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Regularity in spectral triples

Spectral triples

Recall that a spectral triple is a collection (A,H,D) where

1 A := AC∗
acts on H;

2 D is a self-adjoint operator on H with (i + D)−1 ∈ K(H);

3 A ⊆ LipD(A) := {a ∈ A : aDom(D) ⊆ Dom(D), [D, a] bounded}.

Role of A
The ∗-algebra A plays the role of a “differentiable structure”. How
“differentiable” is really such an algebra?

Prototypical example

Take a closed Riemannian manifold M, a Clifford bundle S → M and a Dirac
operator D on S . Then (A, L2(M,S),D) is a spectral triple for any

C∞(M) ⊆ A ⊆ Lip(M) := {a ∈ C(M) : ∃C , |a(x)− a(y)| ≤ Cd(x , y)}.
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Structures on manifolds

To show the subtlety of how different structures arise from different choices of A,
consider a closed topological manifold M.

A = Lip(M)

1 M admits an “essentially unique” Lipschitz structure (Sullivan) and
Lip(M) ⊆ C(M) is uniquely determined.

2 The Telemann spectral triple (Lip(M), L2(M,∧∗T∗M),D) associated with the
Lipschitz structure is determined (up to bounded perturbations) by the Lipschitz
homeomorphism class of M.

A = C1(M)

1 If M1 and M2 are two C k -structures on M, C k (M1) ∼= C k (M2) iff M1
∼= M2 as

C k -manifolds.

2 Any C1-structure on M gives rise to a unique real analytic structure (Whitney),
so if M1

∼= M2 as C1-manifolds then M1
∼= M2 as C∞-manifolds.

3 A spectral triple (C∞(M), L2(M, S),D) (plus additional data) determines M
with its C∞-structure by Connes’ reconstruction theorem.
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Hölder continuous functions

Let M be a d-dimensional smooth closed Riemannian manifold and

Cα(M) := {a ∈ C(M) : ∃C , |a(x)− a(y)| ≤ Cd(x , y)α}, α ∈ (0, 1).

The limit case α = 1 is to be interpreted as Lip(M) rather than C1(M).

NCG of Hölder functions

If D ∈ Ψs(M,E), s ∈ (0, α) is elliptic, (Cα(M), L2(M,S),D) is a spectral triple.

If F ∈ Ψ0(M,E) satisfies

F 2 − 1, F − F∗ ∈ Ψ−1(M,E),

(Cα(M), L2(M, S),F ) is a (d/α,∞)-summable Fredholm module.

Motivation

1 A source for non-examples in NCG.

2 Differential topological invariants for low regularity functions, used when solving
non-linear PDE arising from field equations (e.g. Skyrme’s model).

3 Gromov’s question on optimal bounds on the Hölder exponent of isometric
embeddings of euclidean balls into a contact manifold with its sub-Riemannian
metric.
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Hölder continuous functions

Let M be a d-dimensional smooth closed Riemannian manifold and

Cα(M) := {a ∈ C(M) : ∃C , |a(x)− a(y)| ≤ Cd(x , y)α}, α ∈ (0, 1).

The limit case α = 1 is to be interpreted as Lip(M) rather than C1(M).
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Hölder continuous functions

Let M be a d-dimensional smooth closed Riemannian manifold and

Cα(M) := {a ∈ C(M) : ∃C , |a(x)− a(y)| ≤ Cd(x , y)α}, α ∈ (0, 1).

The limit case α = 1 is to be interpreted as Lip(M) rather than C1(M).
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The structure of Cα(M)

An operator algebra is a closed sub-algebra of a C∗-algebra. For instance, Lip(M) has
an operator algebra structure defined from a Dirac operator D acting on some Clifford
bundle S → M. This uses the homomorphism

πD : Lip(M)→ L∞(M,End(S ⊕ S)), πD(a) :=

(
a 0

[D, a] a

)
.

Operator algebra structure on Cα(M)

Set X := M ×M \∆M . For α ∈ (0, 1], define πα : Cα(M)→ Cb(X ,M2(C)) by

πα(a) :=

(
πL(a) 0
δα(a) πR(a)

)
=

(
a(x) 0

a(x)−a(y)
d(x,y)α

a(y)

)
.

Since δα is a (πL, πR)-derivation, πα is an isometric Banach algebra homomorphism.

We set hα(M) := C∞(M)
Cα

and note that

hα(X ) = {a ∈ Cα(M) : δα(a) ∈ C0(X )}, for α < 1.

Letting Ω denote the Stone-Cech boundary of X , i.e. C(Ω) = Cb(X )/C0(X ), and
q : Cb(X )→ C(Ω) the quotient, hα(X ) = ker q ◦ δα.
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The structure of Cα(M) continued

Non-separability

1 The operator algebra Lip(M) is closed in the strong operator topology in
L∞(M,End(S ⊕ S)).

2 For α < 1, Cα(M) = hα(M)∗∗ (Weaver).

3 If d > 0, Cα(M) is non-separable.

Non-commutative “vector-fields”

There are inclusions C(M) ⊆ C(SM) ⊆ C(Ω) so, Ω is a “thickening” of SM in the
sense that there are mappings

Ω //

p

��

M

SM.

