The Standard Model in Noncommutative Geometry: particles as Dirac spinors?

Francesco D'Andrea

08/04/2016

Conference on Noncommutative Geometry and Gauge Theories Radboud University Nijmegen, 4 – 8 april 2016

Summary

Talk based on:

📎 FD & L. Dabrowski,

The Standard Model in Noncommutative Geometry and Morita equivalence, preprint arXiv:1501.00156 [math-ph]; to appear in J. Noncommut. Geom.

Keywords \rightarrow Standard Model, Morita equivalence, finite-dimensional spectral triples.

Summary of the talk:

- 1 Spectral triples (again).
- 2 An algebraic characterization of Dirac spinors.
- (3) The finite nc space of the vSM.

Summary

Talk based on:

📎 FD & L. Dabrowski,

The Standard Model in Noncommutative Geometry and Morita equivalence, preprint arXiv:1501.00156 [math-ph]; to appear in J. Noncommut. Geom.

Keywords \rightarrow Standard Model, Morita equivalence, finite-dimensional spectral triples.

Summary of the talk:

- 1 Spectral triples (again).
- 2 An algebraic characterization of Dirac spinors.
- **3** The finite nc space of the vSM.

Introduction

Definition

A unital spectral triple (A, H, D) is the datum of:

- a (real or complex) unital C*-algebra A of bounded operators on a (separable) complex Hilbert space H,
- (ii) a selfadjoint operator D on H with compact resolvent,

such that

(iii) the unital *-subalgebra

```
\mathsf{Lip}_{D}(A) = \left\{ \, \mathfrak{a} \in A \ : \ \mathfrak{a} \cdot \mathsf{Dom}(D) \subset \mathsf{Dom}D \text{ and } [D, \mathfrak{a}] \in \mathfrak{B}(H) \, \right\}
```

is dense in A.

Example 0 (finite nc spaces)

Introduction

Definition

A unital spectral triple (A, H, D) is the datum of:

- a (real or complex) unital C*-algebra A of bounded operators on a (separable) complex Hilbert space H,
- (ii) a selfadjoint operator D on H with compact resolvent,

such that

(iii) the unital *-subalgebra

```
\mathsf{Lip}_{D}(A) = \left\{ a \in A \ : \ a \cdot \mathsf{Dom}(D) \subset \mathsf{Dom}D \text{ and } [D, a] \in \mathcal{B}(H) \right\}
```

is dense in A.

Example 0 (finite nc spaces)

Take any finite-dimensional H, any $A \subset \mathcal{B}(H)$ and $D \in \mathcal{B}(H)$. In this case $Lip_D(A) \equiv A$.

Examples of spectral triples

Let: $(M, g) = \text{compact oriented Riemannian manifold without boundary, } E \to M$ herm. vector bundle equipped with a unitary Clifford action $c: C^{\infty}(M, T^*_{\mathbb{C}}M \otimes E) \to C^{\infty}(M, E)$ and a connection ∇^{E} compatible with *g*. Then:

$$A = C(M)$$
 $H = L^2(M, E)$ $D = c \circ \nabla^E$

is a spectral triple.

1. Hodge operator $E = \bigwedge^{even} T^*_{\mathbb{C}} M \oplus \bigwedge^{odd} T^*_{\mathbb{C}} M , \ D = d + d^*$ $\Rightarrow Index(D^+) = Euler char. of M$

3. Dolbeault operator (M complex m.) $E = \bigwedge^{0,\text{even}} M \oplus \bigwedge^{0,\text{odd}} M, \quad D = \overline{\partial} + \overline{\partial}^*$

 \Rightarrow Index(D⁺) = Euler char. of $\mathcal{O}_{\mathcal{M}}$

2. Signature operator (dim M even) $E = \bigwedge^{+} T_{C}^{*} M \oplus \bigwedge^{-} T_{C}^{*} M \text{ with grading}$ given by the Hodge star, $D = d + d^{*}$.

4. Dirac operator (M spin)

E =spinor bundle, D = D Dirac operator

In all these examples, H carries commuting representations of A = C(M) and $B = C\ell(M, g)$.

