From Equivariant Quantization to Locally
Compact Quantum Groups

Victor Gayral
Laboratoire de mathématique
Université de Reims Champagne-Ardenne



Locally compact quantum groups
A) von Neumann algebraic setting (Kustermans-Vaes 2000)

Definition: A locally compact quantum group in the von Neumann
algebraic setting is G = (M, A, P, P,) where

e M is a von Neumann algebra
o A : M — MRRM is a co-associative morphism (coproduct)

o O, P, are left- and right-invariant NSF weights on M, i.e.

CD>\<OJ ®Id(A(a)) = w(1)Py(a), Vace NT. vw e /\/lj_



Well established theory

— Antipode

— Pontryagin duality (denote by G = (M, A, ®,, d,) the dual LCQG)
But possesses pathologies

— Measurable and not topological theory as it should be

— Very few examples



Cocycle deformation of a LCQG

Definition: A dual unitary 2-cocycle for a locally compact quantum
group G is an element F € U(M @ M) satisfying
(FLAQI)(F)=(1x F)(Id® A)(F)

— Deformation of the coproduct:

-~

Ap: M —= MIM, a— F*A(a)F

Theorem [De Commer 2010]: There exist NSF weights on M
invariant for Ap



Hence: Using duality, one can deform a LCQG G from a dual unitary
2-cocycle F: Gp

Open problem: Construct a dual unitary 2-cocycle already on a
genuine group!

Open solution: Non-formal equivariant quantization on a group!



Part I:. What we (I?7) want to do



Non-formal G-equivariant quantization on a group G

Data:

e (3 locally compact group (covariance group)

o (m,Hr) projective representation (square integrable) of G

o X = G/H homogeneous space (substitute for the phases space)

Definition: G-equivariant quantization on X :

Q:D(X) = B(Hr), (@) Q) n(e)* =), [f(=):=fg " 2)]

Examples: Weyl quantization, Berezin quantization, coherent states
quantization, Fuchs calculus (Unterberger), p-adic Weyl calculus
(Haran-Unterberger), BCH quantization of coadjoint orbits of ex-
ponential Lie groups.....



Geometrical assumptions:

(H1) G possesses a subgroup acting simply transitively on X (and
the restriction of = is still irreducible and square-integrable)

(H1’) H is a normal subgroup of G and [x(H),Q(D(X))] =0

In both cases: The phases space X is endowed with a group
structure (X is then denoted G)

In the first case: we have a G-equivariant quantization on G (G
acts on Hr)

In the second case: we have a GG-quasi-equivariant quantization
on G (G does not act on Hx)



Analytical assumptions :

(H2) The map  extends to a unitary from L2(GQ) to £2(Hx)
— If not finite, then G non-compact and H, infinite dimensional

e L2(G) becomes an algebra equivariant under the left action of G

f1x f2 1= Q7 HQUf1)R(S2))

(H3) The distribution K € D/(G3) is a regular function (Bruhat)
(K, 01 ® 2 ® ¢3) 1= Tr(Q(f1)R(£2)Q(f3))
e Tri-point kernel K is invariant under left diagonal action of (&

e On D(G) the non-formal star-product reads

f1*f2=/G GK(eaglagz) pg1(f1) pgo(f2) dg1dgo

X



Paradigmatic example:
Fix a densely defined self-adjoint operator >~ on H, (which com-
mutes with w(H) in the G-quasi-equivariant case) and set

P = | F(9) m(9)Tr(9)" dg

e In bad exemple X is compact and positive (Berezin > = |p){¢|)

e In good examples (Weyl, Unterberger...), > is bounded and self-
adjoint

e In very good examples (BCH, what follows) 3 is unbounded and
self-adjoint

e Typically, Hr = L?(Q), o involution on @, where Q (the configu-
ration space) is a sub-group of G

>(q) = Jacs!%(q) v(o(q))
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In conclusion : Non-formal G-equivariant (or G-quasi-equivariant)
quantizations on a group G are associated with

o (m,Hr) projective representation of G (or of a group G for which
G is a quotient)

e > non necessarily bounded self-adjoint operator on H, (which
commutes with #(H) in the G-quasi-equivariant case)
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Natural candidate for a unitary dual 2-cocycle on G:

F = K(e.91.00) A 1 @A _1dgid
i (e,91,92) g1 @ Ag-1dg1dgo

e 2-cocyclicity for F' equivalent to associativity of %
e Unitarity has to be checked

Slogan: What seems to be deep is not and what seems to be trivial
IS not....
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Part II: What we have done
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Negatively curved Kdhlerian Lie groups

