Morita equivalences of spectral triples

Jens Kaad

April 6, 2016
Definition

A spectral triple \((\mathcal{A}, H, D)\) consists of

such that

for all \(a \in \mathcal{A}\).
A spectral triple \((\mathcal{A}, H, D)\) consists of

1. A \(*\)-algebra \(\mathcal{A}\) represented (non-degenerately) on a separable Hilbert space \(H\);

such that

for all \(a \in \mathcal{A}\).
A spectral triple \((\mathcal{A}, H, D)\) consists of

1. A \(*\)-algebra \(\mathcal{A}\) represented (non-degenerately) on a separable Hilbert space \(H\);
2. A selfadjoint unbounded operator \(D : \text{Dom}(D) \to H\), such that

for all \(a \in \mathcal{A}\).
A spectral triple \((\mathcal{A}, H, D)\) consists of

1. A \(*\)-algebra \(\mathcal{A}\) represented (non-degenerately) on a separable Hilbert space \(H\);
2. A selfadjoint unbounded operator \(D : \text{Dom}(D) \to H\), such that
3. \(a \cdot (i + D)^{-1} : H \to H\) is compact;

for all \(a \in \mathcal{A}\).
A **spectral triple** \((\mathcal{A}, H, D)\) consists of

1. A \(\ast\)-algebra \(\mathcal{A}\) represented (non-degenerately) on a separable Hilbert space \(H\);
2. A selfadjoint unbounded operator \(D : \text{Dom}(D) \to H\), such that
 1. \(a \cdot (i + D)^{-1} : H \to H\) is compact;
 2. \(\text{Dom}(D) \subseteq H\) is an invariant subspace for \(a : H \to H\) and the commutator \([D, a] : \text{Dom}(D) \to H\) is the restriction of a bounded operator \(d(a) : H \to H\), for all \(a \in \mathcal{A}\).
Morita equivalence (algebraic)

Definition

Two unital \ast-algebras A and B are **Morita equivalent** when there exists an orthogonal projection $p \in M_n(B)$ such that

1. A is \ast-isomorphic to $\text{End}_B(pB^n)$;
2. pB^n is full in the sense that $1_B = m \sum_{j=1}^m \langle \xi_j, \xi_j \rangle$ for some $\xi_1, \ldots, \xi_m \in pB^n$.

Jens Kaad
Morita equivalences of spectral triples
Definition

Two unital \ast-algebras \mathcal{A} and \mathcal{B} are **Morita equivalent** when there exists an orthogonal projection $p \in M_n(\mathcal{B})$ such that

1. \mathcal{A} is \ast-isomorphic to $\text{End}_\mathcal{B}(p\mathcal{B}^n)$;
Morita equivalence (algebraic)

Definition

Two unital \ast-algebras \mathcal{A} and \mathcal{B} are **Morita equivalent** when there exists an orthogonal projection $p \in M_n(\mathcal{B})$ such that

1. \mathcal{A} is \ast-isomorphic to $\text{End}_\mathcal{B}(p\mathcal{B}^n)$;
2. $p\mathcal{B}^n$ is full in the sense that

$$1_\mathcal{B} = \sum_{j=1}^{m} \langle \xi_j, \xi_j \rangle$$

for some $\xi_1, \ldots, \xi_m \in p\mathcal{B}^n$.

Jens Kaad
Morita equivalences of spectral triples
Morita equivalence (algebraic)

Theorem

Suppose that A and B are two Morita equivalent unital ∗-algebras. Then there is a bijective correspondence between the spectral triples over A and the spectral triples over B (up to bounded perturbations and unitary equivalence).
The unbounded Kasparov product (algebraic)

Proposition (Connes, Mathai, Rennie, Lord, Suijlekom, Varilly)

Let pB^n be a finitely generated projective module over B and let (B, H, D) be a spectral triple. Then

$$pB^n \otimes_B (B, H, D) := (A, pH^n, pDp)$$

is a spectral triple for $A \cong \text{End}_B(pB^n)$.
Two (\(\sigma\)-unital) C*-algebras \(A\) and \(B\) are **Morita equivalent** when there exists a (countably generated, right) Hilbert C*-module \(X\) over \(B\) such that

\[A \cong_m K(X)\]

