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Outline

I In 2008 Connes and Moscovici introduced twisted Dirac
operators (commutators replaced by twisted commutators).

I In 2016 Landi and Martinetti studied twisted real spectral
triples.

I TB, N Ciccoli, L Da̧browski and A Sitarz observed that
even for an untwisted Dirac operator, the real structure
could (or even should) be twisted.

I Quantum generalized Weyl algebras (introduced by Bavula
in 1996) serve as examples of algebras which enforce the
reality to be twisted.
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Reality twisted by an automorphism

Let B be a complex ∗-algebra, (H, π) a representation of B, D a
linear operator on H, let ν be a linear automorphism of H. Set

ν̄ : End(H)→ End(H), φ 7→ ν ◦ φ ◦ ν−1.

(B,H,D) admits a ν-twisted real structure if there exists an
anti-linear map J : H → H such that J2 = ε id, and, for all
a,b ∈ B,

[π(a), Jπ(b)J−1] = 0,

[D, π(a)]J ν̄2(π(b))J−1 = Jπ(b)J−1[D, π(a)],

DJν = ε′νJD,

νJν = J,

where ε, ε′ ∈ {+,−}.
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Reality twisted by an automorphism

If (B,H,D) admits a grading operator γ : H → H,

γ2 = id, [γ, π(a)] = 0, γD = −Dγ,

such that
ν2γ = γν2,

then the twisted real structure J is also required to satisfy

γJ = ε′′Jγ,

where ε′′ is another sign.



Construction from graded algebras

I Let G be a group and A = ⊕g∈GAg be a G-graded
∗-algebra, and set B := Ae, where e is the neutral element
of G.

I The grading is assumed to be compatible with the
∗-structure in the sense that, for all g ∈ G,

A∗g ⊆ Ag−1 ,

so, in particular, B is a ∗-subalgebra of A.
I Let G+ ⊂ G and set

G− := {g−1 | g ∈ G+}, H± =
⊕

g∈G±

Ag , H = H+ ⊕ H−.

The definition of G− ensures that H∗± ⊆ H∓.
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Construction from graded algebras

I Let ν be a graded (i.e. degree preserving) algebra
automorphism of A that satisfies

ν ◦ ∗ ◦ ν = ∗.

I Let ∂± : A→ A be ν2-twisted q±2-skew derivations of A, i.e.

∂±(ab) = ∂±(a)ν2(b) + a∂±(b),

and
ν ◦ ∂± ◦ ν−1 = q±2 ∂±,

for a real number q.
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Construction from graded algebras

I Assume that ∂± are compatible with the ∗-structure,
automorphism ν and the grading, i.e. that

ν (∂±(a)∗) = ν−1 (∂∓(a∗)) .

and
∂±(H∓) ⊆ H±,

I View H as a left B-module by

π(a)(h±) = ν2(a)h±, for all a ∈ B, h± ∈ H±.
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Construction from graded algebras

Define:
I the (“q-Dolbeault”) Dirac operator:

D : H → H, (h+,h−) 7→
(
−q−1∂+(h−), q∂−(h+)

)
,

I the grading operator:

γ : H → H, (h+,h−) 7→ (h+,−h−) .

Then
J : H → H, (h+,h−) 7→

(
−h∗−,h

∗
+

)
,

equips (B,H,D) with a ν-twisted real structure.



Differenital calculi from skew derivations: An interlude

I A first-order differential calculus on A is an A-bimodule Ω
with a K-linear map d : A→ Ω such that

(a) d satisfies the Leibniz rule: for all a,b ∈ A,

d(ab) = d(a)b + ad(b);

(b) Ω satisfies the density condition: Ω = Ad(A).
I If A is a complex ∗-algebra, then the calculus (Ω,d) is said

to be a ∗-calculus provided Ω is equipped with an
anti-linear operation ∗ such that, for all a,b ∈ A, ω ∈ Ω,

(aωb)∗ = b∗ω∗a∗ and d(a∗) = d(a)∗.



Differenital calculi from skew derivations: An interlude

I Fix a finite indexing set I, and let (∂i , νi), i ∈ I, be a
collection of skew derivations on an algebra A.

I Let Ω be a free left A-module with a free basis ωi , i ∈ I.
I Define the (free) right A-module structure on Ω by setting

ωia := νi(a)ωi .

I Then the map

d : A → Ω, a 7→
∑
i∈I

∂i(a)ωi , (1)

satisfies the Leibniz rule.
I There is no guarantee in general that the density condition

be satisfied.



Differenital calculi from skew derivations: An interlude

I Fix a finite indexing set I, and let (∂i , νi), i ∈ I, be a
collection of skew derivations on an algebra A.

