$\begin{array}{c} \mbox{Motivation} \\ \mbox{The operator } *-algebra of Hölder functions \\ \mbox{Dixmier traces and cyclic cocycles} \\ \mbox{An example on S^1} \\ \end{array}$

Detecting regularity using cyclic cocycles and singular traces

Magnus Goffeng

joint work with Heiko Gimperlein and Ryszard Nest

Chalmers University of Technology and University of Gothenburg

160406 "Gauge Theory and Noncommutative Geometry", Nijmegen

-

2 The operator *-algebra of Hölder functions

Oixmier traces and cyclic cocycles

医下口 医下

A >

The operator *-algebra of Hölder functions Dixmier traces and cyclic cocycles An example on S¹

Regularity in spectral triples

Spectral triples

Recall that a spectral triple is a collection $(\mathcal{A}, \mathcal{H}, D)$ where

$$A := \overline{\mathcal{A}}^{C^*} \text{ acts on } \mathcal{H};$$

2 D is a self-adjoint operator on \mathcal{H} with $(i + D)^{-1} \in \mathbb{K}(\mathcal{H})$;

 $\ \, {\mathfrak O} \ \, {\mathcal A} \subseteq {\rm Lip}_D(A) := \{ a \in A : a {\rm Dom}(D) \subseteq {\rm Dom}(D), \ \, [D,a] \ \, {\rm bounded} \}.$

The operator *-algebra of Hölder functions Dixmier traces and cyclic cocycles An example on S¹

Regularity in spectral triples

Spectral triples

Recall that a spectral triple is a collection $(\mathcal{A}, \mathcal{H}, D)$ where

$$A := \overline{\mathcal{A}}^{C^*} \text{ acts on } \mathcal{H};$$

- **2** D is a self-adjoint operator on \mathcal{H} with $(i + D)^{-1} \in \mathbb{K}(\mathcal{H})$;

Role of \mathcal{A}

The *-algebra \mathcal{A} plays the role of a "differentiable structure". How "differentiable" is really such an algebra?

The operator *-algebra of Hölder functions Dixmier traces and cyclic cocycles An example on S^1

Regularity in spectral triples

Spectral triples

Recall that a spectral triple is a collection $(\mathcal{A}, \mathcal{H}, D)$ where

$$A := \overline{\mathcal{A}}^{C^*} \text{ acts on } \mathcal{H};$$

- **2** D is a self-adjoint operator on \mathcal{H} with $(i + D)^{-1} \in \mathbb{K}(\mathcal{H})$;
- $\ \, {\mathfrak O} \ \, {\mathcal A} \subseteq {\rm Lip}_D({\mathcal A}) := \{ a \in {\mathcal A} : a{\rm Dom}(D) \subseteq {\rm Dom}(D), \ \, [D,a] \ \, {\rm bounded} \}.$

Role of \mathcal{A}

The *-algebra \mathcal{A} plays the role of a "differentiable structure". How "differentiable" is really such an algebra?

Prototypical example

Take a closed Riemannian manifold M, a Clifford bundle $S \to M$ and a Dirac operator D on S. Then $(\mathcal{A}, L^2(M, S), D)$ is a spectral triple

The operator *-algebra of Hölder functions Dixmier traces and cyclic cocycles An example on S^1

Regularity in spectral triples

Spectral triples

Recall that a spectral triple is a collection $(\mathcal{A}, \mathcal{H}, D)$ where

$$A := \overline{\mathcal{A}}^{C^*} \text{ acts on } \mathcal{H};$$

- **2** D is a self-adjoint operator on \mathcal{H} with $(i + D)^{-1} \in \mathbb{K}(\mathcal{H})$;
- $\ \, {\mathfrak O} \ \, {\mathcal A} \subseteq {\rm Lip}_D({\mathcal A}) := \{ a \in {\mathcal A} : a{\rm Dom}(D) \subseteq {\rm Dom}(D), \ \, [D,a] \ \, {\rm bounded} \}.$

Role of \mathcal{A}

The *-algebra \mathcal{A} plays the role of a "differentiable structure". How "differentiable" is really such an algebra?

Prototypical example

Take a closed Riemannian manifold M, a Clifford bundle $S \to M$ and a Dirac operator D on S. Then $(\mathcal{A}, L^2(M, S), D)$ is a spectral triple for any

 $C^{\infty}(M) \subseteq \mathcal{A} \subseteq \operatorname{Lip}(M) := \{ a \in C(M) : \exists C, |a(x) - a(y)| \leq C \operatorname{d}(x, y) \}.$

The operator *-algebra of Hölder functions Dixmier traces and cyclic cocycles An example on S¹

Structures on manifolds

To show the subtlety of how different structures arise from different choices of A, consider a closed topological manifold M.

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

프 > > ㅋ ㅋ >

= 990

The operator *-algebra of Hölder functions Dixmier traces and cyclic cocycles An example on S¹

Structures on manifolds

To show the subtlety of how different structures arise from different choices of A, consider a closed topological manifold M.

$\mathcal{A} = \operatorname{Lip}(M)$

- **3** *M* admits an "essentially unique" Lipschitz structure (Sullivan) and $\operatorname{Lip}(M) \subseteq C(M)$ is uniquely determined.
- **2** The Telemann spectral triple $(\text{Lip}(M), L^2(M, \wedge^* T^*M), D)$ associated with the Lipschitz structure is determined (up to bounded perturbations) by the Lipschitz homeomorphism class of M.

きょうきょう

The operator *-algebra of Hölder functions Dixmier traces and cyclic cocycles An example on S¹

Structures on manifolds

To show the subtlety of how different structures arise from different choices of A, consider a closed topological manifold M.

$\mathcal{A} = \operatorname{Lip}(M)$

- **3** *M* admits an "essentially unique" Lipschitz structure (Sullivan) and $\operatorname{Lip}(M) \subseteq C(M)$ is uniquely determined.
- **2** The Telemann spectral triple $(\text{Lip}(M), L^2(M, \wedge^* T^*M), D)$ associated with the Lipschitz structure is determined (up to bounded perturbations) by the Lipschitz homeomorphism class of M.

$\mathcal{A}=C^1(M)$

- If M_1 and M_2 are two C^k -structures on M, $C^k(M_1) \cong C^k(M_2)$ iff $M_1 \cong M_2$ as C^k -manifolds.
- **2** Any C^1 -structure on M gives rise to a unique real analytic structure (Whitney), so if $M_1 \cong M_2$ as C^1 -manifolds then $M_1 \cong M_2$ as C^{∞} -manifolds.
- **3** A spectral triple $(C^{\infty}(M), L^2(M, S), D)$ (plus additional data) determines M with its C^{∞} -structure by Connes' reconstruction theorem.