\(X\) is full in the sense that \(\langle X, X \rangle = \text{span} \{ \langle \xi, \eta \rangle | \xi, \eta \in X \}\) is dense in \(B\).
Definition

Two (σ-unital) C*-algebras A and B are Morita equivalent when there exists a (countably generated, right) Hilbert C*-module X over B such that

1. A is *-isomorphic to $\mathcal{K}(X)$;
Morita equivalence (topological)

Definition

Two (σ-unital) C*-algebras A and B are **Morita equivalent** when there exists a (countably generated, right) Hilbert C*-module X over B such that

1. A is $*$-isomorphic to $\mathcal{K}(X)$;
2. X is full in the sense that

$$\langle X, X \rangle := \operatorname{span}_\mathbb{C}\{\langle \xi, \eta \rangle \mid \xi, \eta \in X\}$$

is dense in B.

Jens Kaad
Morita equivalences of spectral triples
Morita equivalence (topological)

Theorem

Suppose that A and B are Morita equivalent C^*-algebras. Then the K-homology of A is isomorphic to the K-homology of B and the isomorphism is implemented by the bounded Kasparov product by $[X] \in KK_0(A, B)$.
Definition

An operator space is a vector space \mathcal{X} equipped with a norm $\| \cdot \|_{\mathcal{X}} : M_n(\mathcal{X}) \to [0, \infty)$ for each $n \in \mathbb{N}$ such that

1. $M_n(\mathcal{X})$ is complete;
2. $\|\xi \oplus \eta\|_{\mathcal{X}} = \max\{\|\xi\|_{\mathcal{X}}, \|\eta\|_{\mathcal{X}}\}$;
3. $\|v \cdot \xi \cdot w\|_{\mathcal{X}} \leq \|v\|_{C} \cdot \|\xi\|_{\mathcal{X}} \cdot \|w\|_{C}$.

Theorem (Ruan)

Any operator space \mathcal{X} is completely isometric to a closed subspace of $L(H)$ for some Hilbert space H.
An **operator space** is a vector space \mathcal{X} equipped with a norm $\| \cdot \|_\mathcal{X} : M_n(\mathcal{X}) \to [0, \infty)$ for each $n \in \mathbb{N}$ such that

1. $M_n(\mathcal{X})$ is complete;
Operator spaces

Definition

An **operator space** is a vector space \mathcal{X} equipped with a norm $\| \cdot \|_{\mathcal{X}} : M_n(\mathcal{X}) \to [0, \infty)$ for each $n \in \mathbb{N}$ such that

1. $M_n(\mathcal{X})$ is complete;
2. $\| \xi \oplus \eta \|_{\mathcal{X}} = \max\{ \| \xi \|_{\mathcal{X}}, \| \eta \|_{\mathcal{X}} \}$;
An operator space is a vector space \mathcal{X} equipped with a norm $\| \cdot \|_{\mathcal{X}} : M_n(\mathcal{X}) \to [0, \infty)$ for each $n \in \mathbb{N}$ such that

1. $M_n(\mathcal{X})$ is complete;
2. $\| \xi \oplus \eta \|_{\mathcal{X}} = \max \{ \| \xi \|_{\mathcal{X}}, \| \eta \|_{\mathcal{X}} \}$;
3. $\| v \cdot \xi \cdot w \|_{\mathcal{X}} \leq \| v \|_{\mathcal{C}} \cdot \| \xi \|_{\mathcal{X}} \cdot \| w \|_{\mathcal{C}}$.

Theorem (Ruan) Any operator space \mathcal{X} is completely isometric to a closed subspace of $L(\mathcal{H})$ for some Hilbert space \mathcal{H}.

Jens Kaad Morita equivalences of spectral triples
An **operator space** is a vector space \mathcal{X} equipped with a norm $\|\cdot\|_\mathcal{X} : M_n(\mathcal{X}) \to [0, \infty)$ for each $n \in \mathbb{N}$ such that

1. $M_n(\mathcal{X})$ is complete;
2. $\|\xi \oplus \eta\|_\mathcal{X} = \max\{\|\xi\|_\mathcal{X}, \|\eta\|_\mathcal{X}\}$;
3. $\|v \cdot \xi \cdot w\|_\mathcal{X} \leq \|v\|_\mathcal{C} \cdot \|\xi\|_\mathcal{X} \cdot \|w\|_\mathcal{C}$.

