Noncommutative geometry of generalized Weyl algebras

Tomasz Brzeziński

Swansea University & University of Białystok

Nijmegen 2016

References:

TB, N Ciccoli, L Dąbrowski & A Sitarz, *Twisted reality* condition for Dirac operators, arXiv:1601.07404
TB, *Noncommutative differential geometry of generalized* Weyl algebras, arXiv:1602.07456.

Outline

- In 2008 Connes and Moscovici introduced twisted Dirac operators (commutators replaced by twisted commutators).
- In 2016 Landi and Martinetti studied twisted real spectral triples.
- TB, N Ciccoli, L Dąbrowski and A Sitarz observed that even for an untwisted Dirac operator, the real structure could (or even should) be twisted.
- Quantum generalized Weyl algebras (introduced by Bavula in 1996) serve as examples of algebras which enforce the reality to be twisted.

(ロ) (同) (三) (三) (三) (○) (○)

Outline

- In 2008 Connes and Moscovici introduced twisted Dirac operators (commutators replaced by twisted commutators).
- In 2016 Landi and Martinetti studied twisted real spectral triples.
- TB, N Ciccoli, L Dąbrowski and A Sitarz observed that even for an untwisted Dirac operator, the real structure could (or even should) be twisted.
- Quantum generalized Weyl algebras (introduced by Bavula in 1996) serve as examples of algebras which enforce the reality to be twisted.

(ロ) (同) (三) (三) (三) (○) (○)

Outline

- In 2008 Connes and Moscovici introduced twisted Dirac operators (commutators replaced by twisted commutators).
- In 2016 Landi and Martinetti studied twisted real spectral triples.
- TB, N Ciccoli, L Dąbrowski and A Sitarz observed that even for an untwisted Dirac operator, the real structure could (or even should) be twisted.
- Quantum generalized Weyl algebras (introduced by Bavula in 1996) serve as examples of algebras which enforce the reality to be twisted.

(ロ) (同) (三) (三) (三) (○) (○)

Reality twisted by an automorphism

Let *B* be a complex *-algebra, (H, π) a representation of *B*, *D* a linear operator on *H*, let ν be a linear automorphism of *H*. Set

$$\overline{\nu}: \operatorname{End}(H) \to \operatorname{End}(H), \qquad \phi \mapsto \nu \circ \phi \circ \nu^{-1}.$$

(B, H, D) admits a ν -twisted real structure if there exists an anti-linear map $J : H \rightarrow H$ such that $J^2 = \epsilon$ id, and, for all $a, b \in B$,

$$[\pi(a), J\pi(b)J^{-1}] = 0,$$

$$[D, \pi(a)]J\bar{\nu}^{2}(\pi(b))J^{-1} = J\pi(b)J^{-1}[D, \pi(a)],$$

$$DJ\nu = \epsilon'\nu JD,$$

$$\nu J\nu = J,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $\epsilon, \epsilon' \in \{+, -\}$.

Reality twisted by an automorphism

Let *B* be a complex *-algebra, (H, π) a representation of *B*, *D* a linear operator on *H*, let ν be a linear automorphism of *H*. Set

$$\overline{\nu}: \operatorname{End}(H) \to \operatorname{End}(H), \qquad \phi \mapsto \nu \circ \phi \circ \nu^{-1}.$$

(B, H, D) admits a ν -twisted real structure if there exists an anti-linear map $J : H \rightarrow H$ such that $J^2 = \epsilon$ id, and, for all $a, b \in B$,

$$[\pi(a), J\pi(b)J^{-1}] = 0,$$

 $[D, \pi(a)]J\bar{\nu}^2(\pi(b))J^{-1} = J\pi(b)J^{-1}[D, \pi(a)],$
 $DJ\nu = \epsilon'\nu JD,$
 $\nu J\nu = J,$

(日) (日) (日) (日) (日) (日) (日)

where $\epsilon, \epsilon' \in \{+, -\}$.

Reality twisted by an automorphism

If (B, H, D) admits a grading operator $\gamma : H \rightarrow H$,

$$\gamma^2 = \mathrm{id}, \qquad [\gamma, \pi(a)] = 0, \qquad \gamma D = -D\gamma,$$

such that

$$\nu^2 \gamma = \gamma \nu^2,$$

then the twisted real structure J is also required to satisfy

$$\gamma \boldsymbol{J} = \boldsymbol{\epsilon}'' \boldsymbol{J} \boldsymbol{\gamma},$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where ϵ'' is another sign.

- Let G be a group and A = ⊕_{g∈G}A_g be a G-graded *-algebra, and set B := A_e, where e is the neutral element of G.
- ► The grading is assumed to be compatible with the *-structure in the sense that, for all g ∈ G,

$$\mathbf{A}_{g}^{*}\subseteq \mathbf{A}_{g^{-1}},$$

so, in particular, B is a *-subalgebra of A.