DD

If x ∈ Ω and α = 1, then

δ1(a)(x) = p(x).a(x), for a ∈ C∞(M).

In particular, for v ∈ SM the set p−1(v) ⊆ Ω is that of extensions of “directional
derivatives along v” to Cα(M).
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Cyclic (co)-homology

We consider a unital Frechet algebra A. Set

Ck (A) := A⊗̂k+1 and Cλk (A) := A⊗̂k+1/(1− λ)A⊗̂k+1,

where λ(a0 ⊗ · · · ⊗ ak ) = (−1)kak ⊗ a0 ⊗ · · · ⊗ ak−1. There is a differential

b(a0 ⊗ · · · ⊗ ak ) =

k−1∑
j=0

(−1)ja0 ⊗ · · · aj−1 ⊗ ajaj+1 ⊗ · · · ⊗ ak

+ (−1)kaka0 ⊗ a1 ⊗ · · · ⊗ ak−1.

We set HC∗(A) := H∗(C
λ
∗ (A), b), HH∗(A) := H∗(C∗(A), b)

and HC∗(A) := H∗(C∗λ(A), b∗), HH∗(A) := H∗(C∗(A), b∗)

The SBI-sequence

The periodicity operator S : HC∗+2(A)→ HC∗(A) fits into a long exact sequence
with Hochschild homology:

· · · B−→ HH∗+2(A)
I−→ HC∗+2(A)

S−→ HC∗(A)
B−→ HH∗+1(A)

I−→ HC∗+1(A)
S−→ · · · ,

where B : HC∗(A)→ HH∗+1(A) denotes the Connes differential. Analogous
sequences are exact on the dual side.
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Dictionary for smooth manifolds

HC∗(A) and HH∗(A) will denote the cyclic and Hochschild homology respectively.

The CHKR-isomorphisms

Let M be a closed manifold, A = C∞(M) and let Ωk (M) denote the space of k-forms
on M:

HCk (A) ∼= ⊕∞j=1H
k−2j
dR (M)⊕ Ωk (M)/Bk (M), where H∗dR(M) is the de Rham

cohomology and Bk (M) the space of exact k-forms.

HHk (A) ∼= Ωk (M).

The index character of a Fredholm module

A Fredholm module (A,H ,F ) satisfying F 2 = 1 and [F , a] ∈ Lk (H ) for a ∈ A gives
rise to a cyclic k-cocycle:
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Cyclic theories and Hölder functions

Recall the following facts:

If a ∈ Cα(M) and F ∈ Ψ0(M,E), [F , a] ∈ Ld/α,∞(L2(M,E)). In particular, if
k + 1 > d/α and F 2 = 1, we obtain a k-cocycle:

chkF (a0, a1, . . . , ak ) = ck tr
′(γa0[F , a1] · · · [F , ak ]) =

ck

2
tr(γF [F , a0][F , a1] · · · [F , ak ]).

S[chkF ] = [chk+2
F ]

The mapping C∞(M)→ Cα(M) in cyclic theories

If k > d/α the mappings induced by the inclusion C∞(M)→ Cα(M)

HC k (Cα(M))→ HC k (C∞(M)) and HCk (C∞(M))→ HCk (Cα(M)),

are surjective and injective, respectively.

Open questions

What happens with surjectivity/injectivity for k + 1 ≤ d/α? E.g. is
chj : Kj (C

α(M))→ HCj (C
α(M)) injective for j ≤ d/α?

What aspects of HC∗(Cα(M)) are computable?
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“Singular” cyclic cocycles

A singular state ω ∈ (`∞(N)/c0(N))∗ gives rise to a singular trace

trω : L1,∞(H)→ C, trω(T ) := ω

(∑N
k=1 µk (T )

log(2 + N)

)
N

, for T ≥ 0.

“Singular” Chern characters

Assume that (A,H,F ) is a (k,∞)-summable Fredholm module with F 2 = 1 and

ω ∈ (`∞(N)/c0(N))∗ is a singular state. We define ck−1,ω ∈ C k−1
λ and ξk,ω ∈ C k by

ck,ω(a0, a1, . . . , ak−1) :=
ck

2
trω(γF [F , a0][F , a1] · · · [F , ak−1]).

ξk,ω(a0, a1, . . . , ak ) :=
ck

2
trω(γFa0[F , a1] · · · [F , ak ]).

General properties

Both ck,ω and ξk,ω are closed giving rise to classes [ck,ω] ∈ HC k−1(A) and

[ξk,ω] ∈ HHk (A).

S[ck,ω] = 0 and B[ξk,ω] = [ck,ω].
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The situation on manifolds

Henceforth, assume F ∈ Ψ0(M,E) satisfies F 2 = 1 (e.g. F = D/ |D/ |−1).

