From Equivariant Quantization to Locally Compact Quantum Groups

Victor Gayral

Laboratoire de mathématique Université de Reims Champagne-Ardenne

Locally compact quantum groups

A) von Neumann algebraic setting (Kustermans-Vaes 2000)

Definition: A locally compact quantum group in the von Neumann algebraic setting is $\mathbb{G} = (\mathcal{M}, \Delta, \Phi_{\lambda}, \Phi_{\rho})$ where

- \mathcal{M} is a von Neumann algebra
- $\Delta : \mathcal{M} \to \mathcal{M} \bar{\otimes} \mathcal{M}$ is a co-associative morphism (coproduct)
- $\Phi_{\lambda}, \Phi_{\rho}$ are left- and right-invariant NSF weights on \mathcal{M} , i.e. $\Phi_{\lambda}(\omega \otimes \mathrm{Id}(\Delta(a)) = \omega(1)\Phi_{\lambda}(a), \quad \forall a \in \mathcal{N}^+, \forall \omega \in \mathcal{M}^+_*$

Well established theory

\rightarrow Antipode

 \rightarrow Pontryagin duality (denote by $\widehat{\mathbb{G}} = (\widehat{\mathcal{M}}, \widehat{\Delta}, \widehat{\Phi}_{\lambda}, \widehat{\Phi}_{\rho})$ the dual LCQG)

But possesses pathologies

 \rightarrow Measurable and not topological theory as it should be

 \rightarrow Very few examples

Cocycle deformation of a LCQG

Definition: A dual unitary 2-cocycle for a locally compact quantum group \mathbb{G} is an element $F \in \mathcal{U}(\hat{\mathcal{M}} \otimes \hat{\mathcal{M}})$ satisfying

$$(F \otimes 1)(\widehat{\Delta} \otimes \mathrm{Id})(F) = (1 \otimes F)(\mathrm{Id} \otimes \widehat{\Delta})(F)$$

 \rightarrow Deformation of the coproduct:

$$\widehat{\Delta}_F : \widehat{\mathcal{M}} \to \widehat{\mathcal{M}} \otimes \widehat{\mathcal{M}}, \quad a \mapsto F^* \widehat{\Delta}(a) F$$

Theorem [De Commer 2010]: There exist NSF weights on $\hat{\mathcal{M}}$ invariant for $\hat{\Delta}_F$

Hence: Using duality, one can deform a LCQG \mathbb{G} from a dual unitary 2-cocycle F: \mathbb{G}_F

Open problem: Construct a dual unitary 2-cocycle already on a genuine group!

Open solution: Non-formal equivariant quantization on a group!

Part I: What we (I?) want to do

Non-formal G-equivariant quantization on a group G:

Data:

- \tilde{G} locally compact group (covariance group)
- (π, \mathcal{H}_{π}) projective representation (square integrable) of \tilde{G}
- $X = \tilde{G}/H$ homogeneous space (substitute for the phases space)

Definition: \tilde{G} -equivariant quantization on X:

$$\Omega: \mathcal{D}(X) \to \mathcal{B}(\mathcal{H}_{\pi}), \quad \pi(g) \,\Omega(f) \,\pi(g)^* = \Omega(f^g), \quad \left[f^g(x) := f(g^{-1}.x)\right]$$

Examples: Weyl quantization, Berezin quantization, coherent states quantization, Fuchs calculus (Unterberger), *p*-adic Weyl calculus (Haran-Unterberger), BCH quantization of coadjoint orbits of exponential Lie groups.....

Geometrical assumptions:

(H1) \tilde{G} possesses a subgroup acting simply transitively on X (and the restriction of π is still irreducible and square-integrable)

(H1') H is a normal subgroup of \tilde{G} and $[\pi(H), \Omega(\mathcal{D}(X))] = 0$

In both cases: The phases space X is endowed with a group structure (X is then denoted G)

In the first case: we have a *G*-equivariant quantization on *G* (*G* acts on \mathcal{H}_{π})

In the second case: we have a *G*-quasi-equivariant quantization on *G* (*G* does not act on \mathcal{H}_{π})

Analytical assumptions :

(H2) The map Ω extends to a unitary from $L^2(G)$ to $\mathcal{L}^2(\mathcal{H}_{\pi})$ \rightarrow If not finite, then G non-compact and \mathcal{H}_{π} infinite dimensional