• Let $G_+ \subset G$ and set

$$G_- := \{g^{-1} \mid g \in G_+\}, \quad H_{\pm} = \bigoplus_{g \in G_{\pm}} A_g, \quad H = H_+ \oplus H_-.$$

(日) (日) (日) (日) (日) (日) (日)

The definition of G_{-} ensures that $H_{\pm}^* \subseteq H_{\mp}$.

- Let G be a group and A = ⊕_{g∈G}A_g be a G-graded *-algebra, and set B := A_e, where e is the neutral element of G.
- ► The grading is assumed to be compatible with the *-structure in the sense that, for all g ∈ G,

$$A_g^* \subseteq A_{g^{-1}},$$

so, in particular, *B* is a *-subalgebra of *A*.

• Let $G_+ \subset G$ and set

$$G_- := \{g^{-1} \mid g \in G_+\}, \quad H_{\pm} = \bigoplus_{g \in G_{\pm}} A_g, \quad H = H_+ \oplus H_-.$$

(日) (日) (日) (日) (日) (日) (日)

The definition of G_{-} ensures that $H_{\pm}^* \subseteq H_{\mp}$.

- Let G be a group and A = ⊕_{g∈G}A_g be a G-graded *-algebra, and set B := A_e, where e is the neutral element of G.
- ► The grading is assumed to be compatible with the *-structure in the sense that, for all g ∈ G,

$$A_g^* \subseteq A_{g^{-1}},$$

so, in particular, *B* is a *-subalgebra of *A*.

• Let $G_+ \subset G$ and set

$$G_{-}:=\{g^{-1}\mid g\in G_{+}\},\quad H_{\pm}=\bigoplus_{g\in G_{\pm}}A_{g},\quad H=H_{+}\oplus H_{-}.$$

(日) (日) (日) (日) (日) (日) (日)

The definition of G_{-} ensures that $H_{\pm}^* \subseteq H_{\mp}$.

Let v be a graded (i.e. degree preserving) algebra automorphism of A that satisfies

 $\nu \circ * \circ \nu = *.$

► Let ∂_{\pm} : $A \to A$ be ν^2 -twisted $q^{\pm 2}$ -skew derivations of A, i.e. $\partial_{\pm}(ab) = \partial_{\pm}(a)\nu^2(b) + a\partial_{\pm}(b),$

and

$$\nu \circ \partial_{\pm} \circ \nu^{-1} = \boldsymbol{q}^{\pm 2} \, \partial_{\pm},$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

for a real number q.

Let v be a graded (i.e. degree preserving) algebra automorphism of A that satisfies

 $\nu \circ * \circ \nu = *.$

► Let ∂_{\pm} : $A \to A$ be ν^2 -twisted $q^{\pm 2}$ -skew derivations of A, i.e. $\partial_{\pm}(ab) = \partial_{\pm}(a)\nu^2(b) + a\partial_{\pm}(b),$

and

$$\nu \circ \partial_{\pm} \circ \nu^{-1} = \boldsymbol{q}^{\pm 2} \, \partial_{\pm},$$

(日) (日) (日) (日) (日) (日) (日)

for a real number q.

Assume that ∂_± are compatible with the *-structure, automorphism ν and the grading, i.e. that

$$\nu\left(\partial_{\pm}(\boldsymbol{a})^*\right) = \nu^{-1}\left(\partial_{\mp}(\boldsymbol{a}^*)\right).$$

and

$$\partial_{\pm}(H_{\mp}) \subseteq H_{\pm},$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

View *H* as a left *B*-module by $\pi(a)(h_1) = u^2(a)h_2 \qquad \text{for all } a \in B, h_2 \in H_2$

 Assume that ∂_± are compatible with the *-structure, automorphism ν and the grading, i.e. that

$$\nu\left(\partial_{\pm}(\boldsymbol{a})^*\right) = \nu^{-1}\left(\partial_{\mp}(\boldsymbol{a}^*)\right).$$

and

$$\partial_{\pm}(H_{\mp}) \subseteq H_{\pm},$$

View H as a left B-module by

 $\pi(a)(h_{\pm}) = \nu^2(a)h_{\pm}, \quad \text{for all } a \in B, \ h_{\pm} \in H_{\pm}.$

Define:

the ("q-Dolbeault") Dirac operator:

$$D: H \to H,$$
 $(h_+, h_-) \mapsto \left(-q^{-1}\partial_+(h_-), q\partial_-(h_+)\right),$

the grading operator:

$$\gamma: H \to H, \qquad (h_+, h_-) \mapsto (h_+, -h_-).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Then

$$J: H \to H, \qquad (h_+, h_-) \mapsto \left(-h_-^*, h_+^*\right),$$

equips (B, H, D) with a ν -twisted real structure.

A first-order differential calculus on A is an A-bimodule Ω with a K-linear map d : A → Ω such that

(a) *d* satisfies the Leibniz rule: for all $a, b \in A$,

$$d(ab) = d(a)b + ad(b);$$

(b) Ω satisfies the *density condition*: $\Omega = Ad(A)$.