< ロ > < 同 > < 三 > < 三 >

-

The operator *-algebra of Hölder functions Dixmier traces and cyclic cocycles An example on S¹

Hölder continuous functions

Let M be a d-dimensional smooth closed Riemannian manifold and

$$C^{lpha}(M):=\{a\in C(M): \exists C, |a(x)-a(y)|\leq C\mathrm{d}(x,y)^{lpha}\}, \ lpha\in(0,1).$$

The limit case $\alpha = 1$ is to be interpreted as Lip(M) rather than $C^1(M)$.

(日) (同) (三) (三)

≡ nar

The operator *-algebra of Hölder functions Dixmier traces and cyclic cocycles An example on S¹

Hölder continuous functions

Let M be a d-dimensional smooth closed Riemannian manifold and

$$C^{lpha}(M):=\{a\in C(M): \exists C, |a(x)-a(y)|\leq C\mathrm{d}(x,y)^{lpha}\}, \ lpha\in(0,1).$$

The limit case $\alpha = 1$ is to be interpreted as Lip(M) rather than $C^1(M)$.

NCG of Hölder functions

- If $D \in \Psi^{s}(M, E)$, $s \in (0, \alpha)$ is elliptic, $(C^{\alpha}(M), L^{2}(M, S), D)$ is a spectral triple.
- If $F \in \Psi^0(M, E)$ satisfies

$$F^2 - 1, F - F^* \in \Psi^{-1}(M, E),$$

 $(C^{\alpha}(M), L^{2}(M, S), F)$ is a $(d/\alpha, \infty)$ -summable Fredholm module.

= na0

4 E N 4 E N

The operator *-algebra of Hölder functions Dixmier traces and cyclic cocycles An example on $S^{\hat{1}}$

Hölder continuous functions

Let M be a d-dimensional smooth closed Riemannian manifold and

$$C^{lpha}(M):=\{a\in C(M): \exists C, |a(x)-a(y)|\leq C\mathrm{d}(x,y)^{lpha}\}, \ lpha\in(0,1).$$

The limit case $\alpha = 1$ is to be interpreted as Lip(M) rather than $C^1(M)$.

NCG of Hölder functions

- If $D \in \Psi^{s}(M, E)$, $s \in (0, \alpha)$ is elliptic, $(C^{\alpha}(M), L^{2}(M, S), D)$ is a spectral triple.
- If $F \in \Psi^0(M, E)$ satisfies

$$F^2 - 1, F - F^* \in \Psi^{-1}(M, E),$$

 $(C^{\alpha}(M), L^{2}(M, S), F)$ is a $(d/\alpha, \infty)$ -summable Fredholm module.

Motivation

A source for non-examples in NCG.

The operator *-algebra of Hölder functions Dixmier traces and cyclic cocycles An example on $S^{\hat{1}}$

Hölder continuous functions

Let M be a d-dimensional smooth closed Riemannian manifold and

$$C^{lpha}(M):=\{a\in C(M): \exists C, |a(x)-a(y)|\leq C\mathrm{d}(x,y)^{lpha}\}, \ lpha\in(0,1).$$

The limit case $\alpha = 1$ is to be interpreted as Lip(M) rather than $C^1(M)$.

NCG of Hölder functions

- If $D \in \Psi^{s}(M, E)$, $s \in (0, \alpha)$ is elliptic, $(C^{\alpha}(M), L^{2}(M, S), D)$ is a spectral triple.
- If $F \in \Psi^0(M, E)$ satisfies

$$F^2 - 1, F - F^* \in \Psi^{-1}(M, E),$$

 $(C^{\alpha}(M), L^{2}(M, S), F)$ is a $(d/\alpha, \infty)$ -summable Fredholm module.

Motivation

- A source for non-examples in NCG.
- Oifferential topological invariants for low regularity functions, used when solving non-linear PDE arising from field equations (e.g. Skyrme's model).

The operator *-algebra of Hölder functions Dixmier traces and cyclic cocycles An example on $S^{\hat{1}}$

Hölder continuous functions

Let M be a d-dimensional smooth closed Riemannian manifold and

$$C^{lpha}(M):=\{a\in C(M): \exists C, |a(x)-a(y)|\leq C\mathrm{d}(x,y)^{lpha}\}, \ lpha\in(0,1).$$

The limit case $\alpha = 1$ is to be interpreted as Lip(M) rather than $C^{1}(M)$.

NCG of Hölder functions

- If $D \in \Psi^{s}(M, E)$, $s \in (0, \alpha)$ is elliptic, $(C^{\alpha}(M), L^{2}(M, S), D)$ is a spectral triple.
- If $F \in \Psi^0(M, E)$ satisfies

$$F^2 - 1, F - F^* \in \Psi^{-1}(M, E),$$

 $(C^{\alpha}(M), L^{2}(M, S), F)$ is a $(d/\alpha, \infty)$ -summable Fredholm module.

Motivation

- A source for non-examples in NCG.
- Oifferential topological invariants for low regularity functions, used when solving non-linear PDE arising from field equations (e.g. Skyrme's model).
- Gromov's question on optimal bounds on the Hölder exponent of isometric embeddings of euclidean balls into a contact manifold with its sub-Riemannian metric.

The structure of $C^{\alpha}(M)$

An operator algebra is a closed sub-algebra of a C^* -algebra. For instance, Lip(M) has an operator algebra structure defined from a Dirac operator D acting on some Clifford bundle $S \to M$. This uses the homomorphism

$$\pi_D: \operatorname{Lip}(\mathcal{M}) o L^\infty(\mathcal{M}, \operatorname{End}(S \oplus S)), \quad \pi_D(\mathsf{a}) := \begin{pmatrix} \mathsf{a} & \mathsf{0} \\ [D,\mathsf{a}] & \mathsf{a} \end{pmatrix}.$$

The structure of $C^{\alpha}(M)$

An operator algebra is a closed sub-algebra of a C^* -algebra. For instance, Lip(M) has an operator algebra structure defined from a Dirac operator D acting on some Clifford bundle $S \to M$. This uses the homomorphism

$$\pi_D: \operatorname{Lip}(\mathcal{M}) \to L^\infty(\mathcal{M}, \operatorname{End}(S \oplus S)), \quad \pi_D(\mathsf{a}) := \begin{pmatrix} \mathsf{a} & \mathsf{0} \\ [D,\mathsf{a}] & \mathsf{a} \end{pmatrix}.$$

