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Locally compact quantum groups

A) von Neumann algebraic setting (Kustermans-Vaes 2000)

Definition: A locally compact quantum group in the von Neumann
algebraic setting is G = (M,∆,Φλ,Φρ) where

• M is a von Neumann algebra

• ∆ :M→M⊗̄M is a co-associative morphism (coproduct)

• Φλ,Φρ are left- and right-invariant NSF weights on M, i.e.

Φλ

(
ω ⊗ Id(∆(a)

)
= ω(1)Φλ(a) , ∀a ∈ N+, ∀ω ∈M+

∗
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Well established theory

→ Antipode

→ Pontryagin duality (denote by Ĝ = (M̂, ∆̂, Φ̂λ, Φ̂ρ) the dual LCQG)

But possesses pathologies

→ Measurable and not topological theory as it should be

→ Very few examples
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Cocycle deformation of a LCQG

Definition: A dual unitary 2-cocycle for a locally compact quantum
group G is an element F ∈ U(M̂ ⊗̄ M̂) satisfying

(F ⊗ 1)(∆̂⊗ Id)(F ) = (1⊗ F )(Id⊗ ∆̂)(F )

→ Deformation of the coproduct:

∆̂F : M̂ → M̂⊗̄M̂, a 7→ F ∗∆̂(a)F

Theorem [De Commer 2010]: There exist NSF weights on M̂
invariant for ∆̂F
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Hence: Using duality, one can deform a LCQG G from a dual unitary
2-cocycle F : GF

Open problem: Construct a dual unitary 2-cocycle already on a
genuine group!

Open solution: Non-formal equivariant quantization on a group!
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Part I: What we (I?) want to do
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Non-formal G-equivariant quantization on a group G :

Data:
• G̃ locally compact group (covariance group)
• (π,Hπ) projective representation (square integrable) of G̃
• X = G̃/H homogeneous space (substitute for the phases space)

Definition: G̃-equivariant quantization on X :

Ω : D(X)→ B(Hπ), π(g) Ω(f)π(g)∗ = Ω(fg) ,
[
fg(x) := f(g−1.x)

]

Examples: Weyl quantization, Berezin quantization, coherent states
quantization, Fuchs calculus (Unterberger), p-adic Weyl calculus
(Haran-Unterberger), BCH quantization of coadjoint orbits of ex-
ponential Lie groups.....
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Geometrical assumptions:

(H1) G̃ possesses a subgroup acting simply transitively on X (and
the restriction of π is still irreducible and square-integrable)

(H1’) H is a normal subgroup of G̃ and [π(H),Ω(D(X))] = 0

In both cases: The phases space X is endowed with a group
structure (X is then denoted G)

In the first case: we have a G-equivariant quantization on G (G
acts on Hπ)

In the second case: we have a G-quasi-equivariant quantization
on G (G does not act on Hπ)
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Analytical assumptions :

(H2) The map Ω extends to a unitary from L2(G) to L2(Hπ)
→ If not finite, then G non-compact and Hπ infinite dimensional

• L2(G) becomes an algebra equivariant under the left action of G

f1 ? f2 := Ω−1
(
Ω(f1)Ω(f2)

)

(H3) The distribution K ∈ D′(G3) is a regular function (Bruhat)

〈K, ϕ1 ⊗ ϕ2 ⊗ ϕ3〉 := Tr
(
Ω(f1)Ω(f2)Ω(f3)

)
• Tri-point kernel K is invariant under left diagonal action of G

• On D(G) the non-formal star-product reads

f1 ? f2 =
∫
G×G

K(e, g1, g2) ρg1(f1) ρg2(f2) dg1dg2
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Paradigmatic example:
Fix a densely defined self-adjoint operator Σ on Hπ (which com-
mutes with π(H) in the G-quasi-equivariant case) and set

Ω(f) =
∫
G
f(g)π(g)Σπ(g)∗ dg

• In bad exemple Σ is compact and positive (Berezin Σ = |ϕ〉〈ϕ|)

