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Feynman graph polynomials, part I

Definition of the Feynman graph polynomials through
spanning trees and spanning forests



Graphs

A graph consists of edges and vertices.

The valency of a vertex is the number of edges attached to it.

• Vertices of valency 0 are usually not considered.

• Vertices of valency 1: The edge attached to an vertex of valency 1 is

called an external edge.

All other edges are called internal edges.

In physics one usually does not draw a vertex of valency 1.

• Vertices of valency 2 are called mass insertions and usually not

considered.

• Therefore in physics it is usually implied that a vertex has valency ≥ 3.



Feynman graphs

An edge in a Feynman graph represents a propagating particle.

The edge is drawn in a way as to represent the type of the particle.

To each edge we associate a vector, the momentum of the particle.

At each vertex we have momentum conservation:

Sum of all incoming momenta = sum of all outgoing momenta.

Neglecting all this extra information, we speak about the underlying

topology.



The loop number

Consider a graph G with n edges and r vertices. Assume that the graph has k

connected components.

The loop number l is defined by

l = n− r+ k.

This number is also called the first Betti number of the graph or the cyclomatic number.

In a Feynman graph: If we fix all momenta on external lines and impose momentum

conservation at each vertex, then the loop number is equal to the number of

independent momenta vectors not constrained by momentum conservation.
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Example: A two-loop graph



Trees, spanning trees and spanning forests

A connected graph of loop number 0 is called a tree.

A graph of loop number 0 is called a forest.

If the forest has k connected components, it is called a k-forest.

Given an arbitrary connected graph G, a spanning tree of G is a subgraph, which

contains all the vertices of G and which is a tree.

Given an arbitrary connected graph G, a spanning k-forest of G is a subgraph, which

contains all the vertices of G and which is a k-forest.
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A spanning tree
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A spanning 2-forest



Feynman parameters

Step 1 for the construction of a graph polynomial:

To each internal edge j we associate a real (or complex) variable x j.

The variables x j are called Feynman parameters.
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x4



The first Symanzik polynomial

Let G be a connected graph and T1 the set of its spanning trees.

The first Symanzik polynomial is defined by

U = ∑
T∈T1

∏
e j /∈T

x j,

x1 x2

x4 x3

x5

Example:

x1x2 + x3x4 + x1x3 + x2x4 + x2x5 + x1x5 + x4x5 + x3x5



The Kirchhoff polynomial

In mathematics, the Kirchhoff polynomial of a graph is better known. It is defined by

K = ∑
T∈T1

∏
e j∈T

x j

Compare this definition to the definition of the first Symanzik polynomial:

U = ∑
T∈T1

∏
e j /∈T

x j

Relation between the Kirchhoff polynomial K and the first Symanzik polynomial U:

U(x1, ...,xn) = x1...xnK

(
1

x1

, ...,
1

xn

)



The second Symanzik polynomial

Let G be a connected graph and T2 the set of its spanning 2-forests.

An element of T2 is denoted as (T1,T2).

Let further denote PTi
the set of external momenta of G attached to Ti.

The second Symanzik polynomial is defined for massless particles by

F = ∑
(T1,T2)∈T2

(

∏
ei/∈(T1,T2)

xi

)

 ∑
p j∈PT1

∑
pk∈PT2

p j · pk

µ2





p j · pk is the Minkowski scalar product of two momenta vectors.

µ is an arbitrary scale introduced to make the expression dimensionless.



Example
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x4

p1
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p4

p3
p1+ p2+ p3+ p4 = 0

s = (p1+ p2)
2

t = (p2+ p3)
2

For F we obtain:

x2x4

(−s)

µ2
+x1x3

(−t)

µ2
+x1x4

(−p2
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µ2
+x1x2

(−p2
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+x3x4

(−p2
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µ2



Basic properites of the Symanzik polynomials

• They are homogeneous in the Feynman parameters, U is of degree l, F is of

degree l +1.

• U is linear in each Feynman parameter. If all internal masses are zero, then also

F is linear in each Feynman parameter.

• In expanded form each monomial of U has coefficient +1.



Feynman graph polynomials, part II

Definition of the Feynman graph polynomials as it is done
in the text books of physics



Feynman rules

Each part in a Feynman graph corresponds to a mathematical expression.