I Let Ω be a free left A-module with a free basis ωi , i ∈ I.
I Define the (free) right A-module structure on Ω by setting

ωia := νi(a)ωi .

I Then the map

d : A → Ω, a 7→
∑
i∈I

∂i(a)ωi , (1)

satisfies the Leibniz rule.
I There is no guarantee in general that the density condition

be satisfied.



Differenital calculi from skew derivations: An interlude

I Fix a finite indexing set I, and let (∂i , νi), i ∈ I, be a
collection of skew derivations on an algebra A.

I Let Ω be a free left A-module with a free basis ωi , i ∈ I.
I Define the (free) right A-module structure on Ω by setting

ωia := νi(a)ωi .

I Then the map

d : A → Ω, a 7→
∑
i∈I

∂i(a)ωi , (1)

satisfies the Leibniz rule.
I There is no guarantee in general that the density condition

be satisfied.



Differenital calculi from skew derivations: An interlude

I Fix a finite indexing set I, and let (∂i , νi), i ∈ I, be a
collection of skew derivations on an algebra A.

I Let Ω be a free left A-module with a free basis ωi , i ∈ I.
I Define the (free) right A-module structure on Ω by setting

ωia := νi(a)ωi .

I Then the map

d : A → Ω, a 7→
∑
i∈I

∂i(a)ωi , (1)

satisfies the Leibniz rule.
I There is no guarantee in general that the density condition

be satisfied.



Differenital calculi from skew derivations: An interlude

I Fix a finite indexing set I, and let (∂i , νi), i ∈ I, be a
collection of skew derivations on an algebra A.

I Let Ω be a free left A-module with a free basis ωi , i ∈ I.
I Define the (free) right A-module structure on Ω by setting

ωia := νi(a)ωi .

I Then the map

d : A → Ω, a 7→
∑
i∈I

∂i(a)ωi , (1)

satisfies the Leibniz rule.
I There is no guarantee in general that the density condition

be satisfied.



Generalized Weyl algebras

I [Bavula] Let A be an algebra, σ an automorphism of A and
p an element of the centre of A. A degree-one generalized
Weyl algebra over A is an algebraic extension A(p, σ) of A
obtained by supplementing A with additional generators
x , y subject to the following relations

yx = σ(p), xy = p, ya = σ(a)y , xa = σ−1(a)x .

I The algebras A(p, σ) share many properties with A, in
particular, if A is a Noetherian algebra, so is A(p, σ), and if
A is a domain and p 6= 0, so is A(p, σ).
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Generalized Weyl ∗-algebras over C[z]
I If A = C[z], then every automorphism σ of A necessarily

takes the form σ(z) = qz + r , for q, r ∈ C, q 6= 0.
I Any generalized Weyl algebra over C[z] coincides with an

algebra B(p; q, r) generated by x , y , z subject to the
relations

yx = p(qz + r), xy = p(z),

yz = (qz + r)y , xz = q−1(z − r)x ,

where p(z) ∈ C[z] and q, r ∈ K, q 6= 0.
I If p has real coefficients and q, r ∈ R, then B(p; q, r) can

be made into ∗-algebra by setting

x∗ = y , z∗ = z.

I B(p; q, r) can be understood as coordinate algebras of
noncommutative surfaces, for example quantum spheres
or quantum weighted projective lines (spindles).
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Regular gen. Weyl algebras

Definition
Let K be a field of characteristic 0, q ∈ K, and let p(z) be a
polynomial in one variable with coefficients from K. Let

pq(z) :=
p(qz)− p(z)

(q − 1)z
,

denote the q-derivative of p. We say that p is a q-separable
polynomial if p(z) is coprime with pq(z).

Definition
A generalized Weyl algebra B(p; q, r) is said to be regular
provided r = 0 and p is a q-separable polynomial.
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Quantum cones and teardrop-like gen. Weyl algebras

I In a regular gen. Weyl algebra B(p; q,0), either

(a) p(0) 6= 0 or
(b) p has a simple root at z = 0.

I Quantum cone algebras

O(CN
q ) = B(

N−1∏
l=0

(
1− q−2lz

)
; q2N ,0),

are examples of generalized Weyl algebras in class (a).
I Algebras in class (b) include quantum teardrop algebras

B(z
N−1∏
l=0

(
1− q−2lz

)
; q2N ,0).
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Twisted-real Dirac operators for quantum cones

I O(C1
q) = O(Dq), the quantum disc algebra, generated by

v , v∗,
v∗v − q2vv∗ = 1− q2.