If A is a complex *-algebra, then the calculus (Ω, d) is said to be a *-*calculus* provided Ω is equipped with an anti-linear operation * such that, for all a, b ∈ A, ω ∈ Ω,

$$(a\omega b)^* = b^*\omega^*a^*$$
 and $d(a^*) = d(a)^*$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Fix a finite indexing set *I*, and let (∂_i, ν_i), i ∈ *I*, be a collection of skew derivations on an algebra *A*.
- Let Ω be a free left *A*-module with a free basis ω_i , $i \in I$.
- Define the (free) right A-module structure on Ω by setting

$$\omega_i \mathbf{a} := \nu_i(\mathbf{a})\omega_i.$$

Then the map

$$d: \mathcal{A} \to \Omega, \qquad a \mapsto \sum_{i \in I} \partial_i(a) \omega_i,$$
 (1)

(ロ) (同) (三) (三) (三) (○) (○)

satisfies the Leibniz rule.

- Fix a finite indexing set *I*, and let (∂_i, ν_i), i ∈ *I*, be a collection of skew derivations on an algebra *A*.
- Let Ω be a free left *A*-module with a free basis ω_i , $i \in I$.
- Define the (free) right A-module structure on Ω by setting

$$\omega_i \mathbf{a} := \nu_i(\mathbf{a})\omega_i.$$

Then the map

$$d: \mathcal{A} \to \Omega, \qquad a \mapsto \sum_{i \in I} \partial_i(a) \omega_i,$$
 (1)

(ロ) (同) (三) (三) (三) (○) (○)

satisfies the Leibniz rule.

- Fix a finite indexing set *I*, and let (∂_i, ν_i), i ∈ *I*, be a collection of skew derivations on an algebra *A*.
- Let Ω be a free left *A*-module with a free basis ω_i , $i \in I$.
- Define the (free) right A-module structure on Ω by setting

$$\omega_i \boldsymbol{a} := \nu_i(\boldsymbol{a})\omega_i.$$

Then the map

$$d: \mathcal{A} \to \Omega, \qquad a \mapsto \sum_{i \in I} \partial_i(a) \omega_i,$$
 (1)

(ロ) (同) (三) (三) (三) (○) (○)

satisfies the Leibniz rule.

- Fix a finite indexing set *I*, and let (∂_i, ν_i), i ∈ *I*, be a collection of skew derivations on an algebra *A*.
- Let Ω be a free left *A*-module with a free basis ω_i , $i \in I$.
- Define the (free) right A-module structure on Ω by setting

$$\omega_i \mathbf{a} := \nu_i(\mathbf{a})\omega_i.$$

Then the map

$$d: \mathcal{A} \to \Omega, \qquad a \mapsto \sum_{i \in I} \partial_i(a) \omega_i,$$
 (1)

(ロ) (同) (三) (三) (三) (○) (○)

satisfies the Leibniz rule.

- Fix a finite indexing set *I*, and let (∂_i, ν_i), i ∈ *I*, be a collection of skew derivations on an algebra *A*.
- Let Ω be a free left *A*-module with a free basis ω_i , $i \in I$.
- Define the (free) right A-module structure on Ω by setting

$$\omega_i \mathbf{a} := \nu_i(\mathbf{a})\omega_i.$$

Then the map

$$d: \mathcal{A} \to \Omega, \qquad a \mapsto \sum_{i \in I} \partial_i(a) \omega_i,$$
 (1)

(ロ) (同) (三) (三) (三) (○) (○)

satisfies the Leibniz rule.

Generalized Weyl algebras

[Bavula] Let A be an algebra, σ an automorphism of A and p an element of the centre of A. A degree-one generalized Weyl algebra over A is an algebraic extension A(p, σ) of A obtained by supplementing A with additional generators x, y subject to the following relations

$$yx = \sigma(p), \quad xy = p, \quad ya = \sigma(a)y, \quad xa = \sigma^{-1}(a)x.$$

The algebras A(p, σ) share many properties with A, in particular, if A is a Noetherian algebra, so is A(p, σ), and if A is a domain and p ≠ 0, so is A(p, σ).

Generalized Weyl algebras

[Bavula] Let A be an algebra, σ an automorphism of A and p an element of the centre of A. A degree-one generalized Weyl algebra over A is an algebraic extension A(p, σ) of A obtained by supplementing A with additional generators x, y subject to the following relations

$$yx = \sigma(p)$$
, $xy = p$, $ya = \sigma(a)y$, $xa = \sigma^{-1}(a)x$.

The algebras A(p, σ) share many properties with A, in particular, if A is a Noetherian algebra, so is A(p, σ), and if A is a domain and p ≠ 0, so is A(p, σ).