Operator algebra structure on $C^{\alpha}(M)$

Set $X := M \times M \setminus \Delta_M$. For $\alpha \in (0,1]$, define $\pi_\alpha : C^\alpha(M) \to C_b(X, M_2(\mathbb{C}))$ by

$$\pi_{\alpha}(\mathbf{a}) := \begin{pmatrix} \pi_{L}(\mathbf{a}) & 0\\ \delta_{\alpha}(\mathbf{a}) & \pi_{R}(\mathbf{a}) \end{pmatrix} = \begin{pmatrix} \mathbf{a}(x) & 0\\ \frac{\mathbf{a}(x) - \mathbf{a}(y)}{\mathrm{d}(x, y)^{\alpha}} & \mathbf{a}(y) \end{pmatrix}.$$

Since δ_{α} is a (π_L, π_R) -derivation, π_{α} is an isometric Banach algebra homomorphism.

< 回 > < 三 > < 三 >

The structure of $C^{\alpha}(M)$

An operator algebra is a closed sub-algebra of a C^* -algebra. For instance, Lip(M) has an operator algebra structure defined from a Dirac operator D acting on some Clifford bundle $S \to M$. This uses the homomorphism

$$\pi_D: \operatorname{Lip}(\mathcal{M}) \to L^\infty(\mathcal{M}, \operatorname{End}(S \oplus S)), \quad \pi_D(\mathbf{a}) := \begin{pmatrix} \mathbf{a} & \mathbf{0} \\ [D, \mathbf{a}] & \mathbf{a} \end{pmatrix}.$$

Operator algebra structure on $C^{\alpha}(M)$

Set $X := M \times M \setminus \Delta_M$. For $\alpha \in (0,1]$, define $\pi_\alpha : C^\alpha(M) \to C_b(X, M_2(\mathbb{C}))$ by

$$\pi_{\alpha}(\mathbf{a}) := \begin{pmatrix} \pi_L(\mathbf{a}) & 0\\ \delta_{\alpha}(\mathbf{a}) & \pi_R(\mathbf{a}) \end{pmatrix} = \begin{pmatrix} \mathbf{a}(x) & 0\\ \frac{\mathbf{a}(x) - \mathbf{a}(y)}{\mathrm{d}(x, y)^{\alpha}} & \mathbf{a}(y) \end{pmatrix}.$$

Since δ_{α} is a (π_L, π_R) -derivation, π_{α} is an isometric Banach algebra homomorphism.

We set $h^{\alpha}(M) := \overline{C^{\infty}(M)}^{C^{\alpha}}$ and note that $h^{\alpha}(X) = \{a \in C^{\alpha}(M) : \delta_{\alpha}(a) \in C_{0}(X)\}, \text{ for } \alpha < 1.$

< ロ > < 同 > < 三 > < 三 >

The structure of $C^{\alpha}(M)$

An operator algebra is a closed sub-algebra of a C^* -algebra. For instance, Lip(M) has an operator algebra structure defined from a Dirac operator D acting on some Clifford bundle $S \to M$. This uses the homomorphism

$$\pi_D: \operatorname{Lip}(\mathcal{M}) o L^\infty(\mathcal{M}, \operatorname{End}(S \oplus S)), \quad \pi_D(\mathsf{a}) := \begin{pmatrix} \mathsf{a} & \mathsf{0} \\ [D,\mathsf{a}] & \mathsf{a} \end{pmatrix}.$$

Operator algebra structure on $C^{\alpha}(M)$

Set $X := M \times M \setminus \Delta_M$. For $\alpha \in (0,1]$, define $\pi_\alpha : C^\alpha(M) \to C_b(X, M_2(\mathbb{C}))$ by

$$\pi_{\alpha}(\mathbf{a}) := \begin{pmatrix} \pi_L(\mathbf{a}) & 0\\ \delta_{\alpha}(\mathbf{a}) & \pi_R(\mathbf{a}) \end{pmatrix} = \begin{pmatrix} \mathbf{a}(x) & 0\\ \frac{\mathbf{a}(x) - \mathbf{a}(y)}{\mathrm{d}(x, y)^{\alpha}} & \mathbf{a}(y) \end{pmatrix}.$$

Since δ_{α} is a (π_L, π_R) -derivation, π_{α} is an isometric Banach algebra homomorphism.

We set $h^{\alpha}(M) := \overline{C^{\infty}(M)}^{C^{\alpha}}$ and note that $h^{\alpha}(X) = \{a \in C^{\alpha}(M) : \delta_{\alpha}(a) \in C_{0}(X)\}, \text{ for } \alpha < 1.$ Letting Ω denote the Stone-Cech boundary of X, i.e. $C(\Omega) = C_{b}(X)/C_{0}(X)$, and $q : C_{b}(X) \to C(\Omega)$ the quotient, $h^{\alpha}(X) = \ker q \circ \delta_{\alpha}.$

< ロ > < 同 > < 三 > < 三 >

-

 $\begin{array}{c} \mbox{Motivation}\\ \mbox{The operator } *-algebra of Hölder functions\\ \mbox{Dixmier traces and cyclic cocycles}\\ \mbox{An example on S^1} \end{array}$

The structure of $C^{\alpha}(M)$ continued

Non-separability

- **9** The operator algebra $\operatorname{Lip}(M)$ is closed in the strong operator topology in $L^{\infty}(M, \operatorname{End}(S \oplus S))$.
- 2 For $\alpha < 1$, $C^{\alpha}(M) = h^{\alpha}(M)^{**}$ (Weaver).
- 3 If d > 0, $C^{\alpha}(M)$ is non-separable.

きょうきょう

The structure of $C^{\alpha}(M)$ continued

Non-separability

- **()** The operator algebra $\operatorname{Lip}(M)$ is closed in the strong operator topology in $L^{\infty}(M, \operatorname{End}(S \oplus S))$.
- 2 For $\alpha < 1$, $C^{\alpha}(M) = h^{\alpha}(M)^{**}$ (Weaver).
- 3 If d > 0, $C^{\alpha}(M)$ is non-separable.