I O(Dq) is ZN -graded, with |v | = 1.
I O(CN

q ) can be identified with the degree-0 subalgebra via
the embedding

ι : O(CN
q ) ↪→ O(Dq), x 7→ vN , z 7→ 1− vv∗.



Twisted-real Dirac operators for quantum cones

I O(C1
q) = O(Dq), the quantum disc algebra, generated by

v , v∗,
v∗v − q2vv∗ = 1− q2.

I O(Dq) is ZN -graded, with |v | = 1.
I O(CN

q ) can be identified with the degree-0 subalgebra via
the embedding

ι : O(CN
q ) ↪→ O(Dq), x 7→ vN , z 7→ 1− vv∗.



Twisted-real Dirac operators for quantum cones

I O(C1
q) = O(Dq), the quantum disc algebra, generated by

v , v∗,
v∗v − q2vv∗ = 1− q2.

I O(Dq) is ZN -graded, with |v | = 1.
I O(CN

q ) can be identified with the degree-0 subalgebra via
the embedding

ι : O(CN
q ) ↪→ O(Dq), x 7→ vN , z 7→ 1− vv∗.



Twisted-real Dirac operators for quantum cones
Define the automorphism of ZN -graded algebras

ν : O(Dq)→ O(Dq), v 7→ qv , v∗ 7→ q−1v∗.

Theorem

(1) The automorphism ν is ∗-regular, i.e. ν ◦ ∗ ◦ ν = ∗.
(2) The maps ∂± : O(Dq)→ O(Dq), given by

∂−(v) = v∗, ∂−(v∗) = 0, ∂+(v) = 0, ∂+(v∗) = q2v ,

are degree ±2, ν2-twisted q±2-skew derivations.

(3) For all a ∈ O(Dq),

ν (∂±(a)∗) = ν−1 (∂∓(a∗)) .
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Twisted-real Dirac operators for quantum cones

Theorem
Let:

H+ = O(Dq)1, H− = O(Dq)N−1, H = H+ ⊕ H−,

and represent O(CN
q ) in H as

π(a)(h±) = ν2(ι(a))h±, for all a ∈ O(CN
q ).

Then (O(CN
q ),H,D), where

D : H → H, (h+,h−) 7→
(
−q−1∂+(h−), q∂−(h+)

)
,

is a KO-dim 2 spectral triple with grading (h+,h−) 7→ (h+,−h−) ,
and ν-twisted real structure (h+,h−) 7→

(
−h∗−,h∗+

)
.
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Differential structure for quantum cones

I The system (∂−, ν), (∂+, ν) defines differential structure on
O(Dq).

I The module of one-forms restricted to O(CN
q ) is ismorphic

to
Ω1CN

q = O(Dq)2 ⊕O(Dq)N−2.

I The differential on O(CN
q ) can be represented by the

commutator with D.
I The Dirac operator is obtained by the Clifford action on a

connection on the spinor bundle O(Dq)1 ⊕O(Dq)N−1,

D = . ◦ ∇.
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Real Dirac operators for regular gen. Weyl algebras

I Consider regular gen. Weyl algebra B(p; q4,0) with
p(0) = 0 and set

p̃(z) =
p(z)

z
.

I Let A(p̃; q2) be an affine algebra generated by z± and x±
subject to the relations

z+z− = z−z+, x+x− = p̃(z), x−x+ = p̃(q4z),

x+z± = q−2z±x+, x−z± = q2z±x−,

where z = z−z+.
I A(p̃; q2) is a ∗-algebra with z∗+ = z−, x∗+ = x−.



Real Dirac operators for regular gen. Weyl algebras

I Consider regular gen. Weyl algebra B(p; q4,0) with
p(0) = 0 and set

p̃(z) =
p(z)

z
.

I Let A(p̃; q2) be an affine algebra generated by z± and x±
subject to the relations

z+z− = z−z+, x+x− = p̃(z), x−x+ = p̃(q4z),

x+z± = q−2z±x+, x−z± = q2z±x−,

where z = z−z+.
I A(p̃; q2) is a ∗-algebra with z∗+ = z−, x∗+ = x−.



Real Dirac operators for regular gen. Weyl algebras

I Consider regular gen. Weyl algebra B(p; q4,0) with
p(0) = 0 and set

p̃(z) =
p(z)

z
.

I Let A(p̃; q2) be an affine algebra generated by z± and x±
subject to the relations

z+z− = z−z+, x+x− = p̃(z), x−x+ = p̃(q4z),

x+z± = q−2z±x+, x−z± = q2z±x−,

where z = z−z+.
I A(p̃; q2) is a ∗-algebra with z∗+ = z−, x∗+ = x−.