(日) (日) (日) (日) (日) (日) (日)

Generalized Weyl *-algebras over $\mathbb{C}[z]$

- If A = C[z], then every automorphism σ of A necessarily takes the form σ(z) = qz + r, for q, r ∈ C, q ≠ 0.
- ► Any generalized Weyl algebra over C[z] coincides with an algebra B(p; q, r) generated by x, y, z subject to the relations

$$yx = p(qz + r),$$
 $xy = p(z),$
 $yz = (qz + r)y,$ $xz = q^{-1}(z - r)x,$

where $p(z) \in \mathbb{C}[z]$ and $q, r \in \mathbb{K}, q \neq 0$.

If p has real coefficients and q, r ∈ ℝ, then B(p; q, r) can be made into *-algebra by setting

$$x^* = y, \qquad z^* = z.$$

B(p; q, r) can be understood as coordinate algebras of noncommutative surfaces, for example quantum spheres or quantum weighted projective lines (spindles).

Generalized Weyl *-algebras over $\mathbb{C}[z]$

- If A = C[z], then every automorphism σ of A necessarily takes the form σ(z) = qz + r, for q, r ∈ C, q ≠ 0.
- ► Any generalized Weyl algebra over C[z] coincides with an algebra B(p; q, r) generated by x, y, z subject to the relations

$$yx = p(qz + r),$$
 $xy = p(z),$
 $yz = (qz + r)y,$ $xz = q^{-1}(z - r)x,$

where $p(z) \in \mathbb{C}[z]$ and $q, r \in \mathbb{K}, q \neq 0$.

If p has real coefficients and q, r ∈ ℝ, then B(p; q, r) can be made into *-algebra by setting

$$x^* = y, \qquad z^* = z.$$

B(p; q, r) can be understood as coordinate algebras of noncommutative surfaces, for example quantum spheres or quantum weighted projective lines (spindles).

Generalized Weyl *-algebras over $\mathbb{C}[z]$

- If A = C[z], then every automorphism σ of A necessarily takes the form σ(z) = qz + r, for q, r ∈ C, q ≠ 0.
- ► Any generalized Weyl algebra over C[z] coincides with an algebra B(p; q, r) generated by x, y, z subject to the relations

$$yx = p(qz + r),$$
 $xy = p(z),$
 $yz = (qz + r)y,$ $xz = q^{-1}(z - r)x,$

where $p(z) \in \mathbb{C}[z]$ and $q, r \in \mathbb{K}, q \neq 0$.

If p has real coefficients and q, r ∈ ℝ, then B(p; q, r) can be made into *-algebra by setting

$$x^* = y, \qquad z^* = z.$$

 B(p; q, r) can be understood as coordinate algebras of noncommutative surfaces, for example quantum spheres or quantum weighted projective lines (spindles).

Regular gen. Weyl algebras

Definition

Let \mathbb{K} be a field of characteristic 0, $q \in \mathbb{K}$, and let p(z) be a polynomial in one variable with coefficients from \mathbb{K} . Let

$$p_q(z) := \frac{p(qz) - p(z)}{(q-1)z},$$

denote the *q*-derivative of *p*. We say that *p* is a *q*-separable polynomial if p(z) is coprime with $p_q(z)$.

Definition

A generalized Weyl algebra $\mathcal{B}(p; q, r)$ is said to be *regular* provided r = 0 and p is a q-separable polynomial.

(日) (日) (日) (日) (日) (日) (日)

Regular gen. Weyl algebras

Definition

Let \mathbb{K} be a field of characteristic 0, $q \in \mathbb{K}$, and let p(z) be a polynomial in one variable with coefficients from \mathbb{K} . Let

$$p_q(z) := \frac{p(qz) - p(z)}{(q-1)z},$$

denote the *q*-derivative of *p*. We say that *p* is a *q*-separable polynomial if p(z) is coprime with $p_q(z)$.

Definition

A generalized Weyl algebra $\mathcal{B}(p; q, r)$ is said to be *regular* provided r = 0 and p is a q-separable polynomial.

Quantum cones and teardrop-like gen. Weyl algebras

- In a regular gen. Weyl algebra B(p; q, 0), either
 (a) p(0) ≠ 0 or
 - (b) p has a simple root at z = 0.
- Quantum cone algebras

$$\mathcal{O}(C_q^N) = \mathcal{B}(\prod_{l=0}^{N-1} (1 - q^{-2l}z); q^{2N}, 0),$$

are examples of generalized Weyl algebras in class (a).

Algebras in class (b) include quantum teardrop algebras

$$\mathcal{B}(z\prod_{l=0}^{N-1}(1-q^{-2l}z);q^{2N},0).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Quantum cones and teardrop-like gen. Weyl algebras

- ► In a regular gen. Weyl algebra $\mathcal{B}(p; q, 0)$, either
 - (a) $p(0) \neq 0$ or
 - (b) p has a simple root at z = 0.
- Quantum cone algebras

$$\mathcal{O}(C_q^N) = \mathcal{B}(\prod_{l=0}^{N-1} (1-q^{-2l}z); q^{2N}, 0),$$

are examples of generalized Weyl algebras in class (a).