- $L^2(G)$ becomes an algebra equivariant under the left action of G $f_1 \star f_2 := \Omega^{-1} \big(\Omega(f_1) \Omega(f_2) \big)$
- (H3) The distribution $\mathbf{K} \in \mathcal{D}'(G^3)$ is a regular function (Bruhat) $\langle \mathbf{K}, \varphi_1 \otimes \varphi_2 \otimes \varphi_3 \rangle := \mathsf{Tr} \Big(\Omega(f_1) \Omega(f_2) \Omega(f_3) \Big)$
- \bullet Tri-point kernel ${\bf K}$ is invariant under left diagonal action of G
- On $\mathcal{D}(G)$ the non-formal star-product reads

$$f_1 \star f_2 = \int_{G \times G} \mathbf{K}(e, g_1, g_2) \,\rho_{g_1}(f_1) \,\rho_{g_2}(f_2) \,dg_1 dg_2$$

Paradigmatic example:

Fix a densely defined self-adjoint operator Σ on \mathcal{H}_{π} (which commutes with $\pi(H)$ in the *G*-quasi-equivariant case) and set

$$\Omega(f) = \int_G f(g) \,\pi(g) \Sigma \pi(g)^* \, dg$$

- In bad exemple Σ is compact and positive (Berezin $\Sigma = |\varphi\rangle\langle\varphi|$)
- \bullet In good examples (Weyl, Unterberger...), Σ is bounded and self-adjoint
- \bullet In very good examples (BCH, what follows) Σ is unbounded and self-adjoint

• Typically, $\mathcal{H}_{\pi} = L^2(Q)$, σ involution on Q, where Q (the configuration space) is a sub-group of G

$$\Sigma \varphi(q) = \operatorname{Jac}_{\Psi}^{1/2}(q) \varphi(\sigma(q))$$

In conclusion : Non-formal G-equivariant (or G-quasi-equivariant) quantizations on a group G are associated with

- (π, \mathcal{H}_{π}) projective representation of G (or of a group \tilde{G} for which G is a quotient)
- Σ non necessarily bounded self-adjoint operator on \mathcal{H}_{π} (which commutes with $\pi(H)$ in the *G*-quasi-equivariant case)

Natural candidate for a unitary dual 2-cocycle on G:

$$F = \int_{G \times G} \overline{\mathbf{K}(e, g_1, g_2)} \,\lambda_{g_1^{-1}} \otimes \lambda_{g_2^{-1}} \,dg_1 dg_2$$

- 2-cocyclicity for F equivalent to associativity of \star
- Unitarity has to be checked

Slogan: What seems to be deep is not and what seems to be trivial is not....

Part II: What we have done

Negatively curved Kählerian Lie groups

Pyatetskii-Shapiro : Every Kählerian Lie group with negative sectional curvature as the form

$$\left(\left(\ldots\left(G_d\ltimes G_{d-1}\right)\ltimes\ldots\right)\ltimes G_2\right)\ltimes G_1$$

- $G_j \simeq AN_j$, $AN_jK = SU(1, n_j)$, $N_j =$ Heisenberg group
- Solvable, non-unimodular, exponential
- Extension homomorphisms land in $Sp(V_i)$
- 2 classes of (infinite dimensional) irreducible unitary representations U_{\pm} on $L^2(Q)$, where $G = Q \ltimes P$
- En dim 2 : G = ax + b

Extra geometric structures

- Elementary block G = AN symmetric symplectic space G-covariant
- Mid-point map mid : $G \times G \rightarrow G$, $s_{mid(x,y)}(x) = y$
- $\Phi: G^3 \to G^3$, $(g, g', g'') \mapsto (\operatorname{mid}(g, g'), \operatorname{mid}(g', g''), \operatorname{mid}(g'', g))$ global diffeomorphism invariant under the diagonal left action of G
- The symmetric structure of G restrict to Q ($G = Q \ltimes P$)

Elementary case:

- $\Sigma \varphi(q) = \operatorname{Jac}_{\psi}^{1/2}(q)\varphi(s_e(q))$ (ψ is an intrinsic diffeomorphism of Q)
- Representations U_{\pm} on $L^2(Q)$
- Tri-point kernel

$$\mathbf{K}^{G}_{\pm}(g,g',g'') = |\mathsf{Jac}_{\Phi^{-1}}|^{1/2}(g,g',g'') \exp\left\{\pm 2i\mathsf{Area}\left(\Phi^{-1}(g,g',g'')\right)\right\}$$