Theorem (Ruan)

Any operator space \mathcal{X} is completely isometric to a closed subspace of $\mathcal{L}(H)$ for some Hilbert space H.
An operator \ast-algebra is an operator space A equipped with

1. A completely contractive product $m: A \times A \to A$,
2. A completely isometric involution $\ast: A \to A$,
3. An injective completely contractive \ast-homomorphism $i: A \to A$ with dense image in a (\(\sigma\)-unital) C\ast-algebra A.
An operator \ast-algebra is an operator space \mathcal{A} equipped with

1. A completely contractive product

$$m : \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$$
An operator \ast-algebra is an operator space A equipped with

1. A completely contractive product

$$m : A \times A \to A$$

2. A completely isometric involution

$$\ast : A \to A$$
Definition

An **operator \(\ast \)-algebra** is an operator space \(\mathcal{A} \) equipped with

1. A *completely contractive product*

\[
m : \mathcal{A} \times \mathcal{A} \to \mathcal{A}
\]

2. A *completely isometric involution*

\[
\ast : \mathcal{A} \to \mathcal{A}
\]

3. An *injective completely contractive \(\ast \)-homomorphism*

\[
i : \mathcal{A} \to \mathcal{A}
\]

with dense image in a (\(\sigma \)-unital) \(C^* \)-algebra \(\mathcal{A} \).
Example

Let A be a \ast-algebra and let B be a (σ-unital) C^*-algebra. Suppose that we have

1. An injective \ast-homomorphism $\pi: A \to B$;
2. A closed \ast-derivation $\delta: A \to B$;

Then the (canonical matrix norms coming from the) algebra homomorphism

$$A \to M_2(B) \quad a \mapsto \begin{pmatrix} \pi(a) & 0 \\ \delta(a) & \pi(a) \end{pmatrix}$$

provides A with an operator \ast-algebra structure.
Example

Let \(\mathcal{A} \) be a \(*\)-algebra and let \(\mathcal{B} \) be a (\(\sigma \)-unital) \(C^* \)-algebra. Suppose that we have

1. An injective \(*\)-homomorphism \(\pi : \mathcal{A} \rightarrow \mathcal{B} \);

Then the (canonical matrix norms coming from the) algebra homomorphism

\[
\mathcal{A} \rightarrow M_2(\mathcal{B}) \quad a \mapsto \begin{pmatrix} \pi(a) & 0 \\ \delta(a) & \pi(a) \end{pmatrix}
\]

provides \(\mathcal{A} \) with an operator \(*\)-algebra structure.
Example

Let A be a \ast-algebra and let B be a (σ-unital) C^*-algebra. Suppose that we have

1. An injective \ast-homomorphism $\pi : A \to B$;
2. A closed \ast-derivation $\delta : A \to B$;

Then the (canonical matrix norms coming from the) algebra homomorphism

$$A \to M_2(B) \quad a \mapsto \begin{pmatrix} \pi(a) & 0 \\ \delta(a) & \pi(a) \end{pmatrix}$$

provides A with an operator \ast-algebra structure.
Definition

*Let A and B be operator \ast-algebras. A **differentiable correspondence** is an operator space \mathcal{X} equipped with*
Definition

Let \mathcal{A} and \mathcal{B} be operator \ast-algebras. A **differentiable correspondence** is an operator space \mathcal{X} equipped with

1. **Completely contractive module actions**

 $$\mathcal{A} \times \mathcal{X} \rightarrow \mathcal{X} \quad \text{and} \quad \mathcal{X} \times \mathcal{B} \rightarrow \mathcal{X}$$
Let \mathcal{A} and \mathcal{B} be operator \ast-algebras. A **differentiable correspondence** is an operator space \mathcal{X} equipped with

1. **Completely contractive module actions**

 $$\mathcal{A} \times \mathcal{X} \to \mathcal{X} \quad \text{and} \quad \mathcal{X} \times \mathcal{B} \to \mathcal{X}$$