Algebras in class (b) include quantum teardrop algebras

$$\mathcal{B}(z\prod_{l=0}^{N-1}(1-q^{-2l}z);q^{2N},0).$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Quantum cones and teardrop-like gen. Weyl algebras

- ► In a regular gen. Weyl algebra $\mathcal{B}(p; q, 0)$, either
 - (a) $p(0) \neq 0$ or
 - (b) p has a simple root at z = 0.
- Quantum cone algebras

$$\mathcal{O}(C_q^N) = \mathcal{B}(\prod_{l=0}^{N-1} (1-q^{-2l}z); q^{2N}, 0),$$

are examples of generalized Weyl algebras in class (a).

Algebras in class (b) include quantum teardrop algebras

$$\mathcal{B}(z\prod_{l=0}^{N-1}(1-q^{-2l}z);q^{2N},0).$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

▷ O(C¹_q) = O(D_q), the quantum disc algebra, generated by v, v*,

$$v^*v - q^2vv^* = 1 - q^2.$$

- $\mathcal{O}(D_q)$ is \mathbb{Z}_N -graded, with |v| = 1.
- ► O(C^N_q) can be identified with the degree-0 subalgebra via the embedding

$$\iota: \mathcal{O}(C_q^N) \hookrightarrow \mathcal{O}(D_q), \qquad x \mapsto v^N, \quad z \mapsto 1 - vv^*.$$

▷ O(C¹_q) = O(D_q), the quantum disc algebra, generated by v, v*,

$$v^*v - q^2vv^* = 1 - q^2.$$

- $\mathcal{O}(D_q)$ is \mathbb{Z}_N -graded, with |v| = 1.
- ► O(C^N_q) can be identified with the degree-0 subalgebra via the embedding

$$\iota: \mathcal{O}(\boldsymbol{C}_q^{N}) \hookrightarrow \mathcal{O}(\boldsymbol{D}_q), \qquad x \mapsto v^N, \quad z \mapsto 1 - vv^*.$$

▷ O(C¹_q) = O(D_q), the quantum disc algebra, generated by v, v*,

$$v^*v - q^2vv^* = 1 - q^2.$$

- $\mathcal{O}(D_q)$ is \mathbb{Z}_N -graded, with |v| = 1.
- ► O(C^N_q) can be identified with the degree-0 subalgebra via the embedding

$$\iota: \mathcal{O}(\boldsymbol{C}_q^{N}) \hookrightarrow \mathcal{O}(\boldsymbol{D}_q), \qquad x \mapsto v^N, \quad z \mapsto 1 - vv^*.$$

Define the automorphism of \mathbb{Z}_N -graded algebras

 $u: \mathcal{O}(D_q) \to \mathcal{O}(D_q), \quad v \mapsto qv, \quad v^* \mapsto q^{-1}v^*.$

Theorem

 (1) The automorphism *ν* is *-regular, i.e. *ν* ∘ * ∘ *ν* = *.
 (2) The maps ∂_± : *O*(*D_q*) → *O*(*D_q*), given by ∂₋(*ν*) = *ν**, ∂₋(*ν**) = 0, ∂₊(*ν*) = 0, ∂₊(*ν**) = q²*ν*, are degree ±2, *ν*²-twisted q^{±2}-skew derivations.
 (3) For all a ∈ *O*(*D_q*),

$$\nu\left(\partial_{\pm}(\boldsymbol{a})^*\right) = \nu^{-1}\left(\partial_{\mp}(\boldsymbol{a}^*)\right).$$

A D F A 同 F A E F A E F A Q A

Define the automorphism of \mathbb{Z}_N -graded algebras

 $u: \mathcal{O}(D_q) \to \mathcal{O}(D_q), \quad v \mapsto qv, \quad v^* \mapsto q^{-1}v^*.$

Theorem

(1) The automorphism
$$\nu$$
 is *-regular, i.e. $\nu \circ * \circ \nu = *$.
(2) The maps $\partial_{\pm} : \mathcal{O}(D_q) \to \mathcal{O}(D_q)$, given by
 $\partial_{-}(v) = v^*, \quad \partial_{-}(v^*) = 0, \qquad \partial_{+}(v) = 0, \quad \partial_{+}(v^*) = q^2 v,$
are degree $\pm 2, \nu^2$ -twisted $q^{\pm 2}$ -skew derivations.
(3) For all $a \in \mathcal{O}(D_q)$,
 $\nu (\partial_{\pm}(a)^*) = \nu^{-1} (\partial_{\mp}(a^*)).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem *Let:*

$$H_+ = \mathcal{O}(D_q)_1, \quad H_- = \mathcal{O}(D_q)_{N-1}, \qquad H = H_+ \oplus H_-,$$

and represent $\mathcal{O}(C_q^N)$ in H as

$$\pi(a)(h_{\pm}) =
u^2(\iota(a))h_{\pm}, \quad \text{ for all } a \in \mathcal{O}(C_q^N)$$

Then $(\mathcal{O}(C_q^N), H, D)$, where

$$D: H \to H, \qquad (h_+, h_-) \mapsto \left(-q^{-1}\partial_+(h_-), \ q\partial_-(h_+)\right),$$

is a KO-dim 2 spectral triple with grading $(h_+, h_-) \mapsto (h_+, -h_-)$, and ν -twisted real structure $(h_+, h_-) \mapsto (-h_-^*, h_+^*)$.