Non-commutative "vector-fields"

There are inclusions $C(M) \subseteq C(SM) \subseteq C(\Omega)$ so, Ω is a "thickening" of *SM* in the sense that there are mappings

The structure of $C^{\alpha}(M)$ continued

Non-separability

- **()** The operator algebra $\operatorname{Lip}(M)$ is closed in the strong operator topology in $L^{\infty}(M, \operatorname{End}(S \oplus S))$.
- 2 For $\alpha < 1$, $C^{\alpha}(M) = h^{\alpha}(M)^{**}$ (Weaver).
- 3 If d > 0, $C^{\alpha}(M)$ is non-separable.

Non-commutative "vector-fields"

There are inclusions $C(M) \subseteq C(SM) \subseteq C(\Omega)$ so, Ω is a "thickening" of *SM* in the sense that there are mappings

If $x \in \Omega$ and $\alpha = 1$, then

$$\delta_1(a)(x) = p(x).a(x), \text{ for } a \in C^\infty(M).$$

In particular, for $v \in SM$ the set $p^{-1}(v) \subseteq \Omega$ is that of extensions of "directional derivatives along v" to $C^{\alpha}(M)$.

Cyclic (co)-homology

We consider a unital Frechet algebra $\mathcal{A}.$ Set

$$C_k(\mathcal{A}):=\mathcal{A}^{\hat{\otimes}k+1}$$
 and $C_k^\lambda(\mathcal{A}):=\mathcal{A}^{\hat{\otimes}k+1}/(1-\lambda)\mathcal{A}^{\hat{\otimes}k+1},$

where $\lambda(a_0\otimes\cdots\otimes a_k)=(-1)^ka_k\otimes a_0\otimes\cdots\otimes a_{k-1}.$ There is a differential

$$b(a_0 \otimes \cdots \otimes a_k) = \sum_{j=0}^{k-1} (-1)^j a_0 \otimes \cdots a_{j-1} \otimes a_j a_{j+1} \otimes \cdots \otimes a_k$$
$$+ (-1)^k a_k a_0 \otimes a_1 \otimes \cdots \otimes a_{k-1}.$$

We set
$$HC_*(\mathcal{A}) := H_*(C^{\lambda}_*(\mathcal{A}), b), \quad HH_*(\mathcal{A}) := H_*(C_*(\mathcal{A}), b)$$

and $HC^*(\mathcal{A}) := H^*(C^{\lambda}_{\lambda}(\mathcal{A}), b^*), \quad HH^*(\mathcal{A}) := H^*(C^*(\mathcal{A}), b^*)$

< 17 >

∃→ < ∃→</p>

 $\begin{array}{c} \mbox{Motivation}\\ \mbox{The operator }*\mbox{-algebra of Hölder functions}\\ \mbox{Dixmier traces and cyclic cocycles}\\ \mbox{An example on S^1} \end{array}$

Cyclic (co)-homology

We consider a unital Frechet algebra $\mathcal{A}.$ Set

$$C_k(\mathcal{A}):=\mathcal{A}^{\hat{\otimes}k+1}$$
 and $C_k^\lambda(\mathcal{A}):=\mathcal{A}^{\hat{\otimes}k+1}/(1-\lambda)\mathcal{A}^{\hat{\otimes}k+1},$

where $\lambda(a_0\otimes\cdots\otimes a_k)=(-1)^ka_k\otimes a_0\otimes\cdots\otimes a_{k-1}$. There is a differential

$$b(a_0 \otimes \cdots \otimes a_k) = \sum_{j=0}^{k-1} (-1)^j a_0 \otimes \cdots a_{j-1} \otimes a_j a_{j+1} \otimes \cdots \otimes a_k$$
$$+ (-1)^k a_k a_0 \otimes a_1 \otimes \cdots \otimes a_{k-1}.$$

$$\begin{array}{lll} \text{We set} & HC_*(\mathcal{A}) := H_*(C^\lambda_*(\mathcal{A}), b), & HH_*(\mathcal{A}) := H_*(C_*(\mathcal{A}), b) \\ \text{and} & HC^*(\mathcal{A}) := H^*(C^\lambda_\lambda(\mathcal{A}), b^*), & HH^*(\mathcal{A}) := H^*(C^*(\mathcal{A}), b^*) \end{array}$$

The SBI-sequence

The periodicity operator $S : HC_{*+2}(A) \to HC_*(A)$ fits into a long exact sequence with Hochschild homology:

$$\cdots \xrightarrow{B} HH_{*+2}(\mathcal{A}) \xrightarrow{I} HC_{*+2}(\mathcal{A}) \xrightarrow{S} HC_{*}(\mathcal{A}) \xrightarrow{B} HH_{*+1}(\mathcal{A}) \xrightarrow{I} HC_{*+1}(\mathcal{A}) \xrightarrow{S} \cdots,$$

where $B: HC_*(\mathcal{A}) \to HH_{*+1}(\mathcal{A})$ denotes the Connes differential. Analogous sequences are exact on the dual side.

Dictionary for smooth manifolds

 $HC_*(\mathcal{A})$ and $HH_*(\mathcal{A})$ will denote the cyclic and Hochschild homology respectively.

2

∃→ < ∃→</p>

A ▶

Dictionary for smooth manifolds

 $HC_*(\mathcal{A})$ and $HH_*(\mathcal{A})$ will denote the cyclic and Hochschild homology respectively.

The CHKR-isomorphisms

Let *M* be a closed manifold, $\mathcal{A} = C^{\infty}(M)$ and let $\Omega_k(M)$ denote the space of *k*-forms on *M*:

- HC_k(A) ≃ ⊕[∞]_{j=1}H^{k-2j}_{dR}(M) ⊕ Ω^k(M)/B^k(M), where H^{*}_{dR}(M) is the de Rham cohomology and B^k(M) the space of exact k-forms.
- $HH_k(\mathcal{A}) \cong \Omega_k(M)$.

Dictionary for smooth manifolds

 $HC_*(\mathcal{A})$ and $HH_*(\mathcal{A})$ will denote the cyclic and Hochschild homology respectively.

The CHKR-isomorphisms

Let *M* be a closed manifold, $\mathcal{A} = C^{\infty}(M)$ and let $\Omega_k(M)$ denote the space of *k*-forms on *M*:

- $HC_k(\mathcal{A}) \cong \bigoplus_{j=1}^{\infty} H_{dR}^{k-2j}(M) \oplus \Omega^k(M)/B^k(M)$, where $H_{dR}^*(M)$ is the de Rham cohomology and $B^k(M)$ the space of exact k-forms.
- $HH_k(\mathcal{A}) \cong \Omega_k(M)$.