2. A **completely contractive hermitian form**

 $$\langle \cdot, \cdot \rangle : \mathcal{X} \times \mathcal{X} \to \mathcal{B}$$
Let A and B be operator \ast-algebras. A **differentiable correspondence** is an operator space \mathcal{X} equipped with

1. **Completely contractive module actions**

 \[A \times \mathcal{X} \to \mathcal{X} \quad \text{and} \quad \mathcal{X} \times B \to \mathcal{X} \]

2. **A completely contractive hermitian form**

 \[\langle \cdot, \cdot \rangle : \mathcal{X} \times \mathcal{X} \to B \]

3. **An injective homomorphism (also preserving the hermitian forms)**

 \[i : \mathcal{X} \to X \]

with dense image in a (countably generated and non-degenerate) C^*-correspondence X from A to B.
The Haagerup tensor product

Proposition (K.)

Let \mathcal{X} and \mathcal{Y} be two differentiable correspondences from A to B and from B to C, respectively. There exists a (balanced) tensor product

$$\mathcal{X} \hat{\otimes}_B \mathcal{Y}$$

which is a differentiable correspondence from A to C with C^*-completion

$$\mathcal{X} \hat{\otimes}_B \mathcal{Y}$$

the interior tensor product (of the C^*-completions of \mathcal{X} and \mathcal{Y}).
Duality

Definition

Two differentiable correspondences \mathcal{X} and \mathcal{Y} (both from A to B) are **in duality** when there exists a unitary operator $U : \mathcal{X} \to \mathcal{Y}$ such that

1. $U \pi_{\mathcal{X}}(a) U^* = \pi_{\mathcal{Y}}(a)$ for all $a \in A$;
2. $\langle U(\xi), \eta \rangle_{\mathcal{Y}} \in B$ for all $\xi \in \mathcal{X}$, $\eta \in \mathcal{Y}$;
3. The pairing $(\cdot, \cdot) : \mathcal{X} \times \mathcal{Y} \to B(\xi, \eta) := \langle U(\xi), \eta \rangle_{\mathcal{Y}}$ is completely bounded.
Duality

Definition

Two differentiable correspondences \mathcal{X} and \mathcal{Y} (both from \mathcal{A} to \mathcal{B}) are **in duality** when there exists a unitary operator $U : \mathcal{X} \to \mathcal{Y}$ such that

1. $U \pi_{\mathcal{X}}(a) U^* = \pi_{\mathcal{Y}}(a)$ for all $a \in \mathcal{A}$;
Duality

Definition

Two differentiable correspondences \mathcal{X} and \mathcal{Y} (both from \mathcal{A} to \mathcal{B}) are **in duality** when there exists a unitary operator $U : \mathcal{X} \to \mathcal{Y}$ such that

1. $U\pi_X(a)U^* = \pi_Y(a)$ for all $a \in \mathcal{A}$;
2. $\langle U(\xi), \eta \rangle_Y \in \mathcal{B}$ for all $\xi \in \mathcal{X}$, $\eta \in \mathcal{Y}$;
Duality

Definition

Two differentiable correspondences \mathcal{X} and \mathcal{Y} (both from A to B) are **in duality** when there exists a unitary operator $U : X \to Y$ such that

1. $U \pi_X(a) U^* = \pi_Y(a)$ for all $a \in A$;
2. $\langle U(\xi), \eta \rangle_Y \in B$ for all $\xi \in \mathcal{X}$, $\eta \in \mathcal{Y}$;
3. The pairing
 \[
 (\cdot, \cdot) : \mathcal{X} \times \mathcal{Y} \to B \quad (\xi, \eta) := \langle U(\xi), \eta \rangle_Y
 \]
 is completely bounded.
Morita equivalence (geometric)

Definition

Two operator \ast-algebras A and B are **Morita equivalent** when there exist a pair of **compact** differentiable correspondences \mathcal{X} and \mathcal{Y} such that

$$\mathcal{X} \hat{\otimes}_B \mathcal{Y} \sim A \quad \text{and} \quad \mathcal{Y} \hat{\otimes}_A \mathcal{X} \sim B$$

where “\sim” means “in duality”.

