0. Therefore under the inner product R, the p-order of f is again
p. �

Using the p-order, we define a filtration inM(V~ ⊗ C).

Definition 6.7. For n ≥ 0, define

Mn := { f ∈ M(V~ ⊗ C) | p-ord( f ) ≤ n}.

Clearly, we have

M =

∞⋃
i=0

Mi, and MiM j ⊂ Mi+ j

for the usual product of functions. Therefore,

Proposition 6.8. M0 :=M+(V~ ⊗C) ⊂ M1 ⊂ M2 ⊂ · · · equipsM(V~ ⊗C) with the structure of
a filtered algebra.

Thanks to this filtration, we can now define a residue onM(V~ ⊗ C).

Definition 6.9. Let f ∈ M(V~ ⊗ C) with the decomposition

f =
∑

i

S i + h

as in Definition 6.4 and with p-ord( f ) = r. Let S 1, · · · , S t the polar germs with p-ord(S i) = r and
let S i = hi

Lsi1
i1 ···L

sini
ini

. We define the highest polar order residue, or the p-residue in short, of f to be

p-res( f ) =

t∑
i=1

hi(0)

Lsi1
i1 · · · L

sini
ini

.

Example 6.10. The function fc as in Example 5.5 has p-residue given by p-res( fc) = L2
L1

+ L1
L2

if
c = 0 and p-res( fc) = c3

L1(L1+L2)2 + c3

L2(L1+L2)2 if c , 0.

Proposition 6.11. The p-residue of a germ of meromorphic function with linear poles is well-
defined in so far as it does not depend on a choice of the decomposition in Eq. (11) or the inner
product used in the decomposition ofM(V~ ⊗ C) in Theorem 5.3.
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Proof. We first prove that the p-residue does not depend on a particular choice of the decomposi-
tion of f ; as in the the proof of Proposition 6.5, we only need to prove that the p-residue does not
change under subdivision.

For f ∈ M(V~ ⊗ C) with a given decomposition as in Eq. (11), let

S =
h(`1, · · · , `m)

Ls1
1 · · · L

sn
n

be one of the polar germ in the decomposition with p-ord(S ) = p-ord( f ). Then the supporting
cone is 〈L1, · · · , Ln〉. For a fixed subdivision of the set of supporting cones, let the subdivision for
〈L1, · · · , Ln〉 be {D j := 〈L j1, · · · , L jn〉}. Then

1
L1 · · · Ln

=
∑

j

b j

L j1 · · · L jn
,

where b j’s are constants. Assume

1
(s1 − 1)! · · · (sk − 1)!

∂s1−1
L∗1
· · · ∂sk−1

L∗k

1
L j1, · · · , L jn

=
∑

r j1+···+r jn=s1+···+sn

cr j1···r jn

Lr j1

j1 , · · · , L
r j1

jn

,

where cr j1···r jn’s are constants. Then

S = h(`1, · · · , `m)
∑

j

b j

∑
r j1+···+r jn=s1+···+sn

cr j1···r jn

Lr j1

j1 , · · · , L
r j1

jn

is the new decomposition of S with supporting cones {D j}.
The contribution of the polar fraction S to the p-residue of f is h(0)

Ls1
1 ···L

sn
n

. The contribution from
the new decomposition of S is

h(0)
∑

j

b j

∑
r j1+···+r jn=s1+···+sn

cr j1···r jn

Lr j1

j1 , · · · , L
r j1

jn

which agrees with the first contribution. Therefore the p-residue does not depend on the decom-
position.

For a different choice of inner product, Eq. (12) tells us how the polar germs of p-order p-ord( f )
change. In particular, the constant terms of the numerators remain the same. This exactly means
that the p-residue does not depend on the choice of inner products. �

To simplify the notation, we set

S (0) :=
h(0)

Ls1
1 · · · L

sk
k

for a polar germ S =
h(`1,··· ,`m)
Ls1

1 ···L
sk
k
.

Proposition 6.12. Let f =
∑

S i+
∑

T j+h, with S i, T j polar germs, h holomorphic, and p-ord(S i)’s
all equal to k,

∑
S i , 0, p-ord(T j) < k. Then p-ord( f ) = k and

p-res( f ) =
∑

S i(0).

Proof. Taking a subdivision of the set of supporting cones of the germs S i’s and T j’s, we have
S i =

∑
S il and T j =

∑
T jm. Then

f =
∑

S il +
∑

T jm + h.
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Combining terms that are proportional to one another, we can assume that this decomposition
satisfies the conditions in Definition 6.4. In the decomposition∑

i,l

S il =
∑

i

S i , 0,

there is some non zero polar germ of p-order k, and this is the maximal of p-orders of polar germs,
so p-ord( f ) = k.