The index character of a Fredholm module

A Fredholm module $(\mathcal{A}, \mathcal{H}, F)$ satisfying $F^2 = 1$ and $[F, a] \in \mathcal{L}^k(\mathcal{H})$ for $a \in \mathcal{A}$ gives rise to a cyclic k-cocycle:

$$\operatorname{ch}_{F}^{k}(a_{0},a_{1},\ldots,a_{k})=c_{k}\operatorname{tr}(\gamma a_{0}[F,a_{1}]\cdots[F,a_{k}]).$$

Dictionary for smooth manifolds

 $HC_*(\mathcal{A})$ and $HH_*(\mathcal{A})$ will denote the cyclic and Hochschild homology respectively.

The CHKR-isomorphisms

Let *M* be a closed manifold, $\mathcal{A} = C^{\infty}(M)$ and let $\Omega_k(M)$ denote the space of *k*-forms on *M*:

- $HC_k(\mathcal{A}) \cong \bigoplus_{j=1}^{\infty} H_{dR}^{k-2j}(M) \oplus \Omega^k(M)/B^k(M)$, where $H_{dR}^*(M)$ is the de Rham cohomology and $B^k(M)$ the space of exact k-forms.
- $HH_k(\mathcal{A}) \cong \Omega_k(M)$.

The index character of a Fredholm module

A Fredholm module $(\mathcal{A}, \mathcal{H}, F)$ satisfying $F^2 = 1$ and $[F, a] \in \mathcal{L}^k(\mathcal{H})$ for $a \in \mathcal{A}$ gives rise to a cyclic *k*-cocycle:

$$\operatorname{ch}_{F}^{k}(a_{0}, a_{1}, \ldots, a_{k}) = c_{k} \operatorname{tr}(\gamma a_{0}[F, a_{1}] \cdots [F, a_{k}]).$$

The Hochschild character of a spectral triple

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ satisfying $D^{-1} \in \mathcal{L}^{d,\infty}(\mathcal{H})$ and a singular state $\omega \in (\ell^{\infty}/c_0)^*$ give rise to a Hochschild cocycle:

$$au_{D,\omega}(\mathsf{a}_0,\mathsf{a}_1,\ldots,\mathsf{a}_d) = c_d \mathrm{tr}_\omega(\gamma \mathsf{a}_0[D,\mathsf{a}_1]\cdots[D,\mathsf{a}_d]|D|^{-d}).$$

Cyclic theories and Hölder functions

Recall the following facts:

• If $a \in C^{\alpha}(M)$ and $F \in \Psi^{0}(M, E)$, $[F, a] \in \mathcal{L}^{d/\alpha, \infty}(L^{2}(M, E))$. In particular, if $k + 1 > d/\alpha$ and $F^{2} = 1$, we obtain a k-cocycle:

$$\operatorname{ch}_{F}^{k}(a_{0},a_{1},\ldots,a_{k})=c_{k}\operatorname{tr}'(\gamma a_{0}[F,a_{1}]\cdots[F,a_{k}])=\frac{c_{k}}{2}\operatorname{tr}(\gamma F[F,a_{0}][F,a_{1}]\cdots[F,a_{k}]).$$

• $S[\operatorname{ch}_F^k] = [\operatorname{ch}_F^{k+2}]$

3

医下口 化

 $\begin{array}{c} \mbox{Motivation}\\ \mbox{The operator } *-algebra of Hölder functions\\ \mbox{Dixmier traces and cyclic cocycles}\\ \mbox{An example on S^1} \end{array}$

Cyclic theories and Hölder functions

Recall the following facts:

• If $a \in C^{\alpha}(M)$ and $F \in \Psi^{0}(M, E)$, $[F, a] \in \mathcal{L}^{d/\alpha, \infty}(L^{2}(M, E))$. In particular, if $k + 1 > d/\alpha$ and $F^{2} = 1$, we obtain a k-cocycle:

$$\operatorname{ch}_{F}^{k}(a_{0},a_{1},\ldots,a_{k})=c_{k}\operatorname{tr}'(\gamma a_{0}[F,a_{1}]\cdots[F,a_{k}])=\frac{c_{k}}{2}\operatorname{tr}(\gamma F[F,a_{0}][F,a_{1}]\cdots[F,a_{k}]).$$

• $S[\operatorname{ch}_F^k] = [\operatorname{ch}_F^{k+2}]$

The mapping $C^{\infty}(M) \rightarrow C^{\alpha}(M)$ in cyclic theories

If $k > d/\alpha$ the mappings induced by the inclusion $C^{\infty}(M) \to C^{\alpha}(M)$ $HC^{k}(C^{\alpha}(M)) \to HC^{k}(C^{\infty}(M))$ and $HC_{k}(C^{\infty}(M)) \to HC_{k}(C^{\alpha}(M))$, are surjective and injective, respectively.

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● ○ ○ ○

Cyclic theories and Hölder functions

Recall the following facts:

• If $a \in C^{\alpha}(M)$ and $F \in \Psi^{0}(M, E)$, $[F, a] \in \mathcal{L}^{d/\alpha, \infty}(L^{2}(M, E))$. In particular, if $k + 1 > d/\alpha$ and $F^{2} = 1$, we obtain a k-cocycle:

$$\operatorname{ch}_{F}^{k}(a_{0},a_{1},\ldots,a_{k})=c_{k}\operatorname{tr}'(\gamma a_{0}[F,a_{1}]\cdots[F,a_{k}])=\frac{c_{k}}{2}\operatorname{tr}(\gamma F[F,a_{0}][F,a_{1}]\cdots[F,a_{k}]).$$

• $S[\operatorname{ch}_{F}^{k}] = [\operatorname{ch}_{F}^{k+2}]$

The mapping $C^{\infty}(M) \rightarrow C^{\alpha}(M)$ in cyclic theories

If $k > d/\alpha$ the mappings induced by the inclusion $C^{\infty}(M) \to C^{\alpha}(M)$ $HC^{k}(C^{\alpha}(M)) \to HC^{k}(C^{\infty}(M))$ and $HC_{k}(C^{\infty}(M)) \to HC_{k}(C^{\alpha}(M))$, are surjective and injective, respectively.

Open questions

- What happens with surjectivity/injectivity for $k + 1 \le d/\alpha$? E.g. is $\operatorname{ch}_j : K_j(C^{\alpha}(M)) \to HC_j(C^{\alpha}(M))$ injective for $j \le d/\alpha$?
- What aspects of HC*(C^{\u03c0}(M)) are computable?