General case: (stupid) gluing $g = g_1 g_2 \in G = G_2 \ltimes G_1, g_j \in G_j$ $\mathbf{K}^G_{\pm,\pm}(g,g',g'') = \mathbf{K}^{G_1}_{\pm}(g_1,g'_1,g''_1)\mathbf{K}^{G_2}_{\pm}(g_2,g'_2,g''_2)$

Theorem [G-Bieliavsky 2013]:

- Quantization unitary from $L^2(G)$ to $\mathcal{L}^2(\mathcal{H}_{\pm})$
- It extends as a continuous map from a larger set of functions to $\mathcal{B}(\mathcal{H}_{\pm})$ (Calderon-Vaillancourt type estimate)

• It allows to deform any C^* -algebra endowed with a continuous action of G (i.e. we generalize Rieffel construction for a non-Abelian group)

Theorem [Neshveyev-Tuset 2014]:

The quadratic form on $\mathcal{D}(G \times G)$ defined by

$$F_{\pm}^{*}[\varphi_{1},\varphi_{2}] := \int \mathbf{K}_{\pm}^{G}(e,g_{1},g_{2}) \,\bar{\varphi}_{1} * \varphi_{2}(g_{1},g_{2}) \, dg_{1} dg_{2}$$

extends to a unitary operator on $L^2(G \times G)$ and its adjoint defines a dual 2-cocycle on G

 \rightarrow First example of a unitary dual 2-cocycle on a non-Abelian group!

Variation 1: geometric structures

• If $Dim(G) \ge 4$, there is two classes of non equivalent symplectic symmetric space structures on an elementary Kahlerian Lie group G (Voglaire)

 \rightarrow There is no (yet) quantization behind but a direct star-product approach (what does change is the covariance group \tilde{G})

Theorem [G-Jondreville]:

The associated dual 2-cocycle is unitary on $L^2(G \times G)$

• Projectives representations

 \rightarrow Group cohomology in degree 2 is nontrivial if G is not elementary (i.e. if there is at least two factors in the Pyatetskii-Shapiro decomposition of G)

 \rightarrow There exists non trivial projective representations if G is not elementary

Theorem [Bieliavsky-G-De Goursac]:

The associated dual 2-cocycle is unitary on $L^2(G \times G)$

Clopen Question: Are the different negatively curved quantum Kählerian Lie groups constructed so far isomorphic?

- Representation theory: NO (conjecture supported by my feeling)
- Symplectic symmetric space structures: NO (conjecture supported by the fact that covariance groups are differents)
- Projective representations: NO (proof from Duflo-Moore theory)

Variation 2: semi-simple covariance group

• Up to now, all the variations lead to solvable covariance groups (\widetilde{G})

For elementary Kahlerians Lie groups, there is ways to modify the star-product (not yet the quantization map) to get for covariance group $\tilde{G} = SU(1, n)$

• But the associated dual 2-cocycle is no longer unitary, probably (?) invertible

Variation 3: no more geometry

Motivation: The BCH quantization of an exponential Lie group

- \bullet Let G be an exponential Lie group with $\mathfrak g$ its Lie algebra
- Assume G possesses a coadjoint orbit $\mathcal{O}\subset\mathfrak{g}^{\star}$ on which G acts simply transitively
- Let $U_{\mathcal{O}}$ the KKS representation of G
- For $f \in C^{\infty}_{c}(\mathcal{O}) \subset C^{\infty}_{c}(\mathfrak{g}^{\star})$ define

$$\Omega_{\mathcal{O}}(f) := \int_{\mathfrak{g}} \mathcal{F}(f)(X) U_{\mathcal{O}}(\exp\{X\}) dX$$

• After identification $G\simeq \mathcal{O},$ get a G-covariant quantization on G