In the simplest version:

• Edge: i

q2−m2

• Vertex: 1

• External line: 1

• For each internal momentum not constrained by momentum conservation∫
dDk

(2π)D



Feynman integrals

A Feynman graph with m external lines, n internal lines and l loops corresponds (up to

prefactors) in D space-time dimensions to the Feynman integral

IG =
(
µ2
)n−lD/2

∫ l

∏
r=1

dDkr

iπ
D
2

n

∏
j=1

1

(−q2
j +m2

j)

The momenta flowing through the internal lines can be expressed through the

independent loop momenta k1, ..., kl and the external momenta p1, ..., pm as

qi =
l

∑
j=1

λi jk j +
m

∑
j=1

σi j p j, λi j,σi j ∈ {−1,0,1}.



Feynman parametrisation

The Feynman trick:

n

∏
j=1

1

Pj

= Γ(n)
∫

x j≥0

dnx δ(1−
n

∑
j=1

x j)
1

(
n

∑
j=1

x jPj

)n

We use this formula with Pj =−q2
j +m2

j.

We can write

n

∑
j=1

x j(−q2
j +m2

j) = −
l

∑
r=1

l

∑
s=1

krMrsks+
l

∑
r=1

2kr ·Qr + J,

where M is a l × l matrix with scalar entries and Q is a l-vector with momenta vectors

as entries.



Feynman integrals

After Feynman parametrisation the integrals over the loop momenta k1, ..., kl can be

done:

IG = Γ(n− lD/2)
∫

x j≥0

dnx δ(1−
n

∑
i=1

xi)
Un−(l+1)D/2

F n−lD/2
,

with

U = det(M), F = det(M)
(
J +QM−1Q

)
/µ2.

This provides a second definition of the Feynman graph polynomials U and F .



Remarks

IG = Γ(n− lD/2)
∫

x j≥0

dnx δ(1−
n

∑
i=1

xi)
Un−(l+1)D/2

F n−lD/2
,

• The integral over the Feynman parameters is a (n−1)-dimensional integral, where

n is the number of internal edges of the graph.

• The dimension D of space-time enters only in the exponent of the integrand.

• Singularities may arise if the zero sets of U and F intersect the region of integration.

• The exponent acts as a regularisation.



Schwinger parametrisation

Feynman parametrisation and Schwinger parametrisation are equivalent:

For Im(P)< 0 one has

1

P
= i

∞∫

0

dα e−iαP

and therefore

n

∏
j=1

1

Pj

= in
∫

α j≥0

dnα e
−i

n

∑
j=1

α jPj

But we can write this with x j = α j/λ as

n

∏
j=1

1

Pj

= in
∫

α j≥0

dnα

∞∫

0

dλ δ(λ−
n

∑
j=1

α j) e
−i

n

∑
j=1

α jPj

= in
∫

x j≥0

dnx δ(1−
n

∑
j=1

x j)

∞∫

0

dλ λn−1 e
−iλ

n

∑
j=1

x jPj

= Γ(n)

∫

x j≥0

dnx δ(1−
n

∑
j=1

x j)
1

(
n

∑
j=1

x jPj

)n



Feynman graph polynomials, part III

Definition of the Feynman graph polynomials through
the Laplacian of the graph



The matrix tree theorem

For a graph G with n edges and r vertices define the Laplacian L as a r× r-matrix with

Li j =

{

∑xk if i = j and edge ek is attached to vi and is not a self-loop,

−∑xk if i 6= j and edge ek connects vi and v j.

self-loop

Denote by L[i] the (r−1)× (r−1)-matrix obtained from L by deleting the i-th row and

column.

Matrix-tree theorem:

K = detL[i]



The all-minor matrix tree theorem

Consider a graph with n internal edges, r internal vertices

(v1, ...,vr) and m external legs.

Attach m additional vertices (vr+1, ...,vr+m) to the end of

the external legs.

Associate parameters z1, ..., zm with the external edges.

x3 x6

x2 x5

x1 x4 x7

z1

z2

z4

z3

Consider the polynomial

W (x1, ...,xn,z1, ...,zm) = det L[r+1, ...,r+m]

Expand W in polynomials homogeneous in the variables z j:

W = W (0)+W (1)+W (2)+ ...+W (m)

W (k) = ∑
1≤ j1<...< jk≤m

W
(k)
( j1,..., jk)

(x1, ...,xn) z j1...z jk



The all-minor matrix tree theorem

We then have

W (0) = 0,

U = x1...xn W
(1)
( j)

(
1

x1

, ...,
1

xn

)

for any j.

For massless particles we also have

F = x1...xn ∑
( j,k)

(
p j · pk

µ2

)

·W (2)
( j,k)

(
1

x1

, ...,
1

xn

)

This provides a third definition of the Feynman graph polynomials U and F .