- 4 同 ト - 4 三 ト - 4 三 ト

 $\begin{array}{c} \mbox{Motivation}\\ \mbox{The operator } *-algebra of Hölder functions\\ \mbox{Dixmier traces and cyclic cocycles}\\ \mbox{An example on S^1} \end{array}$

"Singular" cyclic cocycles

A singular state $\omega \in (\ell^\infty(\mathbb{N})/c_0(\mathbb{N}))^*$ gives rise to a singular trace

$$\operatorname{tr}_{\omega}:\mathcal{L}^{1,\infty}(\mathcal{H})\to\mathbb{C},\quad \operatorname{tr}_{\omega}(\mathcal{T}):=\omega\left(\frac{\sum_{k=1}^{N}\mu_{k}(\mathcal{T})}{\log(2+N)}\right)_{N},\quad \text{for } \mathcal{T}\geq 0.$$

Ξ.

-

-

"Singular" cyclic cocycles

A singular state $\omega \in (\ell^\infty(\mathbb{N})/c_0(\mathbb{N}))^*$ gives rise to a singular trace

$$\operatorname{tr}_{\omega}: \mathcal{L}^{1,\infty}(\mathcal{H}) \to \mathbb{C}, \quad \operatorname{tr}_{\omega}(\mathcal{T}):= \omega \left(\frac{\sum_{k=1}^{N} \mu_k(\mathcal{T})}{\log(2+N)} \right)_N, \quad ext{for } \mathcal{T} \ge 0.$$

"Singular" Chern characters

Assume that $(\mathcal{A}, \mathcal{H}, F)$ is a (k, ∞) -summable Fredholm module with $F^2 = 1$ and $\omega \in (\ell^{\infty}(\mathbb{N})/c_0(\mathbb{N}))^*$ is a singular state. We define $c_{k-1,\omega} \in C_{\lambda}^{k-1}$ and $\xi_{k,\omega} \in C^k$ by $c_{k,\omega}(a_0, a_1, \dots, a_{k-1}) := \frac{c_k}{2} \operatorname{tr}_{\omega}(\gamma F[F, a_0][F, a_1] \cdots [F, a_{k-1}]).$ $\xi_{k,\omega}(a_0, a_1, \dots, a_k) := \frac{c_k}{2} \operatorname{tr}_{\omega}(\gamma Fa_0[F, a_1] \cdots [F, a_k]).$

 $\begin{array}{c} \mbox{Motivation}\\ \mbox{The operator } *-algebra of Hölder functions\\ \mbox{Dixmier traces and cyclic cocycles}\\ \mbox{An example on S^1} \end{array}$

"Singular" cyclic cocycles

A singular state $\omega \in (\ell^\infty(\mathbb{N})/c_0(\mathbb{N}))^*$ gives rise to a singular trace

$$\operatorname{tr}_{\omega}:\mathcal{L}^{1,\infty}(\mathcal{H})\to\mathbb{C},\quad\operatorname{tr}_{\omega}(\mathcal{T}):=\omega\left(\frac{\sum_{k=1}^{N}\mu_{k}(\mathcal{T})}{\log(2+N)}\right)_{N},\quad\text{for }\mathcal{T}\geq0.$$

"Singular" Chern characters

Assume that $(\mathcal{A}, \mathcal{H}, F)$ is a (k, ∞) -summable Fredholm module with $F^2 = 1$ and $\omega \in (\ell^{\infty}(\mathbb{N})/c_0(\mathbb{N}))^*$ is a singular state. We define $c_{k-1,\omega} \in C_{\lambda}^{k-1}$ and $\xi_{k,\omega} \in C^k$ by $c_{k,\omega}(a_0, a_1, \dots, a_{k-1}) := \frac{c_k}{2} \operatorname{tr}_{\omega}(\gamma F[F, a_0][F, a_1] \cdots [F, a_{k-1}]).$ $\xi_{k,\omega}(a_0, a_1, \dots, a_k) := \frac{c_k}{2} \operatorname{tr}_{\omega}(\gamma Fa_0[F, a_1] \cdots [F, a_k]).$

General properties

• Both $c_{k,\omega}$ and $\xi_{k,\omega}$ are closed giving rise to classes $[c_{k,\omega}] \in HC^{k-1}(\mathcal{A})$ and $[\xi_{k,\omega}] \in HH^k(\mathcal{A})$.

•
$$S[c_{k,\omega}] = 0$$
 and $B[\xi_{k,\omega}] = [c_{k,\omega}].$

▲□ ▶ ▲ 三 ▶ ▲

 $\begin{array}{c} \mbox{Motivation}\\ \mbox{The operator } *-algebra of Hölder functions\\ \mbox{Dixmier traces and cyclic cocycles}\\ \mbox{An example on S^1} \end{array}$

The situation on manifolds

Henceforth, assume $F \in \Psi^0(M, E)$ satisfies $F^2 = 1$ (e.g. $F = \not D | \not D |^{-1}$).

- ∢ 🗇 ▶

= 990

글 > : < 글 >

The situation on manifolds

Henceforth, assume $F \in \Psi^0(M, E)$ satisfies $F^2 = 1$ (e.g. $F = \not \! D \, | \not \! D \, |^{-1}$).

The Lipschitz case

The Fredholm module $(\operatorname{Lip}(M), L^2(M, E), F)$ is (d, ∞) -summable. Set $\sigma := \sigma_0(F) \in C^{\infty}(S^*M, \operatorname{End}(\pi^*E))$. Then

$$c_{k,\omega}(a_0, a_1, \dots, a_{k-1}) := c_d \int_{S^*M} \operatorname{tr}_E(\gamma \sigma \prod_{j=0}^{k-1} \{\sigma, a_j\}) \mathrm{d}S$$
$$\xi_{k,\omega}(a_0, a_1, \dots, a_k) := c_d \int_{S^*M} \operatorname{tr}_E(\gamma \sigma a_0 \prod_{j=1}^k \{\sigma, a_j\}) \mathrm{d}S$$

きょうきょう

 $\begin{array}{c} \mbox{Motivation}\\ \mbox{The operator } *-algebra of Hölder functions\\ \mbox{Dixmier traces and cyclic cocycles}\\ \mbox{An example on S^1} \end{array}$

The situation on manifolds

Henceforth, assume $F \in \Psi^0(M, E)$ satisfies $F^2 = 1$ (e.g. $F = \not \! D \, | \not \! D \, |^{-1}$).