Therefore
p-res( f ) =

∑
S il(0) =

∑
S i(0).

�

By construction, this p-residue has a weak multiplicative property.

Proposition 6.13. Let f = f (L1, · · · Lk) and g = g(L′1, · · · , L
′
n) ∈ M(V~ ⊗ C), with Q(Li, L′j) = 0,

then
p-res( f g) = p-res( f ) p-res(g).

As in [14], we can reinterpret the constructions of [2, 11, 19] in terms of lattice cones, so to
a lattice cone (C,ΛC) we can assign two meromorphic functions, the exponential discrete sum
S (C,ΛC) (corresponding to S c(C,ΛC) in [14]) and the map I(C,ΛC) . A direct computation of the
p-residue of the discrete sum on a smooth lattice cones yields the corresponding integral given by
I(C,ΛC).

Lemma 6.14. For a smooth lattice cone (C,ΛC), we have

p-res(S (C,ΛC)) = I(C,ΛC).

In fact, we have
S (C,ΛC) = I(C,ΛC) + (terms of p − order < dim(C)).

Proof. Let v1, · · · , vd(C) (where d = dim C) be a basis of ΛC that generates C as a cone. Then

S (C,ΛC)(~ε) =

d∏
i=1

1
1 − e〈vi,~ε〉

=

d∏
i=1

(
−

1
〈vi, ~ε〉

+ h(〈vi, ~ε〉)
)
,

where h is holomorphic. So the highest p-order term is
∏d

i=1

(
− 1
〈vi,~ε〉

)
which is I(C,ΛC). �

Lemma 6.15. For a cone C, I(C) , 0 if and only if C is strongly convex.

Proof. We already know that I(C,ΛC) = 0 if C is not strongly convex. So we only need to prove
that if C is strongly convex, then I(C,ΛC) , 0. Taking a smooth subdivision {Ci} of C, then since
C is strongly convex, {Ci} is properly positioned. So I(Ci,ΛCi)’s are linearly independent. Then
their sum can not be 0. �

Lemma 6.16. For a lattice cone (C,ΛC), S (C,ΛC) , 0 if and only if (C,ΛC) is strongly convex.

Proof. Again we only need to prove that if (C,ΛC) is strongly convex, then S (C,ΛC) , 0. Tak-
ing a smooth subdivision {(Ci,ΛC)} of (C,ΛC), then since C is strongly convex, {Ci} is properly
positioned, so I(Ci)’s are linearly independent.

We know
S (C,ΛC) =

∑
i

S (Ci,ΛC) + (terms with p-order < dim(C)),
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and
S (Ci,ΛC) = I(Ci,ΛC) + (terms with p-order < dim(C)).

By Proposition 6.12, p-ord(S (C,ΛC)) < dim(C) implies∑
i

I(Ci,ΛC) = 0,

which is a contradiction. So p-ord(S (C,ΛC)) = dim(C), and S (C,ΛC) , 0. �

At the same time, we have proved that

Lemma 6.17. For a strongly convex lattice cone (C,ΛC),

p-ord(S (C,ΛC)) = dim(C).

Theorem 6.18. For a lattice cone (C,ΛC) and its subdivision {(Ci,ΛC)}, we have

p-res(S (C,ΛC)) =
∑

i

p-res(S (Ci,ΛCi)).

So the map p-res ◦ S is compatible with subdivisions.

Proof. For this subdivision, we have

S (C,ΛC) =
∑

i

S (Ci,ΛC) + (terms of p-order < dim(C)),

and
S (Ci,ΛC) =

∑
j

Ti j + (terms of p-order < dim(C)),

where Ti j are polar germs, p-ord(Ti j) = dim(C). So

S (C,ΛC) =
∑

i, j

Ti j + (terms of p-order < dim(C)).

If C is strongly convex, then p-ord(S (C,ΛC)) = dim(C), and

p-res(S (C,ΛC)) =
∑

i, j

Ti j(0) =
∑

i

p-res(S (Ci,ΛC))

by Proposition 6.12.
If C is not strongly convex, then S (C,ΛC) = 0; on the other hand by Proposition 6.12, this

means
∑

i, j Ti j = 0, that is
∑

i p-res(S (Ci,ΛC)) = 0.
So in any case, we have the conclusion. �

As a corollary, we obtain our second main result.

Corollary 6.19. For a lattice cone (C,ΛC), we have

p-res(S (C,ΛC)) = I(C,ΛC).

Example 6.20. Take Λ = Z2 ⊂ R2 and C = 〈e1, e1+e2〉with (e1, e2) the canonical orthonormal ba-

sis inR2. Then S c(C,ΛC) =
1

(1 − eε1) (1 − eε1+ε2)
has p-order 2 and p-residue I(C,ΛC) =

1
ε1(ε1 + ε2)

.
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