Morita equivalences of spectral triples

Jens Kaad

April 6, 2016

Jens Kaad Morita equivalences of spectral triples

A spectral triple (\mathscr{A}, H, D) consists of

such that

for all $a \in \mathscr{A}$.

伺 ト イ ヨ ト イ ヨ ト

3

A spectral triple (\mathscr{A}, H, D) consists of

 A *-algebra A represented (non-degenerately) on a separable Hilbert space H;

such that

for all $a \in \mathscr{A}$.

A spectral triple (\mathscr{A}, H, D) consists of

- A *-algebra A represented (non-degenerately) on a separable Hilbert space H;
- **2** A selfadjoint unbounded operator D : $Dom(D) \rightarrow H$,

such that

for all $a \in \mathscr{A}$.

A spectral triple (\mathscr{A}, H, D) consists of

- A *-algebra A represented (non-degenerately) on a separable Hilbert space H;
- **2** A selfadjoint unbounded operator D : Dom $(D) \rightarrow H$,

such that

1
$$a \cdot (i + D)^{-1} : H o H$$
 is compact;

for all $a \in \mathscr{A}$.

A spectral triple (\mathscr{A}, H, D) consists of

- A *-algebra A represented (non-degenerately) on a separable Hilbert space H;
- **2** A selfadjoint unbounded operator D : Dom $(D) \rightarrow H$,

such that

- $a \cdot (i + D)^{-1} : H \to H$ is compact;
- ② $Dom(D) \subseteq H$ is an invariant subspace for a : H → H and the commutator

 $[D,a]:\mathsf{Dom}(D)\to H$

is the restriction of a bounded operator $d(a) : H \to H$, for all $a \in \mathscr{A}$.

Two unital *-algebras \mathscr{A} and \mathscr{B} are **Morita equivalent** when there exists an orthogonal projection $p \in M_n(\mathscr{B})$ such that

Two unital *-algebras \mathscr{A} and \mathscr{B} are **Morita equivalent** when there exists an orthogonal projection $p \in M_n(\mathscr{B})$ such that

• \mathscr{A} is *-isomorphic to $\operatorname{End}_{\mathscr{B}}(p\mathscr{B}^n)$;

Two unital *-algebras \mathscr{A} and \mathscr{B} are **Morita equivalent** when there exists an orthogonal projection $p \in M_n(\mathscr{B})$ such that

- \mathscr{A} is *-isomorphic to $\operatorname{End}_{\mathscr{B}}(p\mathscr{B}^n)$;
- 2 $p\mathscr{B}^n$ is full in the sense that

$$1_{\mathscr{B}} = \sum_{j=1}^{m} \langle \xi_j, \xi_j \rangle$$

for some $\xi_1, \ldots, \xi_m \in p\mathscr{B}^n$.

Theorem

Suppose that \mathscr{A} and \mathscr{B} are two Morita equivalent unital *-algebras. Then there is a bijective correspondence between the spectral triples over \mathscr{A} and the spectral triples over \mathscr{B} (up to bounded perturbations and unitary equivalence).

Proposition (Connes, Mathai, Rennie, Lord, Suijlekom, Varilly)

Let $p\mathscr{B}^n$ be a finitely generated projective module over \mathscr{B} and let (\mathscr{B}, H, D) be a spectral triple. Then

$$p\mathscr{B}^n\otimes_{\mathscr{B}}(\mathscr{B},H,D):=(\mathscr{A},pH^n,\overline{pDp})$$

is a spectral triple for $\mathscr{A} \cong \operatorname{End}_{\mathscr{B}}(p\mathscr{B}^n)$.

Two (σ -unital) C^{*}-algebras A and B are **Morita equivalent** when there exists a (countably generated, right) Hilbert C^{*}-module X over B such that

Two (σ -unital) C^{*}-algebras A and B are **Morita equivalent** when there exists a (countably generated, right) Hilbert C^{*}-module X over B such that

• A is *-isomorphic to $\mathcal{K}(X)$;

Two (σ -unital) C^{*}-algebras A and B are **Morita equivalent** when there exists a (countably generated, right) Hilbert C^{*}-module X over B such that

- A is *-isomorphic to $\mathscr{K}(X)$;
- 2 X is full in the sense that

$$\langle X, X \rangle := \operatorname{span}_{\mathbb{C}} \{ \langle \xi, \eta \rangle \mid \xi, \eta \in X \}$$

is dense in B.

Theorem

Suppose that A and B are Morita equivalent C^* -algebras. Then the K-homology of A is isomorphic to the K-homology of B and the isomorphism is implemented by the **bounded** Kasparov product by $[X] \in KK_0(A, B)$.