The Lipschitz case

The Fredholm module $(\operatorname{Lip}(M), L^2(M, E), F)$ is (d, ∞) -summable. Set $\sigma := \sigma_0(F) \in C^{\infty}(S^*M, \operatorname{End}(\pi^*E))$. Then

$$c_{k,\omega}(a_0, a_1, \dots, a_{k-1}) := c_d \int_{S^*M} \operatorname{tr}_E(\gamma \sigma \prod_{j=0}^{k-1} \{\sigma, a_j\}) \mathrm{d}S$$

$$\xi_{k,\omega}(a_0, a_1, \dots, a_k) := c_d \int_{S^*M} \operatorname{tr}_E(\gamma \sigma a_0 \prod_{j=1}^k \{\sigma, a_j\}) \mathrm{d}S$$

Some analytic subtleties

- For f ∈ W^{1,d}(M), ||[F, f]|_{L^d}, ∞ ~ ||∇f||_{L^d} (Rochberg-Semmes, Connes-Sullivan-Teleman).
- On the other hand, for p > d, ||[F, f]||_{L^{p,∞}} ~ ||f||_{B^{d/p}_{p,∞}} (Rochberg-Semmes).
 Note C^α(M) = B^α_{∞,∞}(M) ⊆ B^α_{d/α,∞}(M).

The situation on manifolds

Henceforth, assume $F \in \Psi^0(M, E)$ satisfies $F^2 = 1$ (e.g. $F = \not \! D \, | \not \! D \, |^{-1}$).

The Lipschitz case

The Fredholm module $(\operatorname{Lip}(M), L^2(M, E), F)$ is (d, ∞) -summable. Set $\sigma := \sigma_0(F) \in C^{\infty}(S^*M, \operatorname{End}(\pi^*E))$. Then

$$c_{k,\omega}(a_0, a_1, \dots, a_{k-1}) := c_d \int_{S^*M} \operatorname{tr}_E(\gamma \sigma \prod_{j=0}^{k-1} \{\sigma, a_j\}) \mathrm{d}S$$
$$\xi_{k,\omega}(a_0, a_1, \dots, a_k) := c_d \int_{S^*M} \operatorname{tr}_E(\gamma \sigma a_0 \prod_{j=1}^k \{\sigma, a_j\}) \mathrm{d}S$$

Some analytic subtleties

- For f ∈ W^{1,d}(M), ||[F, f]|_{L^d,∞} ~ ||∇f||_{L^d} (Rochberg-Semmes, Connes-Sullivan-Teleman).
- On the other hand, for p > d, $\|[F, f]\|_{\mathcal{L}^{p,\infty}} \sim \|f\|_{B^{d/p}_{p,\infty}}$ (Rochberg-Semmes). Note $C^{\alpha}(M) = B^{\alpha}_{\infty,\infty}(M) \subseteq B^{\alpha}_{d/\alpha,\infty}(M)$.

 $C^{\infty}(M)$ is dense in $W^{1,d}(M)$ but not in $B^{\alpha}_{d/\alpha,\infty}(M)!$

An example on S^1

To compute Dixmier traces, we need additional mapping properties

Sobolev mapping properties

Let $F \in \Psi^0(M)$. If $\alpha \in (0,1)$, $s \in (-\alpha, 0)$ and $a \in C^{\alpha}(M)$ then [F, a] extends to a continuous operator

$$[F,a]: W^{s}(M) = \Delta^{-s/2}L^{2}(M) \to W^{s+\alpha}(M) = \Delta^{-(s+\alpha)/2}L^{2}(M).$$

э

An example on S^1

To compute Dixmier traces, we need additional mapping properties

Sobolev mapping properties

Let $F \in \Psi^0(M)$. If $\alpha \in (0,1)$, $s \in (-\alpha, 0)$ and $a \in C^{\alpha}(M)$ then [F, a] extends to a continuous operator

$$[F,a]: W^s(M) = \Delta^{-s/2}L^2(M) \rightarrow W^{s+\alpha}(M) = \Delta^{-(s+\alpha)/2}L^2(M).$$

Computing Dixmier traces

If $F_j \in \Psi^0(M)$ and $a_j \in C^{\alpha_j}(M)$ for j = 0, 1, ..., k and $\sum_{j=1}^k \alpha_j = d$, then for any singular state $\omega \in (\ell^{\infty}/c_0)^*$

$$\operatorname{tr}_{\omega}(F_0a_0[F_1,a_1]\cdots[F_k,a_k]) = \omega\left(\frac{\sum_{k=1}^N \langle F_0a_0[F_1,a_1]\cdots[F_k,a_k]e_k,e_k\rangle_{L^2}}{\log(2+N)}\right),$$

where $(e_k)_{k\in\mathbb{N}}$ is any orthonormal eigenbasis associated with an elliptic operator on M.

-

An example on S^1 , continued

Consider $F \in \Psi^0(S^1)$, where $S^1 \subseteq \mathbb{C}$ defined by

$$Ff(z) := rac{\mathrm{p.v.}}{\pi i} \int_{S^1} rac{f(w)}{z-w} \mathrm{d}w.$$

The Szegö projection P := (F + 1)/2 projects onto the Hardy space $H^2(S^1) \subseteq L^2(S^1)$.

An example on S^1 , continued

Consider $F\in \Psi^0(S^1)$, where $S^1\subseteq \mathbb{C}$ defined by

$$\mathsf{F}f(z) := \frac{\mathrm{p.v.}}{\pi i} \int_{S^1} \frac{f(w)}{z - w} \mathrm{d}w.$$

The Szegö projection P := (F + 1)/2 projects onto the Hardy space $H^2(S^1) \subseteq L^2(S^1)$.

Ultraviolet divergence of $H^{1/2}$ -mapping degree

If $a,b\in C^{1/2}(S^1)$ and $\omega\in (\ell^\infty/c_0)^*$,

$$c_{2,\omega}(a,b) = \omega\left(\frac{\sum_{k=0}^{N} k(a_k b_{-k} - a_{-k} b_k)}{\log(2+N)}\right)$$

where a_k and b_k denote the respective function's Fourier coefficients.

An example on S^1 , continued

Consider $F\in \Psi^0(S^1)$, where $S^1\subseteq \mathbb{C}$ defined by

$$Ff(z) := rac{\mathrm{p.v.}}{\pi i} \int_{S^1} rac{f(w)}{z - w} \mathrm{d}w.$$

The Szegö projection P := (F + 1)/2 projects onto the Hardy space $H^2(S^1) \subseteq L^2(S^1)$.