Pyatetskii-Shapiro : Every Kadhlerian Lie group with negative sec-
tional curvature as the form

((...(Gd[de_l) X ) D(GQ) X G1
e G~ AN;, AN;K = SU(1,n;), N; = Heisenberg group
e Solvable, non-unimodular, exponential
e Extension homomorphisms land in Sp(Vj)

e 2 classes of (infinite dimensional) irreducible unitary representa-
tions Ut on L2(Q), where G = Q x P

e ENdim2: G=ax+5b
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Extra geometric structures
e Elementary block G = AN symmetric symplectic space (G-covariant
e Mid-point map mid : G x G — G, Smid(a:,y)(x) =y

e ®:G3— G3 (9,9,9") — (mid(g,g’), mid(g’, g"), mid(g", g))
global diffeomorphism invariant under the diagonal left action of GG

e The symmetric structure of GG restrict to Q (G =Q x P)
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Elementary case:

e > (g = Jaci/z(q)w(se(q)) (¢ is an intrinsic diffeomorphism of Q)

e Representations U+ on L2(Q)

e [ri-point kernel

K% (9,9, 9") = [Jacey-11"2(g,9', ") exp { £ 2iArea(® 1(g,4,9"))}

General case: (stupid) gluing g =g192 € G = Go x G1, g; € G;

e e
K% 1 (9,9,9") =K (91,91, 9DKT? (92, 95, 95)
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Theorem [G-Bieliavsky 2013]:

e Quantization unitary from L?(G) to £2(H+)

e It extends as a continuous map from a larger set of functions to B(H+)
(Calderon-Vaillancourt type estimate)

e It allows to deform any C*-algebra endowed with a continuous action of G (i.e.
we generalize Rieffel construction for a non-Abelian group)

Theorem [Neshveyev-Tuset 2014]:
The quadratic form on D(G x G) defined by
Filp1, 2] = /Kg(evglagQ) P01 * p2(g91,92) dg1dgo

extends to a unitary operator on L2(G xG) and its adjoint
defines a dual 2-cocycle on G

— First example of a unitary dual 2-cocycle on a non-Abelian group!
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Variation 1: geometric structures
e If Dim(G) > 4, there is two classes of non equivalent symplectic
symmetric space structures on an elementary Kahlerian Lie group

G (Voglaire)

— There is no (yet) quantization behind but a direct star-product
approach (what does change is the covariance group é)

Theorem [G-Jondreville]:
T he associated dual 2-cocycle is unitary on LQ(G X &)
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e Projectives representations
— Group cohomology in degree 2 is nontrivial if G is not elemen-
tary (i.e. if there is at least two factors in the Pyatetskii-Shapiro

decomposition of G)

— There exists non trivial projective representations if G is not
elementary

Theorem [Bieliavsky-G-De Goursac]:
The associated dual 2-cocycle is unitary on LQ(G X &)
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Clopen Question: Are the different negatively curved quantum
Kahlerian Lie groups constructed so far isomorphic?

e Representation theory: NO (conjecture supported by my feeling)

e Symplectic symmetric space structures: NO (conjecture supported
by the fact that covariance groups are differents)

e Projective representations: NO (proof from Duflo-Moore theory)
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Variation 2: semi-simple covariance group
e Up to now, all the variations lead to solvable covariance groups (@)

For elementary Kahlerians Lie groups, there is ways to modify the
star-product (not yet the quantization map) to get for covariance
group G = SU(1,n)

e But the associated dual 2-cocycle is no longer unitary, probably
(?) invertible
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Variation 3: no more geometry

Motivation: The BCH quantization of an exponential Lie group

e Let G be an exponential Lie group with g its Lie algebra

e Assume G possesses a coadjoint orbit @O C g* on which G acts
simply transitively

o Let Un the KKS representation of G
o For f e C(0O) C CX(g*) define

0(f) = | F(NOO Uo(exp{X}) dx

e After identification G ~ O, get a G-covariant quantization on GG
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e [ hese assumptions are satisfied for G = R x R. In this case, two
possible orbits My := {(z,y) € g* : £y > 0}

e [ he quantization map reads

() = | £(9) Ux(e) TU(g)dg,
e where, realizing H+ as L2(R), we have
So(t) = [V )| (o)),
e o is the involutive diffeomorphism of R given by
c=Id—v:R—R
and ~ is the inverse diffeomorphism of logoA : R — R where

AR —RYL ts t(1—et)~1
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Generalization: no more geometry

e G=RxR, Ut

e Let o € Diff(R) be an involution such that
(1) v := o — Id € Diff(R)