Real Dirac operators for regular gen. Weyl algebras

I The algebra A(p̃; q2) is a Z-graded algebra with the
grading given on the generators by |z±| = |x±| = ±1.

I B(p; q4,0) embeds into A(p̃; q2) as the degree-zero
subalgebra, by the map

ι : B(p; q4,0) ↪→ A(p̃; q2), x 7→ z−x+, z 7→ z−z+.

I Define the degree-preserving automorphism of A(p̃; q2),

ν : A(p̃; q2)→ A(p̃; q2), z± 7→ q±1z±, x± 7→ q±1x±.

I Note that ν restricted to ι
(
B(p; q4,0)

)
is the identity map.
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Real Dirac operators for regular gen. Weyl algebras

Theorem

(1) The automorphism ν is ∗-regular, i.e. ν ◦ ∗ ◦ ν = ∗.
(2) The maps ∂± : A(p̃; q2)→ A(p̃; q2), given by

∂±(x±) = ∂±(z∓) = 0, ∂±(x±) = c(z)z∓, ∂±(z±) = x∓,

where

c(z) = q2 p̃(q4z)− p̃(z)

(q4 − 1)z
,

are degree ∓2, ν2-twisted q±2-skew derivations.

(3) For all a ∈ A(p̃; q2),

ν (∂±(a)∗) = ν−1 (∂∓(a∗)) .



Real Dirac operators for regular gen. Weyl algebras

Theorem
Let:

H+ = A(p̃; q2)−1, H− = A(p̃; q2)1, H = H+ ⊕ H−,

and represent B(p; q4,0) in H as

π(a)(h±) = ι(a)h±, for all a ∈ B(p; q4,0).

Then (B(p; q4,0),H,D), where

D : H → H, (h+,h−) 7→
(
−q−1∂+(h−), q∂−(h+)

)
,

is a KO-dim 2 spectral triple with grading (h+,h−) 7→ (h+,−h−) ,
and ν-twisted real structure (h+,h−) 7→

(
−h∗−,h∗+

)
.



Real Dirac operators for regular gen. Weyl algebras

Theorem
Let:

H+ = A(p̃; q2)−1, H− = A(p̃; q2)1, H = H+ ⊕ H−,

and represent B(p; q4,0) in H as

π(a)(h±) = ι(a)h±, for all a ∈ B(p; q4,0).

Then (B(p; q4,0),H,D), where

D : H → H, (h+,h−) 7→
(
−q−1∂+(h−), q∂−(h+)

)
,

is a KO-dim 2 spectral triple with grading (h+,h−) 7→ (h+,−h−) ,
and ν-twisted real structure (h+,h−) 7→

(
−h∗−,h∗+

)
.



Differential structure for regular gen. Weyl algebras

I The system (∂−, ν), (∂+, ν) supplemented by the (vertical)
skew derivation (∂0, ν0), defines differential structure on
A(p̃; q2).

I The module of one-forms restricted to B(p; q4,0) is
ismorphic to

Ω1B(p; q4,0) = A(p̃; q2)2 ⊕A(p̃; q2)−2.

I The differential on B(p; q4,0) can be represented by the
commutator with D.

I The Dirac operator is obtained by the Clifford action on a
connection on the spinor bundle A(p̃; q2)1 ⊕A(p̃; q2)−1,

D = . ◦ ∇.



Differential structure for regular gen. Weyl algebras

I The system (∂−, ν), (∂+, ν) supplemented by the (vertical)
skew derivation (∂0, ν0), defines differential structure on
A(p̃; q2).

I The module of one-forms restricted to B(p; q4,0) is
ismorphic to

Ω1B(p; q4,0) = A(p̃; q2)2 ⊕A(p̃; q2)−2.

I The differential on B(p; q4,0) can be represented by the
commutator with D.

I The Dirac operator is obtained by the Clifford action on a
connection on the spinor bundle A(p̃; q2)1 ⊕A(p̃; q2)−1,

D = . ◦ ∇.



Differential structure for regular gen. Weyl algebras

I The system (∂−, ν), (∂+, ν) supplemented by the (vertical)
skew derivation (∂0, ν0), defines differential structure on
A(p̃; q2).

I The module of one-forms restricted to B(p; q4,0) is
ismorphic to

Ω1B(p; q4,0) = A(p̃; q2)2 ⊕A(p̃; q2)−2.

I The differential on B(p; q4,0) can be represented by the
commutator with D.

I The Dirac operator is obtained by the Clifford action on a
connection on the spinor bundle A(p̃; q2)1 ⊕A(p̃; q2)−1,

D = . ◦ ∇.


