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Introduction

Definition

A unital spectral triple (A,H,D) is the datum of:

(i) a (real or complex) unital C∗-algebra A of bounded operators on a (separable)
complex Hilbert space H,

(ii) a selfadjoint operator D on H with compact resolvent,

such that

(iii) the unital ∗-subalgebra

LipD(A) =
{
a ∈ A : a ·Dom(D) ⊂ DomD and [D,a] ∈ B(H)

}
is dense in A.

Example 0 (finite nc spaces)

Take any finite-dimensional H, any A ⊂ B(H) and D ∈ B(H). In this case LipD(A) ≡ A .
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Examples of spectral triples

Let: (M,g) = compact oriented Riemannian manifold without boundary, E→M herm.

vector bundle equipped with a unitary Clifford action c : C∞(M, T∗CM⊗ E)→ C∞(M,E)

and a connection ∇E compatible with g. Then:

A = C(M) H = L2(M,E) D = c ◦ ∇E

is a spectral triple.

1. Hodge operator

E =
∧even

T∗CM⊕
∧odd

T∗CM , D = d+ d∗

⇒ Index(D+) = Euler char. of M

2. Signature operator (dimM even)

E =
∧+

T∗CM⊕
∧−

T∗CM with grading
given by the Hodge star, D = d+ d∗.

⇒ Index(D+) = signature of M

3. Dolbeault operator (M complex m.)

E =
∧0,even

M⊕
∧0,odd

M, D = ∂+ ∂
∗

⇒ Index(D+) = Euler char. of OM

4. Dirac operator (M spin)

E = spinor bundle, D = D/ Dirac operator

In all these examples,H carries commuting representations ofA = C(M) and B = C`(M,g).
3 / 13
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5. The Standard Model spectral triple

The underlying geometry is

M × F

(spin manifold) (finite nc space)

with finite-dim. spectral triple (AF,HF,DF,γF, JF) given by:

I HF ' C32n  internal degrees of freedom of the elementary fermions. Total nr:

2 × 4 × 2 × 2 × n = 32n

(weak isospin) (lepton + quark (L,R chirality) (particle or (generations)
in 3 colors) antiparticle)

I γF = chirality operator

I AF = C⊕H⊕M3(C)

JF = charge conjugation
 gauge group ≈ U(1)× SU(2)× SU(3)

I DF encodes the free parameters of the theory.
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Algebraic characterization of Dirac spinors

Definition

A unital spectral triple (A,H,D) is called:

I even if ∃ γ = γ∗ on H s.t. γ2 = 1, γD = −Dγ and [γ,a] = 0 ∀ a ∈ A;

I real if ∃ an antilinear isometry J onH s.t. J2 = ±1, JD = ±DJ, Jγ = ±γJ and ∀ a,b ∈ A:

[a, JbJ−1] = 0

(reality)

[[D,a], JbJ−1] = 0

(1st order)

Theorem

1. A closed oriented Riem. manifold M admits a spinc structure iff ∃ a Morita equivalence
C(M)-C`(M,g) bimodule Σ, with C`(M,g) the algebra of sections of the Clifford bundle.

2. Σ = C0 sections of the spinor bundle S→M (Dirac spinors in the conventional sense).

Once we have S, we can canonically introduce the Dirac operator D of the spinc structure:

3. M is a spin manifold iff ∃ a real structure J on L2(M,S).

5 / 13



Algebraic characterization of Dirac spinors

Definition

A unital spectral triple (A,H,D) is called:

I even if ∃ γ = γ∗ on H s.t. γ2 = 1, γD = −Dγ and [γ,a] = 0 ∀ a ∈ A;

I real if ∃ an antilinear isometry J onH s.t. J2 = ±1, JD = ±DJ, Jγ = ±γJ and ∀ a,b ∈ A:

[a, JbJ−1] = 0

(reality)

[[D,a], JbJ−1] = 0

(1st order)

Theorem
1. A closed oriented Riem. manifold M admits a spinc structure iff ∃ a Morita equivalence
C(M)-C`(M,g) bimodule Σ, with C`(M,g) the algebra of sections of the Clifford bundle.

2. Σ = C0 sections of the spinor bundle S→M (Dirac spinors in the conventional sense).

