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Spectral triples

Definition

A spectral triple (A ,H,D) consists of

1 A ∗-algebra A represented (non-degenerately) on a separable
Hilbert space H;

2 A selfadjoint unbounded operator D : Dom(D)→ H,

such that

1 a · (i + D)−1 : H → H is compact;

2 Dom(D) ⊆ H is an invariant subspace for a : H → H and the
commutator

[D, a] : Dom(D)→ H

is the restriction of a bounded operator d(a) : H → H,

for all a ∈ A .
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Morita equivalence (algebraic)

Definition

Two unital ∗-algebras A and B are Morita equivalent when
there exists an orthogonal projection p ∈ Mn(B) such that

1 A is ∗-isomorphic to EndB(pBn);

2 pBn is full in the sense that

1B =
m∑
j=1

〈ξj , ξj〉

for some ξ1, . . . , ξm ∈ pBn.
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Morita equivalence (algebraic)

Theorem

Suppose that A and B are two Morita equivalent unital
∗-algebras. Then there is a bijective correspondence between the
spectral triples over A and the spectral triples over B (up to
bounded perturbations and unitary equivalence).
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The unbounded Kasparov product (algebraic)

Proposition (Connes, Mathai, Rennie, Lord, Suijlekom, Varilly)

Let pBn be a finitely generated projective module over B and let
(B,H,D) be a spectral triple. Then

pBn ⊗B (B,H,D) := (A , pHn, pDp)

is a spectral triple for A ∼= EndB(pBn).

Jens Kaad Morita equivalences of spectral triples



Morita equivalence (topological)

Definition

Two (σ-unital) C ∗-algebras A and B are Morita equivalent when
there exists a (countably generated, right) Hilbert C ∗-module X
over B such that

1 A is ∗-isomorphic to K (X );

2 X is full in the sense that

〈X ,X 〉 := spanC
{
〈ξ, η〉 | ξ, η ∈ X

}
is dense in B.
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Morita equivalence (topological)

Theorem

Suppose that A and B are Morita equivalent C ∗-algebras. Then
the K -homology of A is isomorphic to the K -homology of B and
the isomorphism is implemented by the bounded Kasparov
product by [X ] ∈ KK0(A,B).
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Operator spaces

Definition

An operator space is a vector space X equipped with a norm
‖ · ‖X : Mn(X )→ [0,∞) for each n ∈ N such that

1 Mn(X ) is complete;

2 ‖ξ ⊕ η‖X = max{‖ξ‖X , ‖η‖X };
3 ‖v · ξ · w‖X ≤ ‖v‖C · ‖ξ‖X · ‖w‖C.

Theorem (Ruan)

Any operator space X is completely isometric to a closed subspace
of L (H) for some Hilbert space H.
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Operator ∗-algebras

Definition

An operator ∗-algebra is an operator space A equipped with

1 A completely contractive product

m : A×A → A

2 A completely isometric involution

∗ : A → A

3 An injective completely contractive ∗-homomorphism

i : A → A

with dense image in a (σ-unital) C ∗-algebra A.
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Operator ∗-algebras

Example

Let A be a ∗-algebra and let B be a (σ-unital) C ∗-algebra.
Suppose that we have

1 An injective ∗-homomorphism π : A → B;

2 A closed ∗-derivation δ : A → B;

Then the (canonical matrix norms coming from the) algebra
homomorphism

A → M2(B) a 7→
(
π(a) 0
δ(a) π(a)

)
provides A with an operator ∗-algebra structure.
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Differentiable correspondences

Definition

Let A and B be operator ∗-algebras. A differentiable
correspondence is an operator space X equipped with

1 Completely contractive module actions

A×X → X and X × B → X

2 A completely contractive hermitian form

〈·, ·〉 : X × X → B

3 An injective homomorphism (also preserving the hermitian
forms)

i : X → X

with dense image in a (countably generated and
non-degenerate) C ∗-correspondence X from A to B.
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The Haagerup tensor product

Proposition (K.)

Let X and Y be two differentiable correspondences from A to B
and from B to C, respectively. There exists a (balanced) tensor
product

X⊗̂BY

which is a differentiable correspondence from A to C with
C ∗-completion

X ⊗̂BY

the interior tensor product (of the C ∗-completions of X and Y).
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Duality

Definition

Two differentiable correspondences X and Y (both from A to B)
are in duality when there exists a unitary operator U : X → Y
such that

1 UπX (a)U∗ = πY (a) for all a ∈ A;

2 〈U(ξ), η〉Y ∈ B for all ξ ∈ X , η ∈ Y;

3 The pairing

(·, ·) : X × Y → B (ξ, η) := 〈U(ξ), η〉Y

is completely bounded.
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Morita equivalence (geometric)

Definition

Two operator ∗-algebras A and B are Morita equivalent when
there exist a pair of compact differentiable correspondences X and
Y such that

X⊗̂BY ∼ A and Y⊗̂AX ∼ B

where “∼” means “in duality”.
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Morita equivalence (examples)

Example

Let M be a Riemannian manifold and let M′ denote the same
manifold but with a conformally equivalent metric. Then the
operator ∗-algebras

C 1
0 (M) and C 1

0 (M′)

are Morita equivalent.
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Morita equivalence (examples)

Example

Let M be a Riemannian manifold equipped with a free and proper
action φ of a discrete group G . Suppose that

1 The derivative of the action is bounded, thus

‖dφg‖∞ := sup
x∈M

‖(dφg )(x)‖ <∞

for all g ∈ G ;

2 supg∈G ‖dφg‖∞ <∞.

Then the operator ∗-algebras

C 1
0 (M) o G and C 1

0 (M/G )

are Morita equivalent.
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Morita equivalence (examples)

Example

Let A be an operator ∗-algebra and let L ⊆ A be a closed right
ideal. Suppose that

1 The C ∗-closure L ⊆ A is countably generated as a Hilbert
C ∗-module over A;

2 The ∗-subalgebra

L∗ · L = spanC{ξ∗ · η | ξ, η ∈ L} ⊆ A

is dense.

Then the operator ∗-algebras

L ∩ L∗ and A

are Morita equivalent.
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Morita equivalence (geometric)

Theorem (K.)

Suppose that A and B are Morita equivalent operator ∗-algebras.
Then there is a bijective correspondence between the twisted
spectral triples over A and the twisted spectral triples over B (up
to twisted bounded perturbations and unitary equivalence).
This bijective correspondence is implemented by the unbounded
Kasparov product as developed by Mesland, Lesch, K. and others.
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