• In good examples (Weyl, Unterberger...), Σ is bounded and self-
adjoint

• In very good examples (BCH, what follows) Σ is unbounded and
self-adjoint

• Typically, Hπ = L2(Q), σ involution on Q, where Q (the configu-
ration space) is a sub-group of G

Σϕ(q) = Jac
1/2
Ψ (q) ϕ(σ(q))
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In conclusion : Non-formal G-equivariant (or G-quasi-equivariant)
quantizations on a group G are associated with

• (π,Hπ) projective representation of G (or of a group G̃ for which
G is a quotient)

• Σ non necessarily bounded self-adjoint operator on Hπ (which
commutes with π(H) in the G-quasi-equivariant case)
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Natural candidate for a unitary dual 2-cocycle on G:

F =
∫
G×G

K(e, g1, g2)λ
g−1

1
⊗ λ

g−1
2
dg1dg2

• 2-cocyclicity for F equivalent to associativity of ?

• Unitarity has to be checked

Slogan: What seems to be deep is not and what seems to be trivial
is not....
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Part II: What we have done
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Negatively curved Kählerian Lie groups

Pyatetskii-Shapiro : Every Kählerian Lie group with negative sec-
tional curvature as the form((

. . .
(
Gd nGd−1

)
n . . .

)
nG2

)
nG1

• Gj ' ANj, ANjK = SU(1, nj), Nj = Heisenberg group

• Solvable, non-unimodular, exponential

• Extension homomorphisms land in Sp(Vj)

• 2 classes of (infinite dimensional) irreducible unitary representa-
tions U± on L2(Q), where G = Q n P

• En dim 2 : G = ax+ b
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Extra geometric structures

• Elementary block G = AN symmetric symplectic space G-covariant

• Mid-point map mid : G×G→ G, smid(x,y)(x) = y

• Φ : G3 → G3, (g, g′, g′′) 7→ (mid(g, g′),mid(g′, g′′),mid(g′′, g))

global diffeomorphism invariant under the diagonal left action of G

• The symmetric structure of G restrict to Q (G = Q n P )
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Elementary case:

• Σϕ(q) = Jac
1/2
ψ (q)ϕ(se(q)) (ψ is an intrinsic diffeomorphism of Q)

• Representations U± on L2(Q)

• Tri-point kernel

KG
±(g, g′, g′′) = |JacΦ−1|1/2(g, g′, g′′) exp

{
± 2iArea

(
Φ−1(g, g′, g′′)

)}

General case: (stupid) gluing g = g1g2 ∈ G = G2 nG1, gj ∈ Gj

KG
±,±(g, g′, g′′) = KG1

± (g1, g
′
1, g
′′
1)KG2

± (g2, g
′
2, g
′′
2)
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Theorem [G-Bieliavsky 2013]:
• Quantization unitary from L2(G) to L2(H±)

• It extends as a continuous map from a larger set of functions to B(H±)

(Calderon-Vaillancourt type estimate)
• It allows to deform any C∗-algebra endowed with a continuous action of G (i.e.
we generalize Rieffel construction for a non-Abelian group)

Theorem [Neshveyev-Tuset 2014]:
The quadratic form on D(G×G) defined by

F ∗±[ϕ1, ϕ2] :=
∫

KG
±(e, g1, g2) ϕ̄1 ∗ ϕ2(g1, g2) dg1dg2

extends to a unitary operator on L2(G×G) and its adjoint
defines a dual 2-cocycle on G

→ First example of a unitary dual 2-cocycle on a non-Abelian group!
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Variation 1: geometric structures

• If Dim(G) ≥ 4, there is two classes of non equivalent symplectic
symmetric space structures on an elementary Kahlerian Lie group
G (Voglaire)

→ There is no (yet) quantization behind but a direct star-product
approach (what does change is the covariance group G̃)

Theorem [G-Jondreville]:
The associated dual 2-cocycle is unitary on L2(G×G)
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• Projectives representations

→ Group cohomology in degree 2 is nontrivial if G is not elemen-
tary (i.e. if there is at least two factors in the Pyatetskii-Shapiro
decomposition of G)

→ There exists non trivial projective representations if G is not
elementary

Theorem [Bieliavsky-G-De Goursac]:
The associated dual 2-cocycle is unitary on L2(G×G)
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Clopen Question: Are the different negatively curved quantum
Kählerian Lie groups constructed so far isomorphic?