- These assumptions are satisfied for $G = \mathbb{R} \ltimes \mathbb{R}$. In this case, two possible orbits $\Pi_{\pm} := \{(x, y) \in \mathfrak{g}^* : \pm y > 0\}$
- The quantization map reads

$$\Omega_{\pm}(f) = \int_G f(g) U_{\pm}(g) \Sigma U_{\pm}(g) dg,$$

• where, realizing \mathcal{H}_{\pm} as $L^2(\mathbb{R})$, we have

$$\Sigma \varphi(t) = |\gamma'(t)| \varphi(\sigma(t)),$$

• σ is the involutive diffeomorphism of ${\mathbb R}$ given by

$$\sigma = \mathrm{Id} - \gamma : \mathbb{R} \to \mathbb{R}$$

and γ is the inverse diffeomorphism of $\log \circ \lambda : \mathbb{R} \to \mathbb{R}$ where

$$\lambda : \mathbb{R} \to \mathbb{R}^*_+, \quad t \mapsto t(1 - e^{-t})^{-1}$$

Generalization: no more geometry

• $G = \mathbb{R} \ltimes \mathbb{R}$, U_{\pm}

• Let $\sigma \in \text{Diff}(\mathbb{R})$ be an involution such that

(1) $\gamma := \sigma - \mathrm{Id} \in \mathsf{Diff}(\mathbb{R})$

(2) $\phi := [a \mapsto e^a - e^{\sigma(a)}] \in \text{Diff}(\mathbb{R})$

Set $\Sigma \varphi(a) := |\gamma'(a)|^{1/2} |\phi'(a)|^{1/2} \varphi(\sigma(a))$

Theorem [G-Jondreville]:

(i) The $\mathbb{R} \ltimes \mathbb{R}$ -covariant quantization map on $\mathbb{R} \ltimes \mathbb{R}$ associated with (U_{\pm}, Σ) defines a unitary operator from $L^2(G)$ to $HS(L^2(\mathbb{R}))$

(ii) Let $\kappa : \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be the unique solution of

$$\sigma(\sigma(\kappa(a_1, a_2, a_3) - a_1) + a_1 - a_2) + a_2 - a_3) + a_3 = \kappa(a_1, a_2, a_3)$$

Then, the associated 2-points kernel reads ($\kappa := \kappa(0, a_1, a_2)$)

$$\mathbf{K}_{\sigma}(a_{1},t_{1};a_{2},t_{2}) = \frac{\sqrt{\left|\gamma'\phi'\right|\left(\kappa\right)\left|\gamma'\phi'\right|\left(\sigma(\kappa)-a_{1}\right)\left|\gamma'\phi'\right|\left(\sigma(\kappa-a_{2})\right)\right|}}{\left|1-\sigma'(\kappa)\sigma'(\sigma(\kappa)-a_{1})\sigma'(\sigma(\kappa-a_{2}))\right|} \times \exp\{i\phi(a_{1}-\sigma(\kappa))t_{1}+i\phi(a_{2}-\kappa)t_{2}\}\right|}$$

(iii) The 2-cocycle

$$F_{\sigma} := \int_{G^2} \overline{\mathbf{K}_{\sigma}(e;g,g')} \,\lambda_{g^{-1}} \otimes \lambda_{g'^{-1}} \,dgdg'$$

is a unitary element of $W^*((G \times G))$ if and only if $\sigma = -Id$

- Unitarity for the 2-cocycle selects the (unique) symplectic symmetric space structure of the affine group of the real line
- Need framework without unitarity for the dual 2-cocycle, instead invertibility (on suitable domains)

Variation 4: base field

• k Non Archimedean local field (of characteristic \neq 2 and which is not an extension of \mathbb{Q}_2)

• \mathcal{O}_k ring of integers, ϖ a generator of its unique maximal ideal, Ψ non-trivial additive character of k constant on \mathcal{O}_k

•
$$\widetilde{G}_n = (1 + \varpi^n \mathcal{O}_k) \ltimes k, n = 1, 2, \dots$$

• $G_n = \tilde{G}_n / \varpi^{-n} \mathcal{O}_k \simeq \mathcal{O}_k \ltimes_{\alpha_n} \widehat{\mathcal{O}_k}$ (countable family of non-isomorphic groups which are not discrete, nor compact but unimodular)

• Representations of \tilde{G}_n on $L^2(1 + \varpi^n \mathcal{O}_k)$

$$U(a,t)\varphi(a_0) = \Psi(aa_0^{-1}t)\varphi(a^{-1}a_0)$$

(Mackey: all the infinite dimensional reps are of this form)

• $\Sigma \varphi(a_0) = \varphi(a_0^{-1})$ (bounded and self-adjoint)

 \rightarrow Trikernel given by

$$\mathbf{K}(a_1, [t_1]; a_2, [t_2]; a_3, [t_3]) = \Psi\left(\left(\frac{a_1}{a_2} - \frac{a_2}{a_1}\right)t_2 + \left(\frac{a_2}{a_3} - \frac{a_3}{a_2}\right)t_1 + \left(\frac{a_3}{a_1} - \frac{a_1}{a_3}\right)t_2\right)$$