Jens Kaad

Morita equivalences of spectral triples
Example

Let \mathcal{M} be a Riemannian manifold and let \mathcal{M}' denote the same manifold but with a conformally equivalent metric. Then the operator \ast-algebras

$$C^1_0(\mathcal{M}) \quad \text{and} \quad C^1_0(\mathcal{M}')$$

are Morita equivalent.
Example

Let \mathcal{M} be a Riemannian manifold equipped with a free and proper action ϕ of a discrete group G. Suppose that

$$\|d\phi_g\|_\infty := \sup_{x \in \mathcal{M}} \|(d\phi_g)(x)\| < \infty$$

for all $g \in G$;

$$\sup_{g \in G} \|d\phi_g\|_\infty < \infty.$$

Then the operator \ast-algebras

$$C^1_0(\mathcal{M}) \rtimes G \quad \text{and} \quad C^1_0(\mathcal{M}/G)$$

are Morita equivalent.
Morita equivalence (examples)

Example

Let \mathcal{M} be a Riemannian manifold equipped with a free and proper action ϕ of a discrete group G. Suppose that

1. The derivative of the action is bounded, thus

$$\|d\phi_g\|_\infty := \sup_{x \in \mathcal{M}} \|(d\phi_g)(x)\| < \infty$$

for all $g \in G$;

Then the operator \ast-algebras

$$C^1_0(\mathcal{M}) \rtimes G \quad \text{and} \quad C^1_0(\mathcal{M}/G)$$

are Morita equivalent.
Example

Let \mathcal{M} be a Riemannian manifold equipped with a free and proper action ϕ of a discrete group G. Suppose that

1. The derivative of the action is bounded, thus

$$\|d\phi_g\|_{\infty} := \sup_{x \in \mathcal{M}} \|(d\phi_g)(x)\| < \infty$$

for all $g \in G$;

2. $\sup_{g \in G} \|d\phi_g\|_{\infty} < \infty$.

Then the operator \ast-algebras

$$C_0^1(\mathcal{M}) \rtimes G$$

and

$$C_0^1(\mathcal{M}/G)$$

are Morita equivalent.
Example

Let \mathcal{A} be an operator \ast-algebra and let $\mathcal{L} \subseteq \mathcal{A}$ be a closed right ideal. Suppose that

1. The C^\ast-closure $\mathcal{L} \subseteq \mathcal{A}$ is countably generated as a Hilbert C^\ast-module over \mathcal{A};
2. The \ast-subalgebra $\mathcal{L}^\ast \cdot \mathcal{L} = \text{span} \{ \xi^\ast \cdot \eta | \xi, \eta \in \mathcal{L} \} \subseteq \mathcal{A}$ is dense.

Then the operator \ast-algebras

$$\mathcal{L} \cap \mathcal{L}^*$$

and

$$\mathcal{A}$$

are Morita equivalent.

Jens Kaad

Morita equivalences of spectral triples
Let A be an operator \ast-algebra and let $\mathcal{L} \subseteq A$ be a closed right ideal. Suppose that

1. The C^*-closure $\mathcal{L} \subseteq A$ is countably generated as a Hilbert C^*-module over A;

Then the operator \ast-algebras

$$\mathcal{L} \cap \mathcal{L}^* \quad \text{and} \quad A$$

are Morita equivalent.
Example

Let A be an operator \ast-algebra and let $\mathcal{L} \subseteq A$ be a closed right ideal. Suppose that

1. The C^*-closure $\mathcal{L} \subseteq A$ is countably generated as a Hilbert C^*-module over A;
2. The \ast-subalgebra $\mathcal{L} \ast \mathcal{L} = \text{span}_{\mathbb{C}} \{ \xi^* \cdot \eta \mid \xi, \eta \in \mathcal{L} \} \subseteq A$

is dense.

Then the operator \ast-algebras

$\mathcal{L} \cap \mathcal{L}^* \quad \text{and} \quad A$

are Morita equivalent.
Theorem (K.)

Suppose that A and B are Morita equivalent operator \ast-algebras. Then there is a bijective correspondence between the twisted spectral triples over A and the twisted spectral triples over B (up to twisted bounded perturbations and unitary equivalence).

This bijective correspondence is implemented by the unbounded Kasparov product as developed by Mesland, Lesch, K. and others.