This formulation is particularly well suited for computer algebra.



Feynman graph polynomials, part IV

Definition of the Feynman graph polynomials through
deletion and contraction properties



Terminology

Regular edge: Neither a self-loop nor a bridge

self-loop bridge

G/e Graph obtained from G by contracting the regular edge e,

G− e Graph obtained from G by deleting the regular edge e.

e

G G− e G/e



Deletion and contraction properties

Recursive definition of the Feynman graph polynomials for massless particles:

For any regular edge ek we have

U(G) = U(G/ek)+ xkU(G− ek),

F (G) = F (G/ek)+ xkF (G− ek).

Recursion terminates when all edges are either bridges or self-loops.

For a terminal form we have

U = xr...xn, F = xr...xn

r−1

∑
j=1

x j

(

−q2
j

µ2

)

,

where we labelled the edges, which are bridges from 1 to (r−1), and the ones which

are self-loops from r to n.

q j is the momentum flowing throught the bridge j.



Dodgson’s identity

Let A be a n×n matrix.

A[i] (n−1)× (n−1) matrix obtained from A by deleting the i-th row and column

A[i; j] (n−1)× (n−1) matrix obtained from A by deleting the i-th row and the j-th column

A[i, j] (n−2)× (n−2) matrix obtained from A by deleting the rows and columns i and j

Dodgson’s identity reads:

det (A)det(A[i, j]) = det(A[i])det(A[ j])−det (A[i; j])det(A[ j; i])



Factorisation theorems

Let ea and eb be two regular edges, which share a common vertex.

From Dodgson’s identity one obtains the following factorisation theorems
(for massless particles):

U (G/ea− eb)U (G/eb− ea)−U (G− ea− eb)U (G/ea/eb) =

(
∆1

xaxb

)2

,

U (G/ea− eb)F (G/eb− ea)−U (G− ea− eb)F (G/ea/eb)

+F (G/ea− eb)U (G/eb− ea)−F (G− ea− eb)U (G/ea/eb) = 2

(
∆1

xaxb

)(
∆2

xaxb

)

.

If for all external momenta one has (pi1 · pi2) · (pi3 · pi4) = (pi1 · pi3) · (pi2 · pi4) , then

F (G/ea− eb)F (G/eb− ea)−F (G− ea− eb)F (G/ea/eb) =

(
∆2

xaxb

)2

.



Remarks

• Factorisation theorems can be used for the computation of Feynman integrals.

• ∆1 and ∆2 can be expressed as sums over 2-forests and 3-forests, respectively.

• Generalisation to matroid theory.



Summary on Feynman graph polynomials

• Feynman graph polynomials define the integrand of a Feynman integral.

The zero sets of the polynomials are related to the divergences of the integral.

• Feynman graph polynomials are related to spanning trees and spanning forests of

the corresponding graph.

• Feynman graph polynomials are related to the Laplacian of the graph.

• Feynman graph polynomials have a recursive definition based on deletion and

contraction.

Factorisation theorems can be exploited in computational algorithms.



Part II

Feynman integrals and multiple polylogarithms



Feynman integrals

IG = Γ(n− lD/2)
∫

x j≥0

dnx δ(1−
n

∑
i=1

xi)
Un−(l+1)D/2

F n−lD/2
,

U is a homogeneous polynomial in the Feynman parameters of degree l, positive

definite inside the integration region and positive semi-definite on the boundary.

F is a homogeneous polynomial in the Feynman parameters of degree l + 1 and

depends in addition on the masses m2
i and the momenta (pi1 + ...+ pir)

2.

In the euclidean region it is also positive definite inside the integration region and

positive semi-definite on the boundary.

Laurent expansion in ε = (4−D)/2:

IG =
∞

∑
j=−2l

c jε
j.



One-loop amplitudes

All one-loop amplitudes can be expressed as a sum of algebraic functions of the spinor

products and masses times two transcendental functions, whose arguments are again

algebraic functions of the spinor products and the masses.

The two transcendental functions are the logarithm and the dilogarithm:

Li1(x) = − ln(1− x) =
∞

∑
n=1

xn

n

Li2(x) =
∞

∑
n=1

xn

n2



Generalisations of the logarithm

Beyond one-loop, at least the following generalisations occur:

Polylogarithms:

Lim(x) =
∞

∑
n=1

xn

nm

Multiple polylogarithms (Goncharov 1998):

Lim1,m2,...,mk
(x1,x2, ...,xk) =

∞

∑
n1>n2>...>nk>0

x
n1
1

n
m1
1

· x
n2
2

n
m2
2

· ... · x
nk
k

n
mk
k

This is a nested sum:

...
n j−1−1

∑
n j=1

x
n j

j

n j
m j

n j−1

∑
n j+1=1

...