Once we have S, we can canonically introduce the Dirac operator D of the spinc structure:

3. M is a spin manifold iff ∃ a real structure J on L2(M,S).

5 / 13



Algebraic characterization of Dirac spinors

Definition

A unital spectral triple (A,H,D) is called:

I even if ∃ γ = γ∗ on H s.t. γ2 = 1, γD = −Dγ and [γ,a] = 0 ∀ a ∈ A;

I real if ∃ an antilinear isometry J onH s.t. J2 = ±1, JD = ±DJ, Jγ = ±γJ and ∀ a,b ∈ A:

[a, JbJ−1] = 0

(reality)

[[D,a], JbJ−1] = 0

(1st order)

Theorem
1. A closed oriented Riem. manifold M admits a spinc structure iff ∃ a Morita equivalence
C(M)-C`(M,g) bimodule Σ, with C`(M,g) the algebra of sections of the Clifford bundle.

2. Σ = C0 sections of the spinor bundle S→M (Dirac spinors in the conventional sense).

Once we have S, we can canonically introduce the Dirac operator D of the spinc structure:

3. M is a spin manifold iff ∃ a real structure J on L2(M,S).

5 / 13



Algebraic characterization of Dirac spinors

Definition

A unital spectral triple (A,H,D) is called:

I even if ∃ γ = γ∗ on H s.t. γ2 = 1, γD = −Dγ and [γ,a] = 0 ∀ a ∈ A;

I real if ∃ an antilinear isometry J onH s.t. J2 = ±1, JD = ±DJ, Jγ = ±γJ and ∀ a,b ∈ A:

[a, JbJ−1] = 0

(reality)

[[D,a], JbJ−1] = 0

(1st order)

Theorem
1. A closed oriented Riem. manifold M admits a spinc structure iff ∃ a Morita equivalence
C(M)-C`(M,g) bimodule Σ, with C`(M,g) the algebra of sections of the Clifford bundle.

2. Σ = C0 sections of the spinor bundle S→M (Dirac spinors in the conventional sense).

Once we have S, we can canonically introduce the Dirac operator D of the spinc structure:

3. M is a spin manifold iff ∃ a real structure J on L2(M,S).

5 / 13



What is a noncommutative spin manifold?

For simplicity, let us focus on finite-dimensional spectral triples.
(⇒ A ≡ LipD(A) and we can use the ring-theoretic Morita equivalence.)

Definition (1-forms)

If (A,H,D) is a spectral triple, we define Ω1
D ⊆ B(H) as:

Ω1
D := Span

{
a[D,b] : a,b ∈ A

}
Definition (Clifford algebra) [≈ Lord, Rennie & Várilly, J.Geom.Phys. 2012]

We call C`D(A) ⊆ B(H) the algebra generated by A,Ω1
D and possibly γ (in the even case).

Let A◦ :=
{
Ja∗J−1 : a ∈ A

}
. The reality and 1st order cond. are equivalent to the statement

A◦ ⊆ C`D(A)
′ :=
{
b ∈ B(H) : [b, ξ] = 0 ∀ ξ ∈ C`D(A)

}
. (?)

Definition (Dirac condition)

Elements of H are “Dirac spinors” if (?) is an equality: A◦ = C`D(A)
′.
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On a property of “Hodge spinors”

In the geometric examples (slide 3), [D, f] = c(df). In the Hodge example:

H = Ω•(M)
L2

' C`(M,g)
L2

B := C`D(A) = C`(M,g)

Representation of B: by Clifford multiplication on Ω•(M), or by left multiplication on itself.

Real structure: J(ω) = ω∗ . The algebra B◦ = JBJ−1 acts by right multiplication on H,
that up to completion is a self-Morita equivalence B-bimodule.

Definition (2nd order condition)

(A,H,D, J) satisfies the 2nd order condition if

C`D(A)
◦ := JC`D(A) J

−1 ⊆ C`D(A)
′ (??)

Remark: this is the old “order-two” condition by Boyle and Farnsworth (cf. also Besnard, Bizi, Brouder).

Definition (Hodge condition)

(dimH <∞) Elements of H are “Hodge spinors” if (??) is an equality: C`D(A)◦ = C`D(A)
′.
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Spin + 2nd order

Observation 1.

Dirac condition + 2nd order condition⇒ Hodge condition.

In fact:

C`D(A)
◦ ⊆ C`D(A)

′ = A◦ =⇒ C`D(A) = A

Therefore:

Observation 2.

Dirac condition + 2nd order⇒ H is a self-Morita equivalence A-bimodule (a “line bundle”).