Theorem *Let:*

$$H_+ = \mathcal{O}(D_q)_1, \quad H_- = \mathcal{O}(D_q)_{N-1}, \qquad H = H_+ \oplus H_-,$$

and represent $\mathcal{O}(C_q^N)$ in H as

$$\pi(a)(h_{\pm})=
u^2(\iota(a))h_{\pm}, \qquad ext{for all } a\in \mathcal{O}(C_q^N)$$

Then $(\mathcal{O}(C_q^N), H, D)$, where

$$D: H o H, \qquad (h_+, h_-) \mapsto \left(-q^{-1}\partial_+(h_-), \ q\partial_-(h_+)
ight),$$

is a KO-dim 2 spectral triple with grading $(h_+, h_-) \mapsto (h_+, -h_-)$, and ν -twisted real structure $(h_+, h_-) \mapsto (-h_-^*, h_+^*)$.

- ► The system (∂₋, ν), (∂₊, ν) defines differential structure on O(D_q).
- The module of one-forms restricted to $\mathcal{O}(C_q^N)$ is ismorphic to

$$\Omega^1 C_q^N = \mathcal{O}(D_q)_2 \oplus \mathcal{O}(D_q)_{N-2}.$$

- ► The differential on $\mathcal{O}(C_q^N)$ can be represented by the commutator with *D*.
- ► The Dirac operator is obtained by the Clifford action on a connection on the spinor bundle $\mathcal{O}(D_q)_1 \oplus \mathcal{O}(D_q)_{N-1}$,

$$D = \triangleright \circ \nabla.$$

- ► The system (∂₋, ν), (∂₊, ν) defines differential structure on O(D_q).
- ► The module of one-forms restricted to O(C^N_q) is ismorphic to

$$\Omega^1 C_q^N = \mathcal{O}(D_q)_2 \oplus \mathcal{O}(D_q)_{N-2}.$$

- ► The differential on $\mathcal{O}(C_q^N)$ can be represented by the commutator with *D*.
- ► The Dirac operator is obtained by the Clifford action on a connection on the spinor bundle $\mathcal{O}(D_q)_1 \oplus \mathcal{O}(D_q)_{N-1}$,

$$D = \triangleright \circ \nabla.$$

- ► The system (∂₋, ν), (∂₊, ν) defines differential structure on O(D_q).
- ► The module of one-forms restricted to O(C^N_q) is ismorphic to

$$\Omega^1 C_q^N = \mathcal{O}(D_q)_2 \oplus \mathcal{O}(D_q)_{N-2}.$$

- ► The differential on O(C^N_q) can be represented by the commutator with D.
- ▶ The Dirac operator is obtained by the Clifford action on a connection on the spinor bundle $\mathcal{O}(D_q)_1 \oplus \mathcal{O}(D_q)_{N-1}$,

$$D = \triangleright \circ \nabla.$$

- ► The system (∂₋, ν), (∂₊, ν) defines differential structure on O(D_q).
- ► The module of one-forms restricted to O(C^N_q) is ismorphic to

$$\Omega^1 C_q^N = \mathcal{O}(D_q)_2 \oplus \mathcal{O}(D_q)_{N-2}.$$

- ► The differential on O(C^N_q) can be represented by the commutator with D.
- ► The Dirac operator is obtained by the Clifford action on a connection on the spinor bundle O(D_q)₁ ⊕ O(D_q)_{N-1},

$$D = \triangleright \circ \nabla.$$

► Consider regular gen. Weyl algebra B(p; q⁴, 0) with p(0) = 0 and set

$$\tilde{p}(z)=rac{p(z)}{z}.$$

Let A(p̃; q²) be an affine algebra generated by z_± and x_± subject to the relations

$$z_+z_- = z_-z_+, \quad x_+x_- = \tilde{p}(z), \quad x_-x_+ = \tilde{p}(q^4z),$$

$$x_{\pm}z_{\pm} = q^{-2}z_{\pm}x_{\pm}, \qquad x_{-}z_{\pm} = q^{2}z_{\pm}x_{-},$$

where $z = z_{-}z_{+}$.

• $\mathcal{A}(\tilde{p}; q^2)$ is a *-algebra with $z_+^* = z_-, x_+^* = x_-$.

► Consider regular gen. Weyl algebra B(p; q⁴, 0) with p(0) = 0 and set

$$\tilde{p}(z)=rac{p(z)}{z}.$$

Let A(p̃; q²) be an affine algebra generated by z_± and x_± subject to the relations

$$z_{+}z_{-}=z_{-}z_{+}, \quad x_{+}x_{-}=\tilde{p}(z), \quad x_{-}x_{+}=\tilde{p}(q^{4}z),$$

$$x_+ z_\pm = q^{-2} z_\pm x_+, \qquad x_- z_\pm = q^2 z_\pm x_-,$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

where $z = z_- z_+$.