Examples of spectral triples

Let: $(M, g) = \text{compact oriented Riemannian manifold without boundary}, E \to M$ herm. vector bundle equipped with a unitary Clifford action $c: C^{\infty}(M, T^*_{\mathbb{C}}M \otimes E) \to C^{\infty}(M, E)$ and a connection ∇^{E} compatible with *g*. Then:

$$A = C(M)$$
 $H = L^2(M, E)$ $D = c \circ \nabla^E$

is a spectral triple.

$$\begin{split} & \text{1. Hodge operator} \\ & \text{E} = \bigwedge^{\text{even}} T^*_{\mathbb{C}} M \oplus \bigwedge^{\text{odd}} T^*_{\mathbb{C}} M \text{ , } D = d + d^* \\ & \Rightarrow \text{ Index}(D^+) = \text{Euler char. of } M \end{split}$$

3. Dolbeault operator (M complex m.)

$$\mathsf{E} = \bigwedge^{\mathsf{0},\mathsf{even}} \mathsf{M} \oplus \bigwedge^{\mathsf{0},\mathsf{odd}} \mathsf{M}, \ \ \mathsf{D} = \overline{\mathfrak{d}} + \overline{\mathfrak{d}}$$

 \Rightarrow Index(D⁺) = Euler char. of \mathcal{O}_M

2. Signature operator (dim M even) $E = \bigwedge^{+} T^{*}_{\mathbb{C}} M \oplus \bigwedge^{-} T^{*}_{\mathbb{C}} M \quad \text{with} \quad \text{grading}$ given by the Hodge star, $D = d + d^{*}$. $\Rightarrow \text{ Index}(D^{+}) = \text{signature of } M$

4. Dirac operator (M spin)

E =spinor bundle, D = D Dirac operator

Examples of spectral triples

Let: $(M, g) = \text{compact oriented Riemannian manifold without boundary, } E \to M$ herm. vector bundle equipped with a unitary Clifford action $c: C^{\infty}(M, T^*_{\mathbb{C}}M \otimes E) \to C^{\infty}(M, E)$ and a connection ∇^{E} compatible with *g*. Then:

$$A = C(M)$$
 $H = L^2(M, E)$ $D = c \circ \nabla^E$

is a spectral triple.

$$\begin{split} & \text{1. Hodge operator} \\ & \text{E} = \bigwedge^{\text{even}} T^*_{\mathbb{C}} M \oplus \bigwedge^{\text{odd}} T^*_{\mathbb{C}} M \text{ , } D = d + d^* \\ & \Rightarrow \text{ Index}(D^+) = \text{Euler char. of } M \end{split}$$

3. Dolbeault operator (M complex m.)

$$\mathsf{E} = \bigwedge^{0,\mathsf{even}} \mathsf{M} \oplus \bigwedge^{0,\mathsf{odd}} \mathsf{M}, \ \ \mathsf{D} = \overline{\eth} + \overline{\eth}^{0,\mathsf{odd}}$$

 \Rightarrow Index(D⁺) = Euler char. of \mathcal{O}_{M}

2. Signature operator (dim M even) $E = \bigwedge^{+} T^{*}_{\mathbb{C}} M \oplus \bigwedge^{-} T^{*}_{\mathbb{C}} M \quad \text{with} \quad \text{grading}$ given by the Hodge star, $D = d + d^{*}$. $\Rightarrow \text{ Index}(D^{+}) = \text{signature of } M$

4. Dirac operator (M spin)

E =spinor bundle, D = D Dirac operator

In all these examples, H carries commuting representations of A = C(M) and $B = C\ell(M, g)$.

5. The Standard Model spectral triple

The underlying geometry is

 $\begin{array}{cc} M & \times & F \\ \mbox{(spin manifold)} & \mbox{(finite nc space)} \end{array}$

with finite-dim. spectral triple $(A_F, H_F, D_F, \gamma_F, J_F)$ given by:

▶ $H_F \simeq \mathbb{C}^{32n} \iff$ internal degrees of freedom of the elementary fermions. Total nr:

2	4	2	2	n =	
	(lepton + quark in 3 colors)	(L,R chirality)			

• $\gamma_{\rm F} = {\rm chirality operator}$

 $\blacktriangleright A_F = \mathbb{C} \oplus \mathbb{H} \oplus M_3(\mathbb{C})$

 $f_{\rm F} = {\rm charge \ conjugation}$

 \rightsquigarrow gauge group \approx U(1) imes SU(2) imes SU(3)

D_F encodes the free parameters of the theory.

5. The Standard Model spectral triple

The underlying geometry is

M imes F (spin manifold) (finite nc space)

with finite-dim. spectral triple $(A_F, H_F, D_F, \gamma_F, J_F)$ given by:

▶ $H_F \simeq \mathbb{C}^{32n} \iff$ internal degrees of freedom of the elementary fermions. Total nr:

• γ_F = chirality operator

 $\blacktriangleright \ A_F = \mathbb{C} \oplus \mathbb{H} \oplus M_3(\mathbb{C})$

 $J_{\rm F}$ = charge conjugation

 $\ \, \longrightarrow \ \ \, gauge \ group \approx U(1) \times SU(2) \times SU(3)$

D_F encodes the free parameters of the theory.

Definition

A unital spectral triple (A, H, D) is called:

- ▶ even if $\exists \gamma = \gamma^*$ on H s.t. $\gamma^2 = 1$, $\gamma D = -D\gamma$ and $[\gamma, a] = 0 \forall a \in A$;
- ▶ real if ∃ an antilinear isometry J on H s.t. $J^2 = \pm 1$, $JD = \pm DJ$, $J\gamma = \pm \gamma J$ and $\forall a, b \in A$:

$[\mathfrak{a}, J\mathfrak{b}J^{-1}] = 0$	$[[D, a], JbJ^{-1}] = 0$
(reality)	(1st order)

Theorem

Definition

A unital spectral triple (A, H, D) is called:

- $\blacktriangleright \text{ even if } \exists \ \gamma = \gamma^* \text{ on } H \text{ s.t. } \gamma^2 = 1, \gamma D = -D\gamma \text{ and } [\gamma, \mathfrak{a}] = 0 \ \forall \ \mathfrak{a} \in A;$
- ▶ real if ∃ an antilinear isometry J on H s.t. $J^2 = \pm 1$, $JD = \pm DJ$, $J\gamma = \pm \gamma J$ and $\forall a, b \in A$:

$$\label{eq:constraint} \begin{split} [\mathfrak{a},\,Jb\,J^{-1}] &= 0 & \qquad [[D,\,\mathfrak{a}],\,Jb\,J^{-1}] = 0 \\ (\text{reality}) & \qquad (1\text{st order}) \end{split}$$

Theorem

1. A closed oriented Riem. manifold M admits a spin^c structure iff \exists a Morita equivalence C(M)- $\mathcal{C}\ell(M,g)$ bimodule Σ , with $\mathcal{C}\ell(M,g)$ the algebra of sections of the Clifford bundle.

Definition

A unital spectral triple (A, H, D) is called:

- $\blacktriangleright \text{ even if } \exists \ \gamma = \gamma^* \text{ on } H \text{ s.t. } \gamma^2 = 1, \gamma D = -D\gamma \text{ and } [\gamma, \mathfrak{a}] = 0 \ \forall \ \mathfrak{a} \in A;$
- ▶ real if ∃ an antilinear isometry J on H s.t. $J^2 = \pm 1$, $JD = \pm DJ$, $J\gamma = \pm \gamma J$ and $\forall a, b \in A$:

$[\mathfrak{a}, J\mathfrak{b}J^{-1}] = 0$	$[[D, a], JbJ^{-1}] = 0$
(reality)	(1st order)

Theorem

- 1. A closed oriented Riem. manifold M admits a spin^c structure iff \exists a Morita equivalence C(M)- $\mathcal{C}\ell(M,g)$ bimodule Σ , with $\mathcal{C}\ell(M,g)$ the algebra of sections of the Clifford bundle.
- 2. $\Sigma=C^0$ sections of the spinor bundle $S \to M$ (Dirac spinors in the conventional sense).

Definition

A unital spectral triple (A, H, D) is called:

- $\blacktriangleright \text{ even if } \exists \ \gamma = \gamma^* \text{ on } H \text{ s.t. } \gamma^2 = 1, \gamma D = -D\gamma \text{ and } [\gamma, \mathfrak{a}] = 0 \ \forall \ \mathfrak{a} \in A;$
- ▶ real if ∃ an antilinear isometry J on H s.t. $J^2 = \pm 1$, $JD = \pm DJ$, $J\gamma = \pm \gamma J$ and $\forall a, b \in A$:

$[\mathfrak{a}, J\mathfrak{b}J^{-1}] = 0$	$[[D, a], JbJ^{-1}] = 0$
(reality)	(1st order)

Theorem

1. A closed oriented Riem. manifold M admits a spin^c structure iff \exists a Morita equivalence C(M)- $\mathcal{C}\ell(M,g)$ bimodule Σ , with $\mathcal{C}\ell(M,g)$ the algebra of sections of the Clifford bundle.

2. $\Sigma=C^0$ sections of the spinor bundle $S \to M$ (Dirac spinors in the conventional sense).

Once we have S, we can canonically introduce the Dirac operator D of the spin^c structure:

3. M is a spin manifold iff \exists a real structure J on $L^2(M, S)$.

For simplicity, let us focus on finite-dimensional spectral triples.

($\Rightarrow A \equiv Lip_D(A)$ and we can use the ring-theoretic Morita equivalence.)

Definition (1-forms)

If (A, H, D) is a spectral triple, we define $\Omega^1_D \subseteq \mathcal{B}(H)$ as:

 $\Omega^1_{\mathsf{D}} := \mathsf{Span} \big\{ \mathfrak{a}[\mathsf{D}, \mathfrak{b}] \ : \ \mathfrak{a}, \mathfrak{b} \in \mathsf{A} \big\}$

Definition (Clifford algebra)

 $[\approx$ Lord, Rennie & Várilly, J.Geom.Phys. 2012]

We call $\mathcal{C}\ell_D(A) \subseteq \mathcal{B}(H)$ the algebra generated by A, Ω_D^1 and possibly γ (in the even case).

Let $A^{\circ} := \{Ja^*J^{-1} : a \in A\}$. The reality and 1st order cond. are equivalent to the statement $A^{\circ} \subseteq \mathcal{Cl}_{D}(A)' := \{b \in \mathcal{B}(H) : [b, \xi] = 0 \ \forall \ \xi \in \mathcal{Cl}_{D}(A)\}.$ (*)

Definition (Dirac condition)

Elements of H are "Dirac spinors" if (*) is an equality: $A^{\circ} = \mathcal{C}\ell_{D}(A)'$.

For simplicity, let us focus on finite-dimensional spectral triples.

($\Rightarrow A \equiv Lip_D(A)$ and we can use the ring-theoretic Morita equivalence.)

Definition (1-forms)

If (A,H,D) is a spectral triple, we define $\Omega^1_D\subseteq {\mathfrak B}(H)$ as:

$$\Omega^1_D := \mathsf{Span} \big\{ \mathfrak{a}[\mathsf{D}, \mathfrak{b}] \; : \; \mathfrak{a}, \mathfrak{b} \in \mathsf{A} \big\}$$

Definition (Clifford algebra)

[pprox Lord, Rennie & Várilly, J.Geom.Phys. 2012]

We call $\mathcal{C}\ell_D(A) \subseteq \mathcal{B}(H)$ the algebra generated by A, Ω_D^1 and possibly γ (in the even case).

Let $A^{\circ} := \{Ja^*J^{-1} : a \in A\}$. The reality and 1st order cond. are equivalent to the statement $A^{\circ} \subseteq \mathcal{C}\ell_D(A)' := \{b \in \mathcal{B}(H) : [b, \xi] = 0 \forall \xi \in \mathcal{C}\ell_D(A)\}.$ (*)

Definition (Dirac condition)

Elements of H are "Dirac spinors" if (*) is an equality: $A^{\circ} = \mathcal{C}\ell_{D}(A)'$.

For simplicity, let us focus on finite-dimensional spectral triples.

($\Rightarrow A \equiv Lip_D(A)$ and we can use the ring-theoretic Morita equivalence.)

Definition (1-forms)

If (A, H, D) is a spectral triple, we define $\Omega^1_D \subseteq {\mathcal B}(H)$ as:

$$\Omega^1_{\mathrm{D}} := \mathsf{Span} \big\{ \mathfrak{a}[\mathrm{D}, \mathfrak{b}] \; : \; \mathfrak{a}, \mathfrak{b} \in \mathsf{A} \big\}$$

Definition (Clifford algebra)

 $[\approx$ Lord, Rennie & Várilly, J.Geom.Phys. 2012]

We call $\mathcal{C}\ell_D(A) \subseteq \mathcal{B}(H)$ the algebra generated by A, Ω_D^1 and possibly γ (in the even case).

Let $A^{\circ} := \{Ja^*J^{-1} : a \in A\}$. The reality and 1st order cond. are equivalent to the statement

$$\Lambda^{\circ} \subseteq \mathcal{C}\ell_{\mathbf{D}}(\mathbf{A})' := \left\{ \mathbf{b} \in \mathcal{B}(\mathbf{H}) : [\mathbf{b}, \xi] = \mathbf{0} \ \forall \ \xi \in \mathcal{C}\ell_{\mathbf{D}}(\mathbf{A}) \right\} . \tag{*}$$

Definition (Dirac condition)

Elements of H are "Dirac spinors" if (*) is an equality: $A^{\circ} = C\ell_{D}(A)'$.

For simplicity, let us focus on finite-dimensional spectral triples.

($\Rightarrow A \equiv Lip_D(A)$ and we can use the ring-theoretic Morita equivalence.)

Definition (1-forms)

If (A,H,D) is a spectral triple, we define $\Omega^1_D\subseteq {\mathfrak B}(H)$ as:

$$\Omega^1_{\mathrm{D}} := \mathsf{Span} \big\{ \mathfrak{a}[\mathrm{D}, \mathfrak{b}] \; : \; \mathfrak{a}, \mathfrak{b} \in \mathsf{A} \big\}$$

Definition (Clifford algebra)

 $[\approx$ Lord, Rennie & Várilly, J.Geom.Phys. 2012]

We call $\mathcal{C}\ell_D(A) \subseteq \mathcal{B}(H)$ the algebra generated by A, Ω_D^1 and possibly γ (in the even case).

Let $A^{\circ} := \{Ja^*J^{-1} : a \in A\}$. The reality and 1st order cond. are equivalent to the statement

$$\mathsf{A}^{\circ} \subseteq \mathcal{C}\ell_{\mathsf{D}}(\mathsf{A})' := \left\{ \mathsf{b} \in \mathcal{B}(\mathsf{H}) : [\mathsf{b}, \xi] = \mathsf{0} \ \forall \ \xi \in \mathcal{C}\ell_{\mathsf{D}}(\mathsf{A}) \right\}. \tag{*}$$

Definition (Dirac condition)

Elements of H are "Dirac spinors" if (*) is an equality: $A^{\circ} = C\ell_{D}(A)'$.

For simplicity, let us focus on finite-dimensional spectral triples.

($\Rightarrow A \equiv Lip_D(A)$ and we can use the ring-theoretic Morita equivalence.)

Definition (1-forms)

If (A,H,D) is a spectral triple, we define $\Omega^1_D\subseteq {\mathfrak B}(H)$ as:

$$\Omega^1_{\mathrm{D}} := \mathsf{Span} \big\{ \mathfrak{a}[\mathrm{D}, \mathfrak{b}] \; : \; \mathfrak{a}, \mathfrak{b} \in \mathsf{A} \big\}$$

Definition (Clifford algebra)

 $[\approx$ Lord, Rennie & Várilly, J.Geom.Phys. 2012]

We call $\mathcal{C}\ell_D(A) \subseteq \mathcal{B}(H)$ the algebra generated by A, Ω_D^1 and possibly γ (in the even case).

Let $A^{\circ} := \{Ja^*J^{-1} : a \in A\}$. The reality and 1st order cond. are equivalent to the statement

$$\mathbf{A}^{\circ} \subseteq \mathcal{C}\ell_{\mathsf{D}}(\mathsf{A})' := \left\{ \mathsf{b} \in \mathcal{B}(\mathsf{H}) : [\mathsf{b}, \xi] = \mathsf{0} \ \forall \ \xi \in \mathcal{C}\ell_{\mathsf{D}}(\mathsf{A}) \right\}. \tag{*}$$

Definition (Dirac condition)

Elements of H are "Dirac spinors" if (*) is an equality: $A^{\circ} = C\ell_{D}(A)'$.

On a property of "Hodge spinors"

In the geometric examples (slide 3), [D, f] = c(df). In the Hodge example:

$$H = \overline{\Omega^{\bullet}(M)}^{L^2} \simeq \overline{\mathcal{C}\ell(M,g)}^{L^2} \qquad B := \mathcal{C}\ell_D(A) = \mathcal{C}\ell(M,g)$$

Representation of B: by Clifford multiplication on $\Omega^{\bullet}(M)$, or by left multiplication on itself.

Real structure: $J(\omega) = \omega^*$. The algebra $B^\circ = JBJ^{-1}$ acts by right multiplication on H, that up to completion is a self-Morita equivalence B-bimodule.

Definition (2nd order condition)

(A, H, D, J) satisfies the 2nd order condition if

$$\mathcal{C}\ell_{\mathcal{D}}(\mathcal{A})^{\circ} := \mathcal{J} \,\mathcal{C}\ell_{\mathcal{D}}(\mathcal{A}) \,\mathcal{J}^{-1} \subseteq \mathcal{C}\ell_{\mathcal{D}}(\mathcal{A})'$$

**)

Remark: this is the old "order-two" condition by Boyle and Farnsworth (cf. also Besnard, Bizi, Brouder)

Definition (Hodge condition)

(dim $H < \infty$) Elements of H are "Hodge spinors" if (**) is an equality: $Cl_D(A)^\circ = Cl_D(A)'$.

On a property of "Hodge spinors"

In the geometric examples (slide 3), [D, f] = c(df). In the Hodge example:

$$H = \overline{\Omega^{\bullet}(M)}^{L^2} \simeq \overline{\mathcal{C}\ell(M,g)}^{L^2} \qquad B := \mathcal{C}\ell_D(A) = \mathcal{C}\ell(M,g)$$

Representation of B: by Clifford multiplication on $\Omega^{\bullet}(M)$, or by left multiplication on itself.

Real structure: $J(\omega) = \omega^*$. The algebra $B^\circ = JBJ^{-1}$ acts by right multiplication on H, that up to completion is a self-Morita equivalence B-bimodule.

Definition (2nd order condition)

(A, H, D, J) satisfies the 2nd order condition if

$$\mathfrak{Cl}_{\mathsf{D}}(\mathsf{A})^{\circ} := \mathsf{J}\,\mathfrak{Cl}_{\mathsf{D}}(\mathsf{A})\,\mathsf{J}^{-1} \subseteq \mathfrak{Cl}_{\mathsf{D}}(\mathsf{A})'$$

(**)

Remark: this is the old "order-two" condition by Boyle and Farnsworth (cf. also Besnard, Bizi, Brouder).

Definition (Hodge condition)

(dim $H < \infty$) Elements of H are "Hodge spinors" if (**) is an equality: $\mathcal{Cl}_{D}(A)^{\circ} = \mathcal{Cl}_{D}(A)'$.

On a property of "Hodge spinors"

In the geometric examples (slide 3), [D, f] = c(df). In the Hodge example:

$$H = \overline{\Omega^{\bullet}(M)}^{L^2} \simeq \overline{\mathcal{C}\ell(M,g)}^{L^2} \qquad B := \mathcal{C}\ell_D(A) = \mathcal{C}\ell(M,g)$$

Representation of B: by Clifford multiplication on $\Omega^{\bullet}(M)$, or by left multiplication on itself.

Real structure: $J(\omega) = \omega^*$. The algebra $B^\circ = JBJ^{-1}$ acts by right multiplication on H, that up to completion is a self-Morita equivalence B-bimodule.

Definition (2nd order condition)

(A, H, D, J) satisfies the 2nd order condition if

$$\mathcal{C}\ell_{\mathsf{D}}(\mathsf{A})^{\circ} := \mathsf{J}\,\mathcal{C}\ell_{\mathsf{D}}(\mathsf{A})\,\mathsf{J}^{-1} \subseteq \mathcal{C}\ell_{\mathsf{D}}(\mathsf{A})'$$

(**)

Remark: this is the old "order-two" condition by Boyle and Farnsworth (cf. also Besnard, Bizi, Brouder).

Definition (Hodge condition)

 $(\dim H < \infty)$ Elements of H are "Hodge spinors" if (**) is an equality: $\mathcal{Cl}_D(A)^\circ = \mathcal{Cl}_D(A)'$.

Spin + 2nd order

Observation 1.

Dirac condition + 2nd order condition \Rightarrow Hodge condition.

In fact:

$$\mathcal{C}\ell_{\mathrm{D}}(\mathrm{A})^{\circ} \subseteq \mathcal{C}\ell_{\mathrm{D}}(\mathrm{A})' = \mathrm{A}^{\circ} \implies \mathcal{C}\ell_{\mathrm{D}}(\mathrm{A}) = \mathrm{A}$$

Therefore:

Observation 2.

Dirac condition + 2nd order \Rightarrow H is a self-Morita equivalence A-bimodule (a "line bundle").

An example of spectral triple satisfying both conditions (Einstein-Yang Mills):

$$A = M_N(\mathbb{C})$$
 $H = A$ $J(a) = a^*$ $D = 0$

Back to the Standard Model...

Recall that in the ncg approach to the Standard Model, one has:

M imes F(spin manifold) (finite nc space)

For the continuous part, elements of H_M are Dirac spinors. What about the finite part?

We have the following dictionary:

Geometry \longleftrightarrow	Algebra	
Spin ^c	A- ${\mathcal C}\ell_D(A)$ Morita equivalence	
Spin	A- ${\mathcal C}\ell_{\rm D}(A)$ Morita equivalence with J	
Hodge	${\mathcal C}\ell_D(A)$ self-Morita equivalence*	
	* in prograss with I	Dobrowski & A Sit

* in progress with L. Dabrowski & A. Sitarz

What kind of nc space is F?

Back to the Standard Model...

Recall that in the ncg approach to the Standard Model, one has:

M imes F(spin manifold) (finite nc space)

For the continuous part, elements of H_M are Dirac spinors. What about the finite part?

We have the following dictionary:

$\textbf{Geometry} \longleftrightarrow$	Algebra
Spin ^c	A- $\mathcal{C}\ell_D(A)$ Morita equivalence
Spin	A- ${\mathcal C}\ell_{\rm D}(A)$ Morita equivalence with J
Hodge	${\mathcal C}\ell_D(A)$ self-Morita equivalence*
	* in progress with L. Dabrowski & A. Sitarz

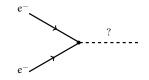
What kind of nc space is F?

Postdictions on D_F

Not every D_F is allowed! \Rightarrow Restrictions on the free parameters/on the interactions. Constraints of the 1st kind:

1 The parity $(\gamma_F D_F = -D_F \gamma_F)$ and 1st (or 2nd) order condition put constraints on D_F : some matrix entries must be zero.

For example, the 1st order cond. does not allow a vertex



Nothing forbids taking $D_F = 0$ (all conditions are satisfied).

Constraints of the 2nd kind:

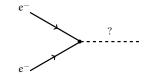
Provide that elements of H_F are Dirac spinors (or Hodge spinors) on F implies, in general, that some matrix entries cannot be zero.

Postdictions on D_F

Not every D_F is allowed! \Rightarrow Restrictions on the free parameters/on the interactions. Constraints of the 1st kind:

1 The parity $(\gamma_F D_F = -D_F \gamma_F)$ and 1st (or 2nd) order condition put constraints on D_F : some matrix entries must be zero.

For example, the 1st order cond. does not allow a vertex



Nothing forbids taking $D_F = 0$ (all conditions are satisfied).

Constraints of the 2nd kind:

2 The request that elements of H_F are Dirac spinors (or Hodge spinors) on F implies, in general, that some matrix entries cannot be zero.

The 1st order condition

Let (A, H, J) be finite dim. One can completely characterize D's of 1st order:

Theorem (\approx Krajewski)

• $D \in End_{\mathbb{C}}(H)$ satisfies the 1st order condition iff it is of the form

$$\mathsf{D} = \mathsf{D}_0 + \mathsf{D}_1 \tag{\dagger}$$

with $D_0 \in (A^\circ)'$ and $D_1 \in A'$.

- D selfadjoint resp. odd \Rightarrow one can always choose D_0 and D_1 selfadjoint resp. odd.
- $JD = DJ \implies$ one can choose $D_1 = JD_0J^{-1}$.

Proof. Lemma: Let H be finite-dimensional and $V \subset End(H)$ a *-subalgebra. Then, there exists a direct complement W of V in End(H) such that $[V, W] \subset W$.

For V = A' let W be the complement above. Write $D = D_0 + D_1$ with $D_0 \in V$ and $D_1 \in W$. From the 1st order condition we deduce that in fact $D_1 \in (A^\circ)'$.

<u>Remark</u>: In [Krajewski, J.Geom.Phys. 1998] uniqueness of the decomposition (\dagger) follows from the orientability condition. In the ν SM orientability is not satisfied, and the decomposition is not unique

The 1st order condition

Let (A, H, J) be finite dim. One can completely characterize D's of 1st order:

Theorem (\approx Krajewski)

• $D \in End_{\mathbb{C}}(H)$ satisfies the 1st order condition iff it is of the form

$$\mathsf{D} = \mathsf{D}_0 + \mathsf{D}_1 \tag{\dagger}$$

with $D_0 \in (A^\circ)'$ and $D_1 \in A'$.

- D selfadjoint resp. odd \Rightarrow one can always choose D_0 and D_1 selfadjoint resp. odd.
- $JD = DJ \implies$ one can choose $D_1 = JD_0J^{-1}$.

Proof. Lemma: Let H be finite-dimensional and $V \subset End(H)$ a *-subalgebra. Then, there exists a direct complement W of V in End(H) such that $[V, W] \subset W$.

For V = A' let W be the complement above. Write $D = D_0 + D_1$ with $D_0 \in V$ and $D_1 \in W$. From the 1st order condition we deduce that in fact $D_1 \in (A^\circ)'$.

<u>Remark</u>: In [Krajewski, J.Geom.Phys. 1998] uniqueness of the decomposition (†) follows from the orientability condition. In the ν SM orientability is not satisfied, and the decomposition is not unique

The 1st order condition

Let (A, H, J) be finite dim. One can completely characterize D's of 1st order:

Theorem (\approx Krajewski)

• $D \in End_{\mathbb{C}}(H)$ satisfies the 1st order condition iff it is of the form

$$\mathsf{D} = \mathsf{D}_0 + \mathsf{D}_1 \tag{\dagger}$$

with $D_0 \in (A^\circ)'$ and $D_1 \in A'$.

- D selfadjoint resp. odd \Rightarrow one can always choose D_0 and D_1 selfadjoint resp. odd.
- $JD = DJ \implies$ one can choose $D_1 = JD_0J^{-1}$.

Proof. Lemma: Let H be finite-dimensional and $V \subset End(H)$ a *-subalgebra. Then, there exists a direct complement W of V in End(H) such that $[V, W] \subset W$.

For V = A' let W be the complement above. Write $D = D_0 + D_1$ with $D_0 \in V$ and $D_1 \in W$. From the 1st order condition we deduce that in fact $D_1 \in (A^\circ)'$.

<u>Remark</u>: In [Krajewski, J.Geom.Phys. 1998] uniqueness of the decomposition (†) follows from the orientability condition. In the ν SM orientability is not satisfied, and the decomposition is not unique.

The Dirac condition

Theorem

If $\gamma_F = \chi$ is the chirality operator, there is no compatible D_F satisfying the Dirac condition.

On the other hand, consider the following grading, given on particles by

$$\gamma_{\rm F} := ({\rm B} - {\rm L})\chi$$

with B, L = barion/lepton nr. Then it is possible to find D_F satisfying the Dirac condition (we have theorems both with necessary conditions and sufficient conditions).

Remarks:

- 16 free parameters or 25 with the non-standard γ_F (for a toy model with 1 generation).
- ▶ In the Standard Model: 19 parameters, whose numerical values are established by experiments. One of these is the Higgs mass: $m_H \approx 126$ GeV.
- ▶ In Chamseddine-Connes' original spectral triple, m_H is not a free parameter. It was predicted $m_H \approx 170$ GeV, a value ruled out by Tevatron in 2008.

The Dirac condition

Theorem

If $\gamma_F = \chi$ is the chirality operator, there is no compatible D_F satisfying the Dirac condition.

On the other hand, consider the following grading, given on particles by

 $\gamma_F:=(B-L)\chi$

with B, L = barion/lepton nr. Then it is possible to find D_F satisfying the Dirac condition (we have theorems both with necessary conditions and sufficient conditions).

Remarks:

- 16 free parameters or 25 with the non-standard γ_F (for a toy model with 1 generation).
- ▶ In the Standard Model: 19 parameters, whose numerical values are established by experiments. One of these is the Higgs mass: $m_H \approx 126$ GeV.
- ▶ In Chamseddine-Connes' original spectral triple, m_H is not a free parameter. It was predicted $m_H \approx 170$ GeV, a value ruled out by Tevatron in 2008.

The Dirac condition

Theorem

If $\gamma_F = \chi$ is the chirality operator, there is no compatible D_F satisfying the Dirac condition.

On the other hand, consider the following grading, given on particles by

 $\gamma_F:=(B-L)\chi$

with B, L = barion/lepton nr. Then it is possible to find D_F satisfying the Dirac condition (we have theorems both with necessary conditions and sufficient conditions).

Remarks:

- 16 free parameters or 25 with the non-standard γ_F (for a toy model with 1 generation).
- ► In the Standard Model: 19 parameters, whose numerical values are established by experiments. One of these is the Higgs mass: $m_H \approx 126$ GeV.
- In Chamseddine-Connes' original spectral triple, m_H is not a free parameter. It was predicted m_H ≈ 170 GeV, a value ruled out by Tevatron in 2008.

On the Higgs mass

Several modifications of the original model have been proposed. One can:

- 1. enlarge the Hilbert space thus introducing new fermions [Stephan, 2009];
- turn one element of D_F into a field by hand, rather than getting it as a fluctuation of the metric [Chamseddine & Connes, 2012];
- break (relax) the 1st order condition, thus allowing more terms in the Dirac operator (or in the algebra) [Chamseddine, Connes & van Suijlekom, 2013];
- 4. Grand Symmetry + twisted spectral triples [Devastato, Lizzi & Martinetti, 2014].

In 2,3,4: the Majorana mass term of the neutrino is replaced by a new scalar field Φ .

Theorem

In order to satisfy the Dirac condition, we must add two terms to Chamseddine-Connes $D_{\rm F}$. We get:

- \rightarrow a new scalar field close to the Φ above (but doesn't break the 1st order condition);
- \rightarrow a field coupling leptons with quarks.

Physical implications are under investigation (see the talk at this conference by F. Lizzi).

On the Higgs mass

Several modifications of the original model have been proposed. One can:

- 1. enlarge the Hilbert space thus introducing new fermions [Stephan, 2009];
- turn one element of D_F into a field by hand, rather than getting it as a fluctuation of the metric [Chamseddine & Connes, 2012];
- break (relax) the 1st order condition, thus allowing more terms in the Dirac operator (or in the algebra) [Chamseddine, Connes & van Suijlekom, 2013];
- 4. Grand Symmetry + twisted spectral triples [Devastato, Lizzi & Martinetti, 2014].

In 2,3,4: the Majorana mass term of the neutrino is replaced by a new scalar field Φ .

Theorem

In order to satisfy the Dirac condition, we must add two terms to Chamseddine-Connes D_F . We get:

- \rightarrow a new scalar field close to the Φ above (but doesn't break the 1st order condition);
- \rightarrow a field coupling leptons with quarks.

Physical implications are under investigation (see the talk at this conference by F. Lizzi).

Questions?