Theorem [G-Jondreville]:

• The quantization is unitary and extends as a continuous map from a larger space of functions to $\mathcal{B}(L^2(1 + \varpi^n \mathcal{O}_k))$ (non-Abelain and p-adic Calderon-Vaillancourt) and allows to deform any C^* -algebra endowed with a continuous action of G and

• The associated dual 2-cocycle is unitary on $L^2(G_n \times G_n)$

Locally compact quantum groups

B) Manageable multiplicative unitary (Woronowicz 1995)

Definition : A multiplicative unitary on \mathcal{H} is a unitary W on $\mathcal{H} \overline{\otimes} \mathcal{H}$ satisfying the pentagonale equation

$$W_{23}W_{12} = W_{12}W_{13}W_{23}$$

W is manageable is there exists a densely defined positive and selfadjoint operator Q with densely defined inverse and a unitary operator \widetilde{W} on $\overline{\mathcal{H}}\overline{\otimes}\mathcal{H}$ such that

$$W^* Q \otimes Q W = Q \otimes Q$$

and such that for all $\varphi_1, \varphi_3 \in \mathcal{H}$ and all $\varphi_2 \in \text{Dom}(Q)$, $\varphi_4 \in \text{Dom}(Q^{-1})$

$$\langle \varphi_1 \otimes \varphi_2, W \varphi_3 \otimes \varphi_4 \rangle = \langle \overline{\varphi}_3 \otimes Q \varphi_2, \widetilde{W} \overline{\varphi}_4 \otimes Q^{-1} \varphi_4 \rangle$$

Less well established theory

 \rightarrow Generalize Baaj-Skandalis theory

 \rightarrow Contains all the locally compact quantum group in the von Neumann algebraic setting

 \rightarrow Topological theory as it should be

Still possesses a pathology

 \rightarrow Very few examples

Multiplicative unitary from an invertible dual 2-cocycle (Joint work with Bieliavsky, Bonneau and D'Andrea)

• Starts with a densely defined with densely defined inverse dual 2-cocycle on a group G (coming from quantization or not)

$$F = \int_{G \times G} K(g_1, g_2) \lambda_{g_1} \otimes \lambda_{g_2} dg_1 dg_2 \quad \text{affiliated with} \quad W^*_{\lambda}(G \times G)$$

• Assume

 $F^{-1} = \int_{G \times G} \widetilde{K}(g_1, g_2) \lambda_{g_1} \otimes \lambda_{g_2} dg_1 dg_2 \quad \text{affiliated with} \quad W^*_{\lambda}(G \times G)$ and that \widetilde{F} is still a dual 2-cocycle, where $\widetilde{F} := \int_{G \times G} \widetilde{K}(g_1^{-1}, g_2^{-1}) \lambda_{g_1} \otimes \lambda_{g_2} dg_1 dg_2 \quad \text{affiliated with} \quad W^*_{\lambda}(G \times G)$

• Set

$$\widetilde{F}_{\rho} := \int_{G \times G} \widetilde{K}(g_1, g_2) \rho_{g_1} \otimes \rho_{g_2} dg_1 dg_2 \quad \text{affiliated with} \quad W^*_{\rho}(G \times G)$$

- Assume the associative doubly deformed product $\star_{\lambda,\rho}$ well defined $\varphi_1 \star_{\lambda,\rho} \varphi_2 := \mu \circ F \circ \widetilde{F}_{\rho}(\varphi_1 \otimes \varphi_2)$
- Natural candidate for a manageable multiplicative unitary

$$W_{\star}(\varphi_1 \otimes \varphi_2) = \Delta(\varphi_1) \star_{\lambda,\rho} (1 \otimes \varphi_2)$$

- Pentagonale equation is automatic!
- Unitarity on the completion of $\mathcal{D}(G)$ of

$$\langle \varphi_1, \varphi_2 \rangle := \int_G \overline{\varphi_1} \star_{\lambda, \rho} \varphi_2(g) d^{\rho}(g)$$

Provided it is a scalar product !

True when $\delta^{\alpha}_{G} \star_{\lambda,\rho} \delta^{\beta}_{G} = \delta^{\alpha+\beta}_{G}$

• Manageability has to be checked.....