Multiple ζ-values

The values of the multiple polylogarithms at x1 = ...xk = 1 are called multiple ζ-values:

ζm1,...,mk
= Lim1,m2,...,mk

(1,1, ...,1)

=
∞

∑
n1>n2>...>nk>0

1

n
m1
1

· 1

n
m2
2

· ... · 1

n
mk
k



Multiplication

Multiple polylogarithms obey an algebra:

Lim1,m2
(x1,x2) ·Lim3

(x3) =

= Lim1,m2,m3
(x1,x2,x3)+Lim1,m3,m2

(x1,x3,x2)+Lim3,m1,m2
(x3,x1,x2)

+Lim1,m2+m3
(x1,x2x3)+Lim1+m3,m2

(x1x3,x2)

Pictorial representation:

x1

x2

x3

=
x1

x2

x3

+
x1

x3

x2

+
x3

x1

x2

+
x1

x2x3 +
x1x3

x2

The multiplication law corresponds to a quasi-shuffle algebra (Hoffman ‘99),

also called stuffle algebra (Broadhurst), mixed shuffle algebra (Guo)

or mould symmetrel (Ecalle).



Hopf algebras

The multiple polylogarithms form actually a Hopf algebra.

• An algebra has a multiplication · and a unit e.

• A coalgebra has a comultiplication ∆ and a counit ē.

∆

( x1

x2

x3

)

= 1⊗
x1

x2

x3

+ x3 ⊗ x1

x2
+

x2

x3
⊗ x1 +

x1

x2

x3

⊗1.

• A Hopf algebra is an algebra and a coalgebra at the same time, such that the two

structures are compatible with each other.

In addition, there is an antipode S.



Iterated integrals

Define the functions G by

G(z1, ...,zk;y) =

y∫

0

dt1

t1− z1

t1∫

0

dt2

t2− z2

...

tk−1∫

0

dtk

tk− zk

.

Scaling relation:

G(z1, ...,zk;y) = G(xz1, ...,xzk;xy)

Short hand notation:

Gm1,...,mk
(z1, ...,zk;y) = G(0, ...,0

︸ ︷︷ ︸
m1−1

,z1, ...,zk−1,0...,0︸ ︷︷ ︸
mk−1

,zk;y)

Conversion to multiple polylogarithms:

Lim1,...,mk
(x1, ...,xk) = (−1)kGm1,...,mk

(
1

x1

,
1

x1x2

, ...,
1

x1...xk

;1

)

.



Shuffle algebra

The functions G(z1, ...,zk;y) fulfill a shuffle algebra.

Example:

G(z1,z2;y)G(z3;y) = G(z1,z2,z3;y)+G(z1,z3,z2;y)+G(z3,z1,z2;y)

This algebra is different from the quasi-shuffle algebra already encountered and

provides the second Hopf algebra for multiple polylogarithms.

A shuffle algebra is also called a mould symmetral (Ecalle).



Shuffle algebra versus quasi-shuffle algebra

Quasi-shuffle algebra from the sum representation:

Lim1
(x1)Lim2

(x2) = Lim1,m2
(x1,x2)+Lim2,m1

(x2,x1)+Lim1+m2
(x1x2).

✲

✻

i1

i2

=
✲

✻

i1

i2

+
✲

✻

i1

i2

+
✲

✻

i1

i2

Shuffle algebra from the integral representation:

G(z1;y)G(z2;y) = G(z1,z2;y)+G(z2,z1;y)

✲

✻

t1

t2

=
✲

✻

t1

t2

+
✲

✻

t1

t2



Mellin-Barnes

Mellin-Barnes transformation:

(A1+A2+ ...+An)
−c =

1

Γ(c)

1

(2πi)n−1

i∞∫

−i∞

dσ1...

i∞∫

−i∞

dσn−1

×Γ(−σ1)...Γ(−σn−1)Γ(σ1+ ...+σn−1+ c) A
σ1
1 ...A

σn−1

n−1 A−σ1−...−σn−1−c
n

The contour is such that the poles of Γ(−σ) are to the right and the poles of Γ(σ+ c)
are to the left.

Converts a sum into products and is therefore the “inverse” of Feynman

parametrization.