• Representation theory: NO (conjecture supported by my feeling)

• Symplectic symmetric space structures: NO (conjecture supported
by the fact that covariance groups are differents)

• Projective representations: NO (proof from Duflo-Moore theory)
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Variation 2: semi-simple covariance group

• Up to now, all the variations lead to solvable covariance groups (G̃)

For elementary Kahlerians Lie groups, there is ways to modify the
star-product (not yet the quantization map) to get for covariance
group G̃ = SU(1, n)

• But the associated dual 2-cocycle is no longer unitary, probably
(?) invertible
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Variation 3: no more geometry

Motivation: The BCH quantization of an exponential Lie group

• Let G be an exponential Lie group with g its Lie algebra

• Assume G possesses a coadjoint orbit O ⊂ g? on which G acts
simply transitively

• Let UO the KKS representation of G

• For f ∈ C∞c (O) ⊂ C∞c (g?) define

ΩO(f) :=
∫
g
F(f)(X)UO

(
exp{X}

)
dX

• After identification G ' O, get a G-covariant quantization on G
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• These assumptions are satisfied for G = R n R. In this case, two
possible orbits Π± := {(x, y) ∈ g? : ±y > 0}

• The quantization map reads

Ω±(f) =
∫
G
f(g)U±(g) ΣU±(g)dg,

• where, realizing H± as L2(R), we have

Σϕ(t) = |γ′(t)|ϕ
(
σ(t)

)
,

• σ is the involutive diffeomorphism of R given by

σ = Id− γ : R→ R

and γ is the inverse diffeomorphism of log ◦λ : R→ R where

λ : R→ R∗+ , t 7→ t(1− e−t)−1
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Generalization: no more geometry

• G = R n R, U±

• Let σ ∈ Diff(R) be an involution such that

(1) γ := σ − Id ∈ Diff(R)

(2) φ := [a 7→ ea − eσ(a)] ∈ Diff(R)

Set Σϕ(a) := |γ′(a)|1/2 |φ′(a)|1/2ϕ
(
σ(a)

)
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Theorem [G-Jondreville]:

(i) The R n R-covariant quantization map on R n R associated with
(U±,Σ) defines a unitary operator from L2(G) to HS(L2(R))

(ii) Let κ : R× R× R→ R be the unique solution of

σ(σ(σ(κ(a1, a2, a3)− a1) + a1 − a2) + a2 − a3) + a3 = κ(a1, a2, a3)

Then, the associated 2-points kernel reads (κ := κ(0, a1, a2))

Kσ(a1, t1; a2, t2) =

√∣∣∣γ′φ′∣∣∣(κ)∣∣∣γ′φ′∣∣∣(σ(κ)− a1

)∣∣∣γ′φ′∣∣∣(σ(κ− a2)
)

∣∣∣1− σ′(κ)σ′(σ(κ)− a1)σ′(σ(κ− a2))
∣∣∣

× exp{iφ(a1 − σ(κ))t1 + iφ(a2 − κ)t2}
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(iii) The 2-cocycle

Fσ :=
∫
G2

Kσ(e; g, g′)λg−1 ⊗ λg′−1 dgdg
′

is a unitary element of W ∗((G×G) if and only if σ = −Id

• Unitarity for the 2-cocycle selects the (unique) symplectic sym-
metric space structure of the affine group of the real line

• Need framework without unitarity for the dual 2-cocycle, instead
invertibility (on suitable domains)
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Variation 4: base field

• k Non Archimedean local field (of characteristic 6= 2 and which is
not an extension of Q2)

• Ok ring of integers, $ a generator of its unique maximal ideal, Ψ
non-trivial additive character of k constant on Ok

• G̃n = (1 +$nOk) n k, n = 1,2, . . .

• Gn = G̃n/$−nOk ' Oknαn Ôk (countable family of non-isomorphic
groups which are not discrete, nor compact but unimodular)

• Representations of G̃n on L2(1 +$nOk)

U(a, t)ϕ(a0) = Ψ(aa−1
0 t)ϕ(a−1a0)

(Mackey: all the infinite dimensional reps are of this form)

• Σϕ(a0) = ϕ(a−1
0 ) (bounded and self-adjoint)
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→ Trikernel given by

K(a1, [t1]; a2, [t2]; a3, [t3]) = Ψ
(
(
a1

a2
−
a2

a1
)t2+(

a2

a3
−
a3

a2
)t1+(

a3

a1
−
a1

a3
)t2

)

Theorem [G-Jondreville]:

• The quantization is unitary and extends as a continuous map from a larger space

of functions to B(L2(1 +$nOk)) (non-Abelain and p-adic Calderon-Vaillancourt)

and allows to deform any C∗-algebra endowed with a continuous action of G and

....

• The associated dual 2-cocycle is unitary on L2(Gn×Gn)
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Locally compact quantum groups

B) Manageable multiplicative unitary (Woronowicz 1995)

Definition : A multiplicative unitary on H is a unitary W on H⊗̄H
satisfying the pentagonale equation

W23W12 = W12W13W23

W is manageable is there exists a densely defined positive and self-
adjoint operator Q with densely defined inverse and a unitary oper-
ator W̃ on H̄⊗̄H such that

W ∗Q⊗QW = Q⊗Q

and such that for all ϕ1, ϕ3 ∈ H and all ϕ2 ∈ Dom(Q), ϕ4 ∈
Dom(Q−1)

〈ϕ1 ⊗ ϕ2,Wϕ3 ⊗ ϕ4〉 = 〈ϕ̄3 ⊗Qϕ2, W̃ ϕ̄4 ⊗Q−1ϕ4〉
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Less well established theory

→ Generalize Baaj-Skandalis theory

→ Contains all the locally compact quantum group in the von Neu-
mann algebraic setting

→ Topological theory as it should be

Still possesses a pathology

→ Very few examples
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Multiplicative unitary from an invertible dual 2-cocycle
(Joint work with Bieliavsky, Bonneau and D’Andrea)

• Starts with a densely defined with densely defined inverse dual
2-cocycle on a group G (coming from quantization or not)

F =
∫
G×G

K(g1, g2)λg1 ⊗ λg2dg1dg2 affiliated with W ∗λ(G×G)

• Assume

F−1 =
∫
G×G

K̃(g1, g2)λg1 ⊗ λg2dg1dg2 affiliated with W ∗λ(G×G)

and that F̃ is still a dual 2-cocycle, where

F̃ :=
∫
G×G

K̃(g−1
1 , g−1

2 )λg1 ⊗ λg2dg1dg2 affiliated with W ∗λ(G×G)

• Set

F̃ρ :=
∫
G×G

K̃(g1, g2)ρg1 ⊗ ρg2dg1dg2 affiliated with W ∗ρ (G×G)
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• Assume the associative doubly deformed product ?λ,ρ well defined

ϕ1 ?λ,ρ ϕ2 := µ ◦ F ◦ F̃ρ(ϕ1 ⊗ ϕ2)

• Natural candidate for a manageable multiplicative unitary

W?(ϕ1 ⊗ ϕ2) = ∆(ϕ1) ?λ,ρ (1⊗ ϕ2)

• Pentagonale equation is automatic!

• Unitarity on the completion of D(G) of

〈ϕ1, ϕ2〉 :=
∫
G
ϕ1 ?λ,ρ ϕ2(g) dρ(g)

Provided it is a scalar product !

True when δαG ?λ,ρ δ
β
G = δ

α+β
G

• Manageability has to be checked......
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