(2) ¢ = [a+— @ — 7(a)] € DIff(R)

Set Zp(a) := |7/ (a)[}/2]¢'(a)|2 ¢(0(a))
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Theorem [G-Jondreville]:

(i) The R x R-covariant quantization map on R x R associated with
(U, X) defines a unitary operator from L2(G) to HS(L?(R))

(ii) Let k :R xR xR — R be the unique solution of

o(o(o(k(ay,an,a3) —ay1) + a3y —ap) + ax —az) + a3z = k(ay,an,a3)

Then, the associated 2-points kernel reads (k := k(0,a1,a5))

V] (k)| (o 00) = a1) || (o s — a2)
1 - o'(k)o'(0(k) — a1)o’ (0 (k — az))
x exp{ip(a; — o(k))t1 +ip(ax — k)to}

25
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(iii) The 2-cocycle

Fy = /G2 Kos(e;9,9) A1 ® A1 dgdg’

is a unitary element of W*((G x G) if and only if o = —Id

e Unitarity for the 2-cocycle selects the (unique) symplectic sym-
metric space structure of the affine group of the real line

e Need framework without unitarity for the dual 2-cocycle, instead
invertibility (on suitable domains)
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Variation 4: base field

e k Non Archimedean local field (of characteristic # 2 and which is
not an extension of Q»)

e O ring of integers, w a generator of its unique maximal ideal, W
non-trivial additive character of k constant on Oy

e Gn=>04+a"O ) xk, n=1,2,...

o Gp = Gp/w MOy ~ Oy xan(/’); (countable family of non-isomorphic
groups which are not discrete, nor compact but unimodular)

e Representations of G, on L2(1 4 @w"Oy)
U(a,t)p(ag) = W(aag ' t)p(a tag)

(Mackey: all the infinite dimensional reps are of this form)

e “p(ag) = p(ag') (bounded and self-adjoint)
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— Trikernel given by
. . ap ap ap as a3z aj
K (a1, [t1]; a2, [t2]; a3, [t3]) = V(G- =) ta+ (2= )t1+ (- )tz
az aj az ap ap as
Theorem [G-Jondreville]:

e T he quantization is unitary and extends as a continuous map from a larger space
of functions to B(L?(1 4+ @w"Oy)) (non-Abelain and p-adic Calderon-Vaillancourt)

and allows to deform any C*-algebra endowed with a continuous action of G and

e The associated dual 2-cocycle is unitary on L2(GnxGp)
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Locally compact quantum groups
B) Manageable multiplicative unitary (Woronowicz 1995)

Definition : A multiplicative unitary on H is a unitary W on HQH
satisfying the pentagonale equation

WosWio = WipoWi3Who3

W is manageable is there exists a densely defined positive and self-
adjoint operator Q with densely defined inverse and a unitary oper-
ator W on H®H such that

WQQW =Q®Q

and such that for all ¢1,p3 € H and all pp € Dom(Q), ¢4 €
Dom(Q~—1)

(1 ® 02, W3 ® pa) = (#3 ® Qpa, W54 ® Q La)
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Less well established theory

— Generalize Baaj-Skandalis theory

— Contains all the locally compact quantum group in the von Neu-
mann algebraic setting

— Topological theory as it should be

Still possesses a pathology

— Very few examples
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Multiplicative unitary from an invertible dual 2-cocycle
(Joint work with Bieliavsky, Bonneau and D’Andrea)

e Starts with a densely defined with densely defined inverse dual
2-cocycle on a group G (coming from quantization or not)

F = o GK(gl,QQ))\gl ® Ag,dg1dgo  affiliated with W;:(G X G)
X

e Assume
Fl= /G K(91,92)01 ® Agydgrdgz  affiliated with W3 (G x )
X

and that F is still a dual 2-cocycle, where

~

Fo= /G G%(gl—l,ggl)/\gl ® Agodg1dgs  affiliated with  WH(G x G)
X

e Set
B, = /G G%(gl,gQ)pgl ® pgodgrdgo  affiliated with  W*(G x G)
X
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e Assume the associative doubly deformed product *\,p well defined

P1*xp P2 =0 F o Fp(p1 ® ¢2)
e Natural candidate for a manageable multiplicative unitary
Wi(p1 ® p2) = A(p1) *x, (1 @ ¥2)
e Pentagonale equation is automatic!
e Unitarity on the completion of D(G) of

(p1,92) 1= /Gﬁ *z,p P2(9) d°(g)

Provided it is a scalar product !
B _ ca+p
True when o¢ %y , 05 = 0

e Manageability has to be checked......
32