An example of spectral triple satisfying both conditions (Einstein-Yang Mills):

A =MN(C) H = A J(a) = a∗ D = 0

8 / 13



Back to the Standard Model. . .

Recall that in the ncg approach to the Standard Model,one has:

M × F

(spin manifold) (finite nc space)

For the continuous part, elements of HM are Dirac spinors. What about the finite part?

We have the following dictionary:

Geometry ←→ Algebra

Spinc A-C`D(A) Morita equivalence

Spin A-C`D(A) Morita equivalence with J

Hodge C`D(A) self-Morita equivalence∗

∗ in progress with L. Dabrowski & A. Sitarz

What kind of nc space is F ?
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Postdictions on DF

Not every DF is allowed! ⇒ Restrictions on the free parameters/on the interactions.

Constraints of the 1st kind:

1 The parity (γFDF = −DFγF) and 1st (or 2nd) order condition put constraints on DF:
some matrix entries must be zero.

For example, the 1st order cond. does not allow a vertex

?

e−

e−

Nothing forbids taking DF = 0 (all conditions are satisfied).

Constraints of the 2nd kind:

2 The request that elements of HF are Dirac spinors (or Hodge spinors) on F implies, in
general, that some matrix entries cannot be zero.
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The 1st order condition

Let (A,H, J) be finite dim. One can completely characterize D’s of 1st order:

Theorem (≈ Krajewski)

• D ∈ EndC(H) satisfies the 1st order condition iff it is of the form

D = D0 +D1 (†)

with D0 ∈ (A◦) ′ and D1 ∈ A ′.
• D selfadjoint resp. odd ⇒ one can always choose D0 and D1 selfadjoint resp. odd.

• JD = DJ ⇒ one can choose D1 = JD0J
−1.

Proof. Lemma: Let H be finite-dimensional and V ⊂ End(H) a ∗-subalgebra. Then, there
exists a direct complement W of V in End(H) such that [V,W] ⊂W. ♣

For V = A ′ letW be the complement above. WriteD = D0+D1 withD0 ∈ V andD1 ∈W.
From the 1st order condition we deduce that in fact D1 ∈ (A◦) ′. �

Remark: In [Krajewski, J.Geom.Phys. 1998] uniqueness of the decomposition (†) follows from the

orientability condition. In the νSM orientability is not satisfied, and the decomposition is not unique.
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The Dirac condition

Theorem
If γF = χ is the chirality operator, there is no compatible DF satisfying the Dirac condition.

On the other hand, consider the following grading, given on particles by

γF := (B− L)χ

with B,L = barion/lepton nr. Then it is possible to find DF satisfying the Dirac condition (we
have theorems both with necessary conditions and sufficient conditions).

Remarks:

I 16 free parameters or 25 with the non-standard γF (for a toy model with 1 generation).

I In the Standard Model: 19 parameters, whose numerical values are established by
experiments. One of these is the Higgs mass: mH ≈ 126 GeV.

I In Chamseddine-Connes’ original spectral triple, mH is not a free parameter. It was
predicted mH ≈ 170 GeV, a value ruled out by Tevatron in 2008.
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I In the Standard Model: 19 parameters, whose numerical values are established by
experiments. One of these is the Higgs mass: mH ≈ 126 GeV.

I In Chamseddine-Connes’ original spectral triple, mH is not a free parameter. It was
predicted mH ≈ 170 GeV, a value ruled out by Tevatron in 2008.
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On the Higgs mass

Several modifications of the original model have been proposed. One can:

1. enlarge the Hilbert space thus introducing new fermions [Stephan, 2009];

2. turn one element of DF into a field by hand, rather than getting it as a fluctuation of
the metric [Chamseddine & Connes, 2012];

3. break (relax) the 1st order condition, thus allowing more terms in the Dirac operator
(or in the algebra) [Chamseddine, Connes & van Suijlekom, 2013];

4. Grand Symmetry + twisted spectral triples [Devastato, Lizzi & Martinetti, 2014].

In 2,3,4: the Majorana mass term of the neutrino is replaced by a new scalar field Φ.

Theorem
In order to satisfy the Dirac condition, we must add two terms to Chamseddine-Connes DF.
We get:

→ a new scalar field close to the Φ above (but doesn’t break the 1st order condition);

→ a field coupling leptons with quarks.

Physical implications are under investigation (see the talk at this conference by F. Lizzi).
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Questions?