Smirnov; Tausk; Davydychev; Bierenbaum, S.W.; Czakon; Anastasiou, Daleo; Gluza, Kajda, Riemann;



Higher transcendental functions

More generally, we get the following types of infinite sums:

• Type A:
∞

∑
i=0

Γ(i+a1)...Γ(i+ak)

Γ(i+a′1)...Γ(i+a′k)
xi

Example: Hypergeometric functions J+1FJ (up to prefactors).

• Type B:
∞

∑
i=0

∞

∑
j=0

Γ(i+a1)...Γ(i+ak)

Γ(i+a′1)...Γ(i+a′k)
Γ( j+b1)...Γ( j+bl)

Γ( j+b′1)...Γ( j+b′l)
Γ(i+ j+ c1)...Γ(i+ j+ cm)

Γ(i+ j+ c′1)...Γ(i+ j+ c′m)
xiy j

Example: First Appell function F1.

• Type C:
∞

∑
i=0

∞

∑
j=0

(
i+ j

j

)
Γ(i+a1)...Γ(i+ak)

Γ(i+a′1)...Γ(i+a′k)
Γ(i+ j+ c1)...Γ(i+ j+ cm)

Γ(i+ j+ c′1)...Γ(i+ j+ c′m)
xiy j

Example: Kampé de Fériet function S1.

• Type D:
∞

∑
i=0

∞

∑
j=0

(
i+ j

j

)
Γ(i+a1)...Γ(i+ak)

Γ(i+a′1)...Γ(i+a′k)
Γ( j+b1)...Γ( j+bl)

Γ( j+b′1)...Γ( j+b′l)
Γ(i+ j+ c1)...Γ(i+ j+ cm)

Γ(i+ j+ c′1)...Γ(i+ j+ c′m)
xiy j

Example: Second Appell function F2.

All a, b, c’s are of the form “integer + const · ε”.



Introducing nested sums

• Definition of Z-sums:

Z(n;m1, ...,mk;x1, ...,xk) = ∑
n≥i1>i2>...>ik>0

x
i1
1

i
m1
1

x
i2
2

i
m2
2

...
x

ik
k

i
mk
k

.

• Multiple polylogarithms (n = ∞) are a special subset

Lim1,...,mk
(x1, ...,xk) =

∞

∑
i1>i2>...>ik>0

x
i1
1

i
m1
1

x
i2
2

i
m2
2

...
x

ik
k

i
mk
k

• Euler-Zagier sums (x1 = ...= xk = 1) are a special subset

Zm1,...,mk
(n) =

n

∑
i1>i2>...>ik>0

1

i
m1
1

1

i
m2
2

...
1

i
mk

k

• Multiple ζ-values (n = ∞,x1 = ...= xk = 1) are a special subset

ζm1,...,mk
=

∞

∑
i1>i2>...>ik>0

1

i
m1
1

1

i
m2
2

...
1

i
mk

k



Expansion of Gamma functions

Euler-Zagier sums (or harmonic sums) occur in the expansion for Γ functions: For

positive integers n we have

Γ(n+ ε) = Γ(1+ ε)Γ(n)

·
(
1+ εZ1(n−1)+ ε2Z11(n−1)+ ε3Z111(n−1)+ ...+ εn−1Z11...1(n−1)

)
.

Z-sums interpolate between Goncharov’s multiple polylogarithms and Euler-Zagier

sums.



Algorithms

Multiplication:

Z(n;m1, ...;x1, ...) ·Z(n;m′
1, ...;x′1, ...)

Convolution: Sums involving i and n− i

n−1

∑
i=1

xi
1

im1
Z(i−1;m2...;x2, ...)

x′1
n−i

(n− i)m′
1

Z(n− i−1;m′
2, ...;x′2, ...)

Conjugations:

−
n

∑
i=1

(
n

i

)

(−1)i xi
0

im0
Z(i;m1, ...,mk;x1, ...,xk)

Conjugation and convolution: Sums involving binomials and n− i

−
n−1

∑
i=1

(
n

i

)

(−1)i xi
1

im1
Z(i;m2...;x2, ...)

x′1
n−i

(n− i)m′
1

Z(n− i;m′
2, ...;x′2, ...)

(Moch, Uwer, S.W., ’01)



The two-loop two-point function

p

ν1 ν2

ν3ν4

ν5

(1−2ε) Î(2,5)(2− ε,1+ ε,1+ ε,1+ ε,1+ ε,1+ ε) =

6ζ3+9ζ4ε+372ζ5ε2+
(
915ζ6 −864ζ3

2
)

ε3

+(18450ζ7−2592ζ4ζ3)ε4+(50259ζ8 −76680ζ5ζ3−2592ζ6,2)ε5

+
(
905368ζ9−200340ζ6ζ3−130572ζ5ζ4+66384ζ3

3
)

ε6

+O(ε7).