Ultraviolet divergence of $H^{1/2}$ -mapping degree

If $a, b \in C^{1/2}(S^1)$ and $\omega \in (\ell^{\infty}/c_0)^*$, $c_{2,\omega}(a, b) = \omega \left(\frac{\sum_{k=0}^N k(a_k b_{-k} - a_{-k} b_k)}{\log(2 + N)}\right),$

where a_k and b_k denote the respective function's Fourier coefficients.

For $a \in H^{1/2}(S^1,S^1)$ its mapping degree is given by

$$\deg_{H^{1/2}}(a) := \frac{1}{2\pi} \int_{S^1} a^* da = \operatorname{tr}((2P-1)[P,a][P,a^*]) = \sum_{k=0}^{\infty} k(|a_k|^2 - |a_{-k}|^2).$$

An example on S^1 , continued

Consider $F\in \Psi^0(S^1)$, where $S^1\subseteq \mathbb{C}$ defined by

$$\mathsf{F}f(z) := \frac{\mathrm{p.v.}}{\pi i} \int_{S^1} \frac{f(w)}{z - w} \mathrm{d}w.$$

The Szegö projection P := (F + 1)/2 projects onto the Hardy space $H^2(S^1) \subseteq L^2(S^1)$.

Ultraviolet divergence of $H^{1/2}$ -mapping degree

If $a, b \in C^{1/2}(S^1)$ and $\omega \in (\ell^{\infty}/c_0)^*$, $c_{2,\omega}(a, b) = \omega \left(\frac{\sum_{k=0}^N k(a_k b_{-k} - a_{-k} b_k)}{\log(2 + N)}\right),$

where a_k and b_k denote the respective function's Fourier coefficients.

For $a \in H^{1/2}(S^1,S^1)$ its mapping degree is given by

$$\deg_{H^{1/2}}(a) := \frac{1}{2\pi} \int_{S^1} a^* da = \operatorname{tr}((2P-1)[P,a][P,a^*]) = \sum_{k=0}^{\infty} k(|a_k|^2 - |a_{-k}|^2).$$

In fact, if $x \in K_1(C^{1/2}(S^1))$ has Chern character $\operatorname{ch}_{2k+1}(x) \in HC^{2k+1}(C^{1/2}(S^1))$, then $\langle c_{2,\omega}, \operatorname{ch}_1(x) \rangle = \langle c_{2,\omega}, \operatorname{Sch}_3(x) \rangle = \langle Sc_{2,\omega}, \operatorname{ch}_3(x) \rangle = 0.$

An example on S^1 , continued

For $\mu \in \ell^\infty(\mathbb{N}),$ we define $w_\mu \in C^{1/2}(S^1)$ by

$$w_{\mu}(z) := \sum_{n=0}^{\infty} 2^{-n/2} \mu_n(z^{2^n} + z^{-2^n}).$$

Ξ.

-

An example on S^1 , continued

For $\mu \in \ell^\infty(\mathbb{N})$, we define $w_\mu \in C^{1/2}(S^1)$ by

$$w_{\mu}(z) := \sum_{n=0}^{\infty} 2^{-n/2} \mu_n(z^{2^n} + z^{-2^n}).$$

By a Littlewood-Paley decomposition one sees

$$w_{\mu} \in B^{1/2}_{\infty,\infty}(S^1) \setminus \left[\cup_{q < \infty} B^{1/2}_{p,q}(S^1) \cup F^{1/2}_{p,q}(S^1)
ight].$$

An example on S^1 , continued

For $\mu \in \ell^\infty(\mathbb{N})$, we define $w_\mu \in C^{1/2}(S^1)$ by

$$w_{\mu}(z) := \sum_{n=0}^{\infty} 2^{-n/2} \mu_n(z^{2^n} + z^{-2^n}).$$

By a Littlewood-Paley decomposition one sees

$$w_{\mu} \in B^{1/2}_{\infty,\infty}(S^1) \setminus \left[\cup_{q < \infty} B^{1/2}_{p,q}(S^1) \cup F^{1/2}_{p,q}(S^1)
ight].$$

Using the formula on the previous page, one computes

$$\operatorname{tr}_{\omega}(\mathsf{Pw}_{\mu}(1-\mathsf{P})\mathsf{w}_{\mu'}\mathsf{P}) = 2^{\omega}\left(\frac{\sum_{n=0}^{\mathsf{N}}\mu_{n}\mu'_{n}}{(\mathsf{N}+1)\cdot\log(2)}\right), \quad \mu,\mu' \in \ell^{\infty}(\mathbb{N}).$$

An example on S^1 , continued

For $\mu \in \ell^\infty(\mathbb{N})$, we define $w_\mu \in C^{1/2}(S^1)$ by

$$w_{\mu}(z) := \sum_{n=0}^{\infty} 2^{-n/2} \mu_n(z^{2^n} + z^{-2^n}).$$

By a Littlewood-Paley decomposition one sees

$$w_{\mu} \in B^{1/2}_{\infty,\infty}(S^1) \setminus \left[\cup_{q < \infty} B^{1/2}_{p,q}(S^1) \cup F^{1/2}_{p,q}(S^1)
ight].$$

Using the formula on the previous page, one computes

$$\operatorname{tr}_{\omega}(Pw_{\mu}(1-P)w_{\mu'}P) = 2^{\omega}\left(\frac{\sum_{n=0}^{N}\mu_{n}\mu'_{n}}{(N+1)\cdot\log(2)}\right), \quad \mu,\mu' \in \ell^{\infty}(\mathbb{N}).$$

• For
$$\mu = \mu' = 1$$
, $\operatorname{tr}_{\omega}(Pw_1(1-P)w_1P) = (\log(2))^{-1}$.

•
$$c_{2,\omega}(Pw_{\mu},(1-P)w_{\mu'}) = \operatorname{tr}_{\omega}(Pw_{\mu}(1-P)w_{\mu'}P).$$

The linear span of

$$\{[c_{2,\omega}]: \omega \in (\ell^{\infty}/c_0)^*\} \subseteq \ker(HC^1(C^{1/2}(S^1)) \to HC^1(C^{\infty}(S^1)))$$

is infinite-dimensional and pairs with $HC_1(C^{1/2}(S^1))$ through non-measurable operators.

医下口 医下

Thanks for your attention!

6

2

-

Advertisement

Masterclass 22-26/8, 2016 Copenhagen

Sums of self-adjoint operators: Kasparov products and applications