An **operator space** is a vector space \mathcal{X} equipped with a norm $\|\cdot\|_{\mathcal{X}} : M_n(\mathcal{X}) \to [0,\infty)$ for each $n \in \mathbb{N}$ such that

∃ >

An operator space is a vector space \mathcal{X} equipped with a norm $\|\cdot\|_{\mathcal{X}}: M_n(\mathcal{X}) \to [0,\infty)$ for each $n \in \mathbb{N}$ such that

• $M_n(\mathcal{X})$ is complete;

э

< ∃ >

An **operator space** is a vector space \mathcal{X} equipped with a norm $\|\cdot\|_{\mathcal{X}} : M_n(\mathcal{X}) \to [0,\infty)$ for each $n \in \mathbb{N}$ such that

• $M_n(\mathcal{X})$ is complete;

э

< ∃ >

An **operator space** is a vector space \mathcal{X} equipped with a norm $\|\cdot\|_{\mathcal{X}} : M_n(\mathcal{X}) \to [0,\infty)$ for each $n \in \mathbb{N}$ such that

1 $M_n(\mathcal{X})$ is complete;

- ∢ ≣ ▶

An **operator space** is a vector space \mathcal{X} equipped with a norm $\|\cdot\|_{\mathcal{X}} : M_n(\mathcal{X}) \to [0,\infty)$ for each $n \in \mathbb{N}$ such that

• $M_n(\mathcal{X})$ is complete;

Theorem (Ruan)

Any operator space \mathcal{X} is completely isometric to a closed subspace of $\mathscr{L}(H)$ for some Hilbert space H.

Definition

An operator *-algebra is an operator space A equipped with

Definition

An operator *-algebra is an operator space \mathcal{A} equipped with

A completely contractive product

 $m:\mathcal{A}\times\mathcal{A}\to\mathcal{A}$

Definition

An operator *-algebra is an operator space \mathcal{A} equipped with

A completely contractive product

 $m:\mathcal{A}\times\mathcal{A}\to\mathcal{A}$

2 A completely isometric involution

 $*:\mathcal{A}\to\mathcal{A}$

Definition

An operator *-algebra is an operator space A equipped with

A completely contractive product

 $m:\mathcal{A}\times\mathcal{A}\to\mathcal{A}$

2 A completely isometric involution

 $*:\mathcal{A}\to\mathcal{A}$

In injective completely contractive *-homomorphism

 $i:\mathcal{A}\to\mathcal{A}$

with dense image in a (σ -unital) C^{*}-algebra A.

Let A be a *-algebra and let B be a (σ -unital) C*-algebra. Suppose that we have

Then the (canonical matrix norms coming from the) algebra homomorphism

$$\mathcal{A} o M_2(B) \qquad a \mapsto \left(egin{array}{cc} \pi(a) & 0 \\ \delta(a) & \pi(a) \end{array}
ight)$$

provides A with an operator *-algebra structure.

Let A be a *-algebra and let B be a (σ -unital) C*-algebra. Suppose that we have

• An injective *-homomorphism $\pi : \mathcal{A} \to B$;

Then the (canonical matrix norms coming from the) algebra homomorphism

$$\mathcal{A} o M_2(B) \qquad a \mapsto \left(egin{array}{cc} \pi(a) & 0 \ \delta(a) & \pi(a) \end{array}
ight)$$

provides A with an operator *-algebra structure.

Let A be a *-algebra and let B be a (σ -unital) C*-algebra. Suppose that we have

• An injective *-homomorphism $\pi : \mathcal{A} \to B$;

2 A closed *-derivation
$$\delta : \mathcal{A} \to B$$
;

Then the (canonical matrix norms coming from the) algebra homomorphism

$$\mathcal{A} o M_2(B) \qquad a \mapsto \left(egin{array}{cc} \pi(a) & 0 \ \delta(a) & \pi(a) \end{array}
ight)$$

provides A with an operator *-algebra structure.

Let A and B be operator *-algebras. A differentiable correspondence is an operator space X equipped with

Differentiable correspondences

Definition

Let \mathcal{A} and \mathcal{B} be operator *-algebras. A differentiable correspondence is an operator space \mathcal{X} equipped with

Completely contractive module actions

$$\mathcal{A} imes \mathcal{X} o \mathcal{X}$$
 and $\mathcal{X} imes \mathcal{B} o \mathcal{X}$

Differentiable correspondences

Definition

Let A and B be operator *-algebras. A differentiable correspondence is an operator space X equipped with

Completely contractive module actions

$$\mathcal{A}\times\mathcal{X}\to\mathcal{X}\qquad\text{and}\qquad\mathcal{X}\times\mathcal{B}\to\mathcal{X}$$