Theorem: Multiple zeta values are sufficient for the Laurent expansion of the two-loop

integral Î(2,5)(m− ε,ν1,ν2,ν3,ν4,ν5), if all powers of the propagators are of the form

ν j = n j + a jε, where the n j are positive integers and the a j are non-negative real

numbers.

I. Bierenbaum, S.W., (2003)



Part III

Feynman integrals and elliptic curves



Periodic functions

Let us consider a non-constant meromorphic function f of a complex variable z.

A period ω of the function f is a constant such that for all z:

f (z+ω) = f (z)

The set of all periods of f forms a lattice, which is either

• trivial (i.e. the lattice consists of ω = 0 only),

• a simple lattice, Λ = {nω | n ∈ Z},

• a double lattice, Λ = {n1ω1+n2ω2 | n1,n2 ∈ Z}.



Examples of periodic functions

• Singly periodic function: Exponential function

exp(z) .

exp(z) is periodic with peridod ω = 2πi.

• Doubly periodic function: Weierstrass’s ℘-function

℘(z) =
1

z2
+ ∑

ω∈Λ\{0}

(

1

(z+ω)2
− 1

ω2

)

, Λ = {n1ω1+n2ω2|n1,n2 ∈ Z} ,

Im(ω2/ω1) 6= 0.

℘(z) is periodic with periods ω1 and ω2.



Inverse functions

The corresponding inverse functions are in general multivalued functions.

• For the exponential function x = exp(z) the inverse function is the logarithm

z = ln(x) .

• For Weierstrass’s elliptic function x =℘(z) the inverse function is an elliptic integral

z =

∞∫

x

dt
√

4t3−g2t −g3

, g2 = 60 ∑
ω∈Λ\{0}

1

ω4
, g3 = 140 ∑

ω∈Λ\{0}

1

ω6
.



Periods as integrals over algebraic functions

In both examples the periods can be expressed as integrals involving only algebraic

functions.

• Period of the exponential function:

2πi = 2i

1∫

−1

dt√
1− t2

.

• Periods of Weierstrass’s ℘-function: Assume that g2 and g3 are two given algebraic

numbers. Then

ω1 = 2

t2∫

t1

dt
√

4t3−g2t −g3

, ω2 = 2

t2∫

t3

dt
√

4t3−g2t −g3

,

where t1, t2 and t3 are the roots of the cubic equation 4t3−g2t −g3 = 0.



Numerical periods

Kontsevich and Zagier suggested the following generalisation:

A numerical period is a complex number whose real and imaginary parts are values

of absolutely convergent integrals of rational functions with rational coefficients, over

domains in Rn given by polynomial inequalities with rational coefficients.

Remarks:

• One can replace “rational” with “algebraic”.

• The set of all periods is countable.

• Example: ln2 is a numerical period.

ln2 =

2∫

1

dt

t
.



Feynman integrals and periods

Laurent expansion in ε = (4−D)/2:

IG =
∞

∑
j=−2l

c jε
j.

Question: What can be said about the coefficients c j ?

Theorem: For rational input data in the euclidean region the coefficients c j of the

Laurent expansion are numerical periods.

(Bogner, S.W., ’07)

Next question: Which periods ?



Differential equations for Feynman integrals

If it is not feasible to compute the integral directly:

Pick one variable t from the set s jk and m2
i .

1. Find a differential equation for the Feynman integral.

r

∑
j=0

p j(t)
d j

dt j
IG(t) = ∑

i

qi(t)IGi
(t)

Inhomogeneous term on the rhs consists of simpler integrals IGi
.

p j(t), qi(t) polynomials in t.

2. Solve the differential equation.

Kotikov; Remiddi, Gehrmann; Laporta; Argeri, Mastrolia, S. Müller-Stach, S.W., R. Zayadeh; Henn; ...



Differential equations: The case of multiple polylogarithms

Suppose the differential operator factorises into linear factors:

r

∑
j=0

p j(t)
d j

dt j
=

(

ar(t)
d

dt
+br(t)

)

...

(

a2(t)
d

dt
+b2(t)

)(

a1(t)
d

dt
+b1(t)

)

Iterated first-order differential equation.

Denote homogeneous solution of the j-th factor by

ψ j(t) = exp



−
t∫

0

ds
b j(s)

a j(s)



 .

Full solution given by iterated integrals

IG(t) = C1ψ1(t)+C2ψ1(t)

t∫

0

dt1
ψ2(t1)

a1(t1)ψ1(t1)
+C3ψ1(t)

t∫

0

dt1
ψ2(t1)

a1(t1)ψ1(t1)

t1∫

0

dt2
ψ3(t2)

a2(t2)ψ2(t2)
+ ...

Multiple polylogarithms are of this form.



Differential equations: Beyond linear factors

Suppose the differential operator

r

∑
j=0

p j(t)
d j

dt j

does not factor into linear factors.

The next more complicate case:

The differential operator contains one irreducible second-order differential operator

a j(t)
d2

dt2
+b j(t)

d

dt
+ c j(t)



An example from mathematics: Elliptic integral

The differential operator of the second-order differential equation

[

t
(
1− t2

) d2

dt2
+
(
1−3t2

) d

dt
− t

]

f (t) = 0

is irreducible.

The solutions of the differential equation are K(t) and K(
√

1− t2), where K(t) is the

complete elliptic integral of the first kind:

K(t) =

1∫

0

dx
√

(1− x2)(1− t2x2)
.



An example from physics: The two-loop sunrise integral

S
(

p2,m2
1,m

2
2,m

2
3

)
= p

m1

m2

m3

• Two-loop contribution to the self-energy of massive particles.

• Sub-topology for more complicated diagrams.



The two-loop sunrise integral: Prior art

Integration-by-parts identities allow to derive a coupled system of 4 first-order

differential equations for S and S1, S2, S3, where

Si =
∂

∂m2
i

S

(Caffo, Czyz, Laporta, Remiddi, 1998).

This system reduces to a single second-order differential equation in the case of equal

masses m1 = m2 = m3

(Broadhurst, Fleischer, Tarasov, 1993).

Dimensional recurrence relations relate integrals in D = 4 dimensions and D = 2

dimensions

(Tarasov, 1996, Baikov, 1997, Lee, 2010).

Analytic result in the equal mass case known up to quadrature, result involves elliptic

integrals

(Laporta, Remiddi, 2004).



The two-loop sunrise integral in two dimensions

The two-loop sunrise integral with non-zero masses in two-dimensions (t = p2):

S (t) = p

m1

m2

m3

=
∫

σ

ω

F
,

x1

x2

x3

σ

ω = x1dx2∧dx3+ x2dx3 ∧dx1+ x3dx1∧dx2,

F = −x1x2x3t +
(
x1m2

1 + x2m2
2+ x3m2

3

)
(x1x2 + x2x3+ x3x1)

Algebraic geometry studies the zero sets of polynomials.

In this case look at the set F = 0.



The two-loop sunrise integral

From the point of view of algebraic geometry there are two objects of interest:

• the domain of integration σ,

• the zero set X of F = 0.

X and σ intersect at three points:

x1

x2

x3

σ

X



The elliptic curve

Algebraic variety X defined by the polynomial in the denominator:

−x1x2x3t +
(
x1m2

1+ x2m2
2+ x3m2

3

)
(x1x2+ x2x3 + x3x1) = 0.

This defines (together with a choice of a rational point as origin) an elliptic curve.

Change of coordinates → Weierstrass normal form

y2z−4x3+g2(t)xz2+g3(t)z
3 = 0.

In the chart z = 1 this reduces to

y2 −4x3+g2(t)x+g3(t) = 0.

The curve varies with t. y2 = 4x3−28x+24



Abstract periods

Input:

• X a smooth algebraic variety of dimension n defined over Q,

• D ⊂ X a divisor with normal crossings (i.e. a subvariety of dimension n−1, which

looks locally like a union of coordinate hyperplanes),

• ω an algebraic differential form on X of degree n,

• σ a singular n-chain on the complex manifold X(C) with boundary on the divisor

D(C).

To each quadruple (X ,D,ω,σ) associate the period

P(X ,D,ω,σ) =
∫

σ

ω.



The motive

P: Blow-up of P2 in the three points, where X intersects σ.

Y : Strict transform of the zero set X of F = 0.

B: Total transform of {x1x2x3 = 0}.

Mixed Hodge structure:

H2 (P\Y,B\B∩Y )

(S. Bloch, H. Esnault, D. Kreimer, 2006)

We need to analyse H2(P\Y,B\B∩Y ).
We can show that essential information is given by H1(X).

(S. Müller-Stach, S.W., R. Zayadeh, 2011)



The second-order differential equation

In the Weierstrass normal form H1(X) is generated by

η =
dx

y
and η̇ =

d

dt
η.