• $\mathcal{A}(\tilde{p}; q^2)$ is a *-algebra with $z_+^* = z_-, x_+^* = x_-$.

► Consider regular gen. Weyl algebra B(p; q⁴, 0) with p(0) = 0 and set

$$\tilde{p}(z)=rac{p(z)}{z}.$$

Let A(p̃; q²) be an affine algebra generated by z_± and x_± subject to the relations

$$z_{+}z_{-}=z_{-}z_{+}, \quad x_{+}x_{-}=\widetilde{\rho}(z), \quad x_{-}x_{+}=\widetilde{\rho}(q^{4}z),$$

$$x_+ z_\pm = q^{-2} z_\pm x_+, \qquad x_- z_\pm = q^2 z_\pm x_-,$$

where $z = z_- z_+$.

• $\mathcal{A}(\tilde{p}; q^2)$ is a *-algebra with $z_+^* = z_-, x_+^* = x_-$.

◆□> <圖> < => < => < => <0 < ○</p>

.

- The algebra A(p̃; q²) is a Z-graded algebra with the grading given on the generators by |z_±| = |x_±| = ±1.
- ▶ B(p; q⁴, 0) embeds into A(p̃; q²) as the degree-zero subalgebra, by the map

$$\iota: \mathcal{B}(p; q^4, 0) \hookrightarrow \mathcal{A}(\tilde{p}; q^2), \qquad x \mapsto z_- x_+, \quad z \mapsto z_- z_+.$$

• Define the degree-preserving automorphism of $\mathcal{A}(\tilde{p}; q^2)$,

 $\nu: \mathcal{A}(\tilde{p}; q^2) \to \mathcal{A}(\tilde{p}; q^2), \quad z_{\pm} \mapsto q^{\pm 1} z_{\pm}, \quad x_{\pm} \mapsto q^{\pm 1} x_{\pm}.$

• Note that ν restricted to $\iota(\mathcal{B}(p; q^4, 0))$ is the identity map.

- The algebra A(p̃; q²) is a Z-graded algebra with the grading given on the generators by |z_±| = |x_±| = ±1.
- ▶ B(p; q⁴, 0) embeds into A(p̃; q²) as the degree-zero subalgebra, by the map

$$\iota:\mathcal{B}(\rho;q^4,0)\hookrightarrow\mathcal{A}(\tilde{\rho};q^2),\qquad x\mapsto z_-x_+,\quad z\mapsto z_-z_+.$$

• Define the degree-preserving automorphism of $\mathcal{A}(\tilde{p}; q^2)$,

 $\nu: \mathcal{A}(\tilde{\rho}; q^2) \to \mathcal{A}(\tilde{\rho}; q^2), \quad z_{\pm} \mapsto q^{\pm 1} z_{\pm}, \quad x_{\pm} \mapsto q^{\pm 1} x_{\pm}.$

• Note that ν restricted to $\iota(\mathcal{B}(p; q^4, 0))$ is the identity map.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽900

- The algebra A(p̃; q²) is a Z-graded algebra with the grading given on the generators by |z_±| = |x_±| = ±1.
- ▶ B(p; q⁴, 0) embeds into A(p̃; q²) as the degree-zero subalgebra, by the map

$$\iota:\mathcal{B}(\rho;q^4,0)\hookrightarrow\mathcal{A}(\tilde{\rho};q^2),\qquad x\mapsto z_-x_+,\quad z\mapsto z_-z_+.$$

• Define the degree-preserving automorphism of $\mathcal{A}(\tilde{p}; q^2)$,

$$\nu: \mathcal{A}(\tilde{\rho}; q^2) \to \mathcal{A}(\tilde{\rho}; q^2), \quad z_{\pm} \mapsto q^{\pm 1} z_{\pm}, \quad x_{\pm} \mapsto q^{\pm 1} x_{\pm}.$$

• Note that ν restricted to $\iota (\mathcal{B}(p; q^4, 0))$ is the identity map.

Theorem

- (1) The automorphism ν is *-regular, i.e. $\nu \circ * \circ \nu = *$.
- (2) The maps $\partial_{\pm}: \mathcal{A}(\tilde{p};q^2) \to \mathcal{A}(\tilde{p};q^2)$, given by

$$\partial_{\pm}(x_{\pm}) = \partial_{\pm}(z_{\mp}) = 0, \quad \partial_{\pm}(x_{\pm}) = c(z)z_{\mp}, \quad \partial_{\pm}(z_{\pm}) = x_{\mp},$$

where

$$c(z)=q^2rac{ ilde{p}(q^4z)- ilde{p}(z)}{(q^4-1)z},$$

are degree ∓ 2 , ν^2 -twisted $q^{\pm 2}$ -skew derivations. (3) For all $a \in \mathcal{A}(\tilde{p}; q^2)$,

$$\nu\left(\partial_{\pm}(\boldsymbol{a})^*\right) = \nu^{-1}\left(\partial_{\mp}(\boldsymbol{a}^*)\right).$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem *Let:*

$$H_+ = \mathcal{A}(\tilde{p}; q^2)_{-1}, \quad H_- = \mathcal{A}(\tilde{p}; q^2)_1, \qquad H = H_+ \oplus H_-,$$

and represent $\mathcal{B}(p; q^4, 0)$ in H as

 $\pi(a)(h_{\pm}) = \iota(a)h_{\pm}, \quad \text{ for all } a \in \mathcal{B}(p; q^4, 0).$

Then $(\mathcal{B}(p; q^4, 0), H, D)$, where

$$D: H \to H,$$
 $(h_+, h_-) \mapsto \left(-q^{-1}\partial_+(h_-), \ q\partial_-(h_+)\right),$

is a KO-dim 2 spectral triple with grading $(h_+, h_-) \mapsto (h_+, -h_-)$, and ν -twisted real structure $(h_+, h_-) \mapsto (-h_-^*, h_+^*)$.

Theorem *Let:*

$$\mathcal{H}_+ = \mathcal{A}(ilde{
ho}; q^2)_{-1}, \quad \mathcal{H}_- = \mathcal{A}(ilde{
ho}; q^2)_1, \qquad \mathcal{H} = \mathcal{H}_+ \oplus \mathcal{H}_-,$$

and represent $\mathcal{B}(p; q^4, 0)$ in H as

$$\pi(a)(h_{\pm}) = \iota(a)h_{\pm}, \quad \text{for all } a \in \mathcal{B}(p; q^4, 0).$$

Then $(\mathcal{B}(p; q^4, 0), H, D)$, where

$$D: H \to H,$$
 $(h_+, h_-) \mapsto \left(-q^{-1}\partial_+(h_-), q\partial_-(h_+)\right),$

is a KO-dim 2 spectral triple with grading $(h_+, h_-) \mapsto (h_+, -h_-)$, and ν -twisted real structure $(h_+, h_-) \mapsto (-h_-^*, h_+^*)$.

Differential structure for regular gen. Weyl algebras

- The system (∂_−, ν), (∂₊, ν) supplemented by the (vertical) skew derivation (∂₀, ν₀), defines differential structure on A(p̃; q²).
- ► The module of one-forms restricted to B(p; q⁴, 0) is ismorphic to

$$\Omega^1 \mathcal{B}(p; q^4, 0) = \mathcal{A}(\tilde{p}; q^2)_2 \oplus \mathcal{A}(\tilde{p}; q^2)_{-2}.$$

- ► The differential on B(p; q⁴, 0) can be represented by the commutator with D.
- ► The Dirac operator is obtained by the Clifford action on a connection on the spinor bundle A(p̃; q²)₁ ⊕ A(p̃; q²)₋₁,

$$D = \triangleright \circ \nabla$$
.

Differential structure for regular gen. Weyl algebras

- The system (∂_−, ν), (∂₊, ν) supplemented by the (vertical) skew derivation (∂₀, ν₀), defines differential structure on A(p̃; q²).
- ► The module of one-forms restricted to B(p; q⁴, 0) is ismorphic to

$$\Omega^{1}\mathcal{B}(\boldsymbol{p};\boldsymbol{q}^{4},\boldsymbol{0})=\mathcal{A}(\tilde{\boldsymbol{p}};\boldsymbol{q}^{2})_{2}\oplus\mathcal{A}(\tilde{\boldsymbol{p}};\boldsymbol{q}^{2})_{-2}.$$

- ► The differential on B(p; q⁴, 0) can be represented by the commutator with D.
- ► The Dirac operator is obtained by the Clifford action on a connection on the spinor bundle A(p̃; q²)₁ ⊕ A(p̃; q²)₋₁,

$$D = \triangleright \circ \nabla$$
.

Differential structure for regular gen. Weyl algebras

- The system (∂_−, ν), (∂₊, ν) supplemented by the (vertical) skew derivation (∂₀, ν₀), defines differential structure on A(p̃; q²).
- ► The module of one-forms restricted to B(p; q⁴, 0) is ismorphic to

$$\Omega^{1}\mathcal{B}(\boldsymbol{\rho};\boldsymbol{q}^{4},0)=\mathcal{A}(\tilde{\boldsymbol{\rho}};\boldsymbol{q}^{2})_{2}\oplus\mathcal{A}(\tilde{\boldsymbol{\rho}};\boldsymbol{q}^{2})_{-2}.$$

- ► The differential on B(p; q⁴, 0) can be represented by the commutator with D.
- The Dirac operator is obtained by the Clifford action on a connection on the spinor bundle A(p̃; q²)₁ ⊕ A(p̃; q²)₋₁,

$$D = \triangleright \circ \nabla.$$