The Lipschitz case

The Fredholm module (Lip(M), L2(M,E),F ) is (d ,∞)-summable. Set
σ := σ0(F ) ∈ C∞(S∗M,End(π∗E)). Then

ck,ω(a0, a1, . . . , ak−1) := cd

∫
S∗M

trE (γσ

k−1∏
j=0

{σ, aj})dS

ξk,ω(a0, a1, . . . , ak ) := cd

∫
S∗M

trE (γσa0

k∏
j=1

{σ, aj})dS

Some analytic subtleties

For f ∈W 1,d (M), ‖[F , f ]‖Ld,∞ ∼ ‖∇f ‖Ld (Rochberg-Semmes,
Connes-Sullivan-Teleman).

On the other hand, for p > d , ‖[F , f ]‖Lp,∞ ∼ ‖f ‖
B
d/p
p,∞

(Rochberg-Semmes).

Note Cα(M) = Bα∞,∞(M) ⊆ Bα
d/α,∞(M).

C∞(M) is dense in W 1,d (M) but not in Bα
d/α,∞(M)!
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An example on S1

To compute Dixmier traces, we need additional mapping properties

Sobolev mapping properties

Let F ∈ Ψ0(M). If α ∈ (0, 1), s ∈ (−α, 0) and a ∈ Cα(M) then [F , a] extends to a
continuous operator

[F , a] : W s(M) = ∆−s/2L2(M)→W s+α(M) = ∆−(s+α)/2L2(M).

Computing Dixmier traces

If Fj ∈ Ψ0(M) and aj ∈ Cαj (M) for j = 0, 1, . . . , k and
∑k

j=1 αj = d , then for any

singular state ω ∈ (`∞/c0)∗

trω(F0a0[F1, a1] · · · [Fk , ak ]) = ω

(∑N
k=1〈F0a0[F1, a1] · · · [Fk , ak ]ek , ek 〉L2

log(2 + N)

)
,

where (ek )k∈N is any orthonormal eigenbasis associated with an elliptic operator on
M.
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Dixmier traces and cyclic cocycles
An example on S1

An example on S1, continued

Consider F ∈ Ψ0(S1), where S1 ⊆ C defined by

Ff (z) :=
p.v.

πi

∫
S1

f (w)

z − w
dw .

The Szegö projection P := (F + 1)/2 projects onto the Hardy space H2(S1) ⊆ L2(S1).

Ultraviolet divergence of H1/2-mapping degree

If a, b ∈ C1/2(S1) and ω ∈ (`∞/c0)∗,

c2,ω(a, b) = ω

(∑N
k=0 k(akb−k − a−kbk )

log(2 + N)

)
,

where ak and bk denote the respective function’s Fourier coefficients.

For a ∈ H1/2(S1,S1) its mapping degree is given by

degH1/2 (a) :=
1

2π

∫
S1

a∗da = tr((2P − 1)[P, a][P, a∗]) =
∞∑
k=0

k(|ak |2 − |a−k |2).

In fact, if x ∈ K1(C1/2(S1)) has Chern character ch2k+1(x) ∈ HC2k+1(C1/2(S1)), then

〈c2,ω , ch1(x)〉 = 〈c2,ω , Sch3(x)〉 = 〈Sc2,ω , ch3(x)〉 = 0.
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c2,ω(a, b) = ω

(∑N
k=0 k(akb−k − a−kbk )

log(2 + N)

)
,

where ak and bk denote the respective function’s Fourier coefficients.

For a ∈ H1/2(S1,S1) its mapping degree is given by

degH1/2 (a) :=
1

2π

∫
S1

a∗da = tr((2P − 1)[P, a][P, a∗]) =
∞∑
k=0

k(|ak |2 − |a−k |2).

In fact, if x ∈ K1(C1/2(S1)) has Chern character ch2k+1(x) ∈ HC2k+1(C1/2(S1)), then

〈c2,ω , ch1(x)〉 = 〈c2,ω , Sch3(x)〉 = 〈Sc2,ω , ch3(x)〉 = 0.
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An example on S1, continued

For µ ∈ `∞(N), we define wµ ∈ C1/2(S1) by

wµ(z) :=
∞∑
n=0

2−n/2µn(z2n + z−2n ).

By a Littlewood-Paley decomposition one sees

wµ ∈ B
1/2
∞,∞(S1) \

[
∪q<∞B

1/2
p,q (S1) ∪ F

1/2
p,q (S1)

]
.

Using the formula on the previous page, one computes

trω(Pwµ(1− P)wµ′P) = 2ω

( ∑N
n=0 µnµ

′
n

(N + 1) · log(2)

)
, µ, µ′ ∈ `∞(N).

For µ = µ′ = 1, trω(Pw1(1− P)w1P) = (log(2))−1.

c2,ω(Pwµ, (1− P)wµ′ ) = trω(Pwµ(1− P)wµ′P).

The linear span of

{[c2,ω] : ω ∈ (`∞/c0)∗} ⊆ ker(HC1(C1/2(S1))→ HC1(C∞(S1)))

is infinite-dimensional and pairs with HC1(C1/2(S1)) through non-measurable
operators.
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Thanks for your attention!

Magnus Goffeng Detecting regularity using cyclic cocycles and singular traces



Motivation
The operator ∗-algebra of Hölder functions
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