A completely contractive hermitian form

 $\langle \cdot, \cdot \rangle : \mathcal{X} \times \mathcal{X} \to \mathcal{B}$

Differentiable correspondences

Definition

Let A and B be operator *-algebras. A differentiable correspondence is an operator space X equipped with

Completely contractive module actions

 $\mathcal{A}\times\mathcal{X}\to\mathcal{X}\qquad\text{and}\qquad\mathcal{X}\times\mathcal{B}\to\mathcal{X}$

A completely contractive hermitian form

 $\langle \cdot, \cdot \rangle : \mathcal{X} \times \mathcal{X} \to \mathcal{B}$

An injective homomorphism (also preserving the hermitian forms)

 $i: \mathcal{X} \to X$

with dense image in a (countably generated and non-degenerate) C*-correspondence X from A to B.

Proposition (K.)

Let \mathcal{X} and \mathcal{Y} be two differentiable correspondences from \mathcal{A} to \mathcal{B} and from \mathcal{B} to \mathcal{C} , respectively. There exists a (balanced) tensor product

 $\mathcal{X}\widehat{\otimes}_{\mathcal{B}}\mathcal{Y}$

which is a differentiable correspondence from ${\cal A}$ to ${\cal C}$ with $C^*\mbox{-}completion$

 $X \widehat{\otimes}_B Y$

the interior tensor product (of the C^* -completions of \mathcal{X} and \mathcal{Y}).

Two differentiable correspondences \mathcal{X} and \mathcal{Y} (both from \mathcal{A} to \mathcal{B}) are **in duality** when there exists a unitary operator $U : X \to Y$ such that

Two differentiable correspondences X and Y (both from A to B) are **in duality** when there exists a unitary operator $U : X \to Y$ such that

•
$$U\pi_X(a)U^* = \pi_Y(a)$$
 for all $a \in A$;

-

Two differentiable correspondences X and Y (both from A to B) are **in duality** when there exists a unitary operator $U : X \to Y$ such that

- $U\pi_X(a)U^* = \pi_Y(a)$ for all $a \in A$;
- $(U(\xi),\eta)_Y \in \mathcal{B} \text{ for all } \xi \in \mathcal{X}, \eta \in \mathcal{Y};$

Two differentiable correspondences \mathcal{X} and \mathcal{Y} (both from \mathcal{A} to \mathcal{B}) are **in duality** when there exists a unitary operator $U : X \to Y$ such that

- $U\pi_X(a)U^* = \pi_Y(a)$ for all $a \in A$;
- $(U(\xi),\eta)_Y \in \mathcal{B} \text{ for all } \xi \in \mathcal{X}, \eta \in \mathcal{Y};$
- The pairing

 $(\cdot, \cdot): \mathcal{X} \times \mathcal{Y} \to \mathcal{B} \qquad (\xi, \eta) := \langle U(\xi), \eta \rangle_{\mathbf{Y}}$

is completely bounded.

- < ∃ →

Two operator *-algebras A and B are **Morita equivalent** when there exist a pair of **compact** differentiable correspondences X and Y such that

$$\mathcal{X}\widehat{\otimes}_{\mathcal{B}}\mathcal{Y}\sim\mathcal{A}$$
 and $\mathcal{Y}\widehat{\otimes}_{\mathcal{A}}\mathcal{X}\sim\mathcal{B}$

where " \sim " means "in duality".

Let \mathcal{M} be a Riemannian manifold and let \mathcal{M}' denote the same manifold but with a conformally equivalent metric. Then the operator *-algebras

$$C_0^1(\mathcal{M})$$
 and $C_0^1(\mathcal{M}')$

Let \mathcal{M} be a Riemannian manifold equipped with a free and proper action ϕ of a discrete group G. Suppose that

Then the operator *-algebras

$$C_0^1(\mathcal{M}) \rtimes G$$
 and $C_0^1(\mathcal{M}/G)$

Let \mathcal{M} be a Riemannian manifold equipped with a free and proper action ϕ of a discrete group G. Suppose that

The derivative of the action is bounded, thus

$$\|d\phi_g\|_{\infty} := \sup_{x\in\mathcal{M}} \|(d\phi_g)(x)\| < \infty$$

for all $g \in G$;

Then the operator *-algebras

$$C_0^1(\mathcal{M}) \rtimes G$$
 and $C_0^1(\mathcal{M}/G)$

Let \mathcal{M} be a Riemannian manifold equipped with a free and proper action ϕ of a discrete group G. Suppose that

The derivative of the action is bounded, thus

$$\|d\phi_g\|_{\infty} := \sup_{x \in \mathcal{M}} \|(d\phi_g)(x)\| < \infty$$

for all $g \in G$; sup_{$g \in G$} $\|d\phi_g\|_{\infