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Summary

Talk based on:

Q) FD & L. Dabrowski,
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preprint arXiv:1501.00156 [math-ph]; to appear in J. Noncommut. Geom.
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Summary of the talk:
@ Spectral triples (again).
® An algebraic characterization of Dirac spinors.

® The finite nc space of the vSM.
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Introduction

Definition
A unital spectral triple (A, H, D) is the datum of:

(i) a (real or complex) unital C*-algebra A of bounded operators on a (separable)
complex Hilbert space H,

(i) a selfadjoint operator D on H with compact resolvent,
such that
(iii) the unital x-subalgebra

Lipp(A)={a€ A : a-Dom(D) C DomD and [D, a] € B(H) }

is dense in A.
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Introduction

Definition
A unital spectral triple (A, H, D) is the datum of:

(i) a (real or complex) unital C*-algebra A of bounded operators on a (separable)
complex Hilbert space H,

(i) a selfadjoint operator D on H with compact resolvent,
such that

(iii) the unital x-subalgebra
Lipp(A) ={a€A : a-Dom(D) C DomD and [D, a] € B(H) }

is dense in A.

Example 0 (finite nc spaces)

Take any finite-dimensional H, any A C B(H) and D € B(H). In this case Lipp(A)=A .
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Examples of spectral triples

Let: (M, g) | = compact oriented Riemannian manifold without boundary, E — M herm.

vector bundle equipped with a unitary Clifford action| ¢ : C*(M, TtM ® E) — C*(M, E)
and a connection| V& compatible with g. Then:

A =C(M) H=1%(M, E) D=coVF

is a spectral triple.
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Examples of spectral triples

Let: (M, g) | = compact oriented Riemannian manifold without boundary, E — M herm.

vector bundle equipped with a unitary Clifford action| ¢ : C*(M, TtM ® E) — C*(M, E)

and a connection| V& compatible with g. Then:
A =C(M) H=1*M,E) D=coV"

is a spectral triple.

1. Hodge operator 2. Signature operator (dim M even)
E=A""T:Ma AN°“TiM, D=d+d* | E=ATTEMa A" T¢M with  grading

iven by the Hodge star, D = d + d*.
— Index(D*) = Euler char. of M given by 9 +

\

= Index(D™) = signature of M

3. Dolbeault operator (M complex m.)

o, 4. Dirac operator (M spin)
E=A"""MaA\“M, D=03+2

E = spinor bundle, D = D Dirac operator
= Index(D™) = Euler char. of Op P P P
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Examples of spectral triples

Let: (M, g) | = compact oriented Riemannian manifold without boundary, E — M herm.

vector bundle equipped with a unitary Clifford action| ¢ : C*(M, TtM ® E) — C*(M, E)

and a connection| V& compatible with g. Then:
A =C(M) H=1*M,E) D=coV"

is a spectral triple.

1. Hodge operator 2. Signature operator (dim M even)

E=A""T:Ma AN°“TiM, D=d+d* | E=ATTEMa A" T¢M with  grading

iven by the Hodge star, D = d + d*.
— Index(D*) = Euler char. of M given by 9 +

\

= Index(D™) = signature of M

3. Dolbeault operator (M complex m.)

o, 4. Dirac operator (M spin)
E=A"""MaA\“M, D=03+2

E = spinor bundle, D = 1§ Dirac operator

= Index(D™) = Euler char. of Op

y y

& In all these examples, H carries commuting representations of A = C(M) and B = C¢(M, g).
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5. The Standard Model spectral triple

The underlying geometry is

M X F

(spin manifold) (finite nc space)

with finite-dim. spectral triple (Af, Hg, Dg, v, |+ ) given by:
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5. The Standard Model spectral triple

The underlying geometry is

M X F
(spin manifold) (finite nc space)
with finite-dim. spectral triple (A, Hr, Dr ) given by:

> Hp ~ C3?" ~~ internal degrees of freedom of the elementary fermions. Total nr:

2 X 4 X 2 X 2 X n = 32n
(weak isospin) (lepton + quark (L,R chirality) (particle or (generations)
in 3 colors) antiparticle)

» Ar=CoH® M3(C
F 3(©) ~~ gauge group =~ U(1) x SU(2) x SU(3)

» D¢ encodes the free parameters of the theory.
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Algebraic characterization of Dirac spinors

Definition

A unital spectral triple (A, H, D) is called:

> evenifIy=vy*onHsty>=1,yD=-Dyand[y,a =0V acA;

> real if 3 an antilinear isometry Jon Hs.t. J> = £1, JD = +DJ, Jy = +yJandV a,b € A:

[a,Jb] 711 =0 (D, al,JoJ'1=0
(reality) (1st order)

Theorem
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Algebraic characterization of Dirac spinors

Definition

A unital spectral triple (A, H, D) is called:

> evenifIy=vy*onHsty>=1,yD=-Dyand[y,a =0V acA;

> real if 3 an antilinear isometry Jon Hs.t. J> = £1,JD = 4+DJ, Jy = +yJand V a,b € A:

[a,Jb] 711 =0 (D, al,JoJ'1=0
(reality) (1st order)

Theorem
1. A closed oriented Riem. manifold M admits a spin© structure iff 3 a Morita equivalence
C(M)-CL(M, g) bimodule Z, with €{(M, g) the algebra of sections of the Clifford bundle.
2. £ = (% sections of the spinor bundle S — M (Dirac spinors in the conventional sense).
Once we have S, we can canonically introduce the Dirac operator D of the spin® structure:
3. M is a spin manifold iff 3 a real structure ] on L2(M, S).




What is a noncommutative spin manifold?

For simplicity, let us focus on finite-dimensional spectral triples.
(= A = Lipp(A) and we can use the ring-theoretic Morita equivalence.)
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What is a noncommutative spin manifold?

For simplicity, let us focus on finite-dimensional spectral triples.
(= A = Lipp(A) and we can use the ring-theoretic Morita equivalence.)

Definition (1-forms)
If (A, H, D) is a spectral triple, we define Q1 C B(H) as:

Qf =Span{a[D,b] : a,be A}

Definition (Clifford algebra) [~ Lord, Rennie & Varilly, J.Geom.Phys. 2012]

We call Clp (A) C B(H) the algebra generated by A, QL and possibly v (in the even case)

v

Let A° = {Ja*] ' : a € A}. The reality and 1st order cond. are equivalent to the statement

A° C Clp(A) :=={beB(H):[b,& =0V EeClp(A)}. (%)
Definition (Dirac condition)
Elements of H are “Dirac spinors” if (x) is an equality: A° = Clp(A)’. J




On a property of “Hodge spinors”
In the geometric examples (slide 3), [D, f] = c(df). In the Hodge example:
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Real structure: J(w) = w*|. The algebra| B° = JB]~! acts by right multiplication on H,
that up to completion is a self-Morita equivalence B-bimodule.
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On a property of “Hodge spinors”
In the geometric examples (slide 3), [D, f] = c(df). In the Hodge example:

L2

H=0M)" ~ GlM, g) B = Clp(A) = UM, g)

Representation of B: by Clifford multiplication on Q® (M), or by left multiplication on itself.
Real structure: J(w) = w* . The algebra‘ B° = JBJ~! acts by right multiplication on H,

that up to completion is a self-Morita equivalence B-bimodule.

Definition (2nd order condition)
(A, H,D,]J) satisfies the 2nd order condition if

Clp(A)° =] Clp(A)] " C Clp(A) (%)

Remark: this is the old “order-two” condition by Boyle and Farnsworth (cf. also Besnard, Bizi, Brouder).

Definition (Hodge condition)
(dim H < oo) Elements of H are “Hodge spinors” if (xx) is an equality: C{p(A)° = Clp (A)’.J
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Spin + 2nd order

Observation 1.
Dirac condition + 2nd order condition = Hodge condition. J

In fact:
GED(A)" C Clp (A)/ =A° — GED(A) =A

Therefore:

Observation 2.
Dirac condition + 2nd order = H is a self-Morita equivalence A-bimodule (a “line bundle”). J

An example of spectral triple satisfying both conditions (Einstein-Yang Mills):

A = Mn(C) H=A J(a) = a* D=0



Back to the Standard Model. ..

Recall that in the ncg approach to the Standard Model,one has:

M X F

(spin manifold) (finite nc space)
For the continuous part, elements of Hy, are Dirac spinors. What about the finite part?

We have the following dictionary:

Geometry <— Algebra
Spin® A-Clp (A) Morita equivalence
Spin A-Clp (A) Morita equivalence with |
Hodge Clp (A) self-Morita equivalence*

*in progress with L. Dabrowski & A. Sitarz

What kind of nc space is F?
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Postdictions on D¢

Not every Dr is allowed! = Restrictions on the free parameters/on the interactions.

Constraints of the 1st kind:

@ The parity (ypDr = —Dyyg) and 1st (or 2nd) order condition put constraints on Dr:

some matrix entries must be zero.

For example, the 1st order cond. does not allow a vertex

e

e

Nothing forbids taking D¢ = 0 (all conditions are satisfied).
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Postdictions on D¢

Not every Dr is allowed! = Restrictions on the free parameters/on the interactions.
Constraints of the 1st kind:

@ The parity (ypDr = —Dyyg) and 1st (or 2nd) order condition put constraints on Dr:
some matrix entries must be zero.

For example, the 1st order cond. does not allow a vertex

€
€
Nothing forbids taking D¢ = 0 (all conditions are satisfied).

Constraints of the 2nd kind:

@® The request that elements of Hr are Dirac spinors (or Hodge spinors) on F implies, in
general, that some matrix entries cannot be zero.
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The 1st order condition

Let (A, H,J) be finite dim. One can completely characterize D’s of 1st order:

Theorem (& Krajewski)

e D € End¢(H) satisfies the 1st order condition iff it is of the form
D =Do+ D, 0]

with Dy € (A°) and D; € A’.
e D selfadjoint resp. odd => one can always choose D, and D, selfadjoint resp. odd.
e JD = DJ = one can choose D; = JDoJ 1.
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The 1st order condition

Let (A, H,J) be finite dim. One can completely characterize D’s of 1st order:
Theorem (=~ Krajewski)

e D € End¢(H) satisfies the 1st order condition iff it is of the form

D =Dy + D (1)

with Do € (A°) and D; € A’.

e D selfadjoint resp. odd => one can always choose D, and D, selfadjoint resp. odd.
e JD = DJ = one can choose D; = JDoJ 1.

V.

Proof. Lemma: Let H be finite-dimensional and V C End(H) a x-subalgebra. Then, there
exists a direct complement W of V in End(H) such that [V, W] C W. &

For V = A’ let W be the complement above. Write D = Dg+D; with Dg € Vand D; € W.
From the 1st order condition we deduce that in fact D; € (A°)’. a
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Let (A, H,J) be finite dim. One can completely characterize D’s of 1st order:
Theorem (=~ Krajewski)

e D € End¢(H) satisfies the 1st order condition iff it is of the form

D =Dy + D (1)

with Do € (A°) and D; € A’.

e D selfadjoint resp. odd => one can always choose D, and D, selfadjoint resp. odd.
e JD = DJ = one can choose D; = JDoJ 1.

V.

Proof. Lemma: Let H be finite-dimensional and V C End(H) a x-subalgebra. Then, there
exists a direct complement W of V in End(H) such that [V, W] C W. &

For V = A’ let W be the complement above. Write D = Dg+D; with Dg € Vand D; € W.
From the 1st order condition we deduce that in fact D; € (A°)’. a

Remark: In [Krajewski, J.Geom.Phys. 1998] uniqueness of the decomposition (}) follows from the
orientability condition. In the vSM orientability is not satisfied, and the decomposition is not unique.
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The Dirac condition

Theorem
If v+ = x is the chirality operator, there is no compatible D satisfying the Dirac condition. J
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If v+ = x is the chirality operator, there is no compatible D satisfying the Dirac condition. J

On the other hand, consider the following grading, given on particles by
vr:=(B—L)x

with B, L = barion/lepton nr. Then it is possible to find D satisfying the Dirac condition (we
have theorems both with necessary conditions and sufficient conditions).
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The Dirac condition

Theorem

If v+ = x is the chirality operator, there is no compatible D satisfying the Dirac condition. J

On the other hand, consider the following grading, given on particles by

vr:=(B—L)x

with B, L = barion/lepton nr. Then it is possible to find D satisfying the Dirac condition (we
have theorems both with necessary conditions and sufficient conditions).

Remarks:
> 16 free parameters or 25 with the non-standard yr (for a toy model with 1 generation).

> In the Standard Model: 19 parameters, whose numerical values are established by
experiments. One of these is the Higgs mass: my ~ 126 GeV.

» In Chamseddine-Connes’ original spectral triple, my is not a free parameter. It was
predicted m;; ~ 170 GeV, a value ruled out by Tevatron in 2008.
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On the Higgs mass

Several modifications of the original model have been proposed. One can:
1. enlarge the Hilbert space thus introducing new fermions [Stephan, 2009];

2. turn one element of D¢ into a field by hand, rather than getting it as a fluctuation of
the metric [Chamseddine & Connes, 2012];

3. break (relax) the 1st order condition, thus allowing more terms in the Dirac operator
(or in the algebra) [Chamseddine, Connes & van Suijlekom, 2013];

4. Grand Symmetry + twisted spectral triples [Devastato, Lizzi & Martinetti, 2014].

In 2,3,4: the Majorana mass term of the neutrino is replaced by a new scalar field ©.
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On the Higgs mass

Several modifications of the original model have been proposed. One can:
1. enlarge the Hilbert space thus introducing new fermions [Stephan, 2009];

2. turn one element of D¢ into a field by hand, rather than getting it as a fluctuation of
the metric [Chamseddine & Connes, 2012];

3. break (relax) the 1st order condition, thus allowing more terms in the Dirac operator
(or in the algebra) [Chamseddine, Connes & van Suijlekom, 2013];

4. Grand Symmetry + twisted spectral triples [Devastato, Lizzi & Martinetti, 2014].
In 2,3,4: the Majorana mass term of the neutrino is replaced by a new scalar field ©.

Theorem
In order to satisfy the Dirac condition, we must add two terms to Chamseddine-Connes Dy.
We get:

— anew scalar field close to the ® above (but doesn’t break the 1st order condition);

— a field coupling leptons with quarks.

Physical implications are under investigation (see the talk at this conference by F. Lizzi).
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Questions?