η̈ = d2

dt2η must be a linear combination of η and η̇:

p0(t)η̈+ p1(t)η̇+ p2(t)η = 0.

Differential equation:

[

p0(t)
d2

dt2
+ p1(t)

d

dt
+ p2(t)

]

S (t) = p3(t)

p0, p1, p2 and p3 are polynomials in t.



Periods of an elliptic curve

In the Weierstrass normal form, factorise the cubic polynomial in x:

y2 = 4(x− e1)(x− e2)(x− e3) .

Holomorphic one-form is dx
y

, associated periods are

ψ1 (t) = 2

e3∫

e2

dx

y
, ψ2 (t) = 2

e3∫

e1

dx

y
.

These periods are the solutions of the homogeneous differential equation.

L. Adams, Ch. Bogner, S.W., ’13



The full result

• Once the homogeneous solutions are known, variation of the constants yields the

full result up to quadrature:

– Equal mass case: Laporta, Remiddi, ’04

– Unequal mass case: L. Adams, Ch. Bogner, S.W., ’13

• The full result can be expressed in terms of elliptic dilogarithms:

– Equal mass case: Bloch, Vanhove, ’13

– Unequal mass case: L. Adams, Ch. Bogner, S.W., ’14



The elliptic dilogarithm

Recall the definition of the classical polylogarithms:

Lin (x) =
∞

∑
j=1

x j

jn
.

Generalisation, the two sums are coupled through the variable q:

ELin;m (x;y;q) =
∞

∑
j=1

∞

∑
k=1

x j

jn

yk

km
q jk.

Elliptic dilogarithm:

E2;0 (x;y;q) =
1

i

[
1

2
Li2 (x)−

1

2
Li2
(
x−1
)
+ELi2;0 (x;y;q)−ELi2;0

(
x−1;y−1;q

)
]

.

(Slightly) different definitions of elliptic polylogarithms can be found in the literature

Beilinson ’94, Levin ’97, Brown, Levin ’11, Wildeshaus ’97.



Elliptic curves again

The nome q is given by

q = eiπτ with τ =
ψ2

ψ1

= i
K(k′)

K(k)
.

Elliptic curve represented by

x1

x2

x3

X

Algebraic variety

F = 0

x

y

Weierstrass normal form

y2 = 4x3 −g2x−g3

Re z

Im z

Torus

C/Λ

Re w

Im w

Jacobi uniformization

C∗/q2Z



The arguments of the elliptic dilogarithms

Elliptic curve: Cubic curve together with a choice of a rational point as the origin O.

Distinguished points are the points on the intersection of the cubic curve F = 0 with

the domain of integration σ:

P1 = [1 : 0 : 0] , P2 = [0 : 1 : 0] , P3 = [0 : 0 : 1] .

Choose one of these three points as origin and look at the image of the two other

points in the Jacobi uniformization C∗/q2Z of the elliptic curve. Repeat for the two

other choices of the origin. This defines

w1,w2,w3,w
−1
1 ,w−1

2 ,w−1
3 .

In other words: w1,w2,w3,w
−1
1 ,w−1

2 ,w−1
3 are the images of P1, P2, P3 under

Ei −→ WNF −→ C/Λ −→ C∗/q2Z.



The full result in terms of elliptic dilogarithms

The result for the two-loop sunrise integral in two space-time dimensions with arbitrary

masses:

S =
4

[(
t −µ2

1

)(
t −µ2

2

)(
t −µ2

3

)(
t −µ2

4

)]1
4

︸ ︷︷ ︸

algebraic prefactor

K (k)

π

︸ ︷︷ ︸

elliptic integral

3

∑
j=1

E2;0 (w j;−1;−q)

︸ ︷︷ ︸

elliptic dilogarithms

t momentum squared

µ1,µ2,µ3 pseudo-thresholds

µ4 threshold

K(k) complete elliptic integrals of the first kind

k,q modulus and nome

w1,w2,w3 points in the Jacobi uniformization



Summary

• Feynman integrals and multiple polylogarithms:

Algebraic structure based on

– nested sums,

– iterated integrals

• Feynman integrals beyond multiple polylogarithms:

Elliptic case:

– Algebraic prefactors as before.

– Elliptic integrals generalise the period π.

– Elliptic (multiple) polylogarithms generalise the (multiple) polylogarithms.

– Arguments of the elliptic polylogarithms are points in the Jacobi uniformization of

the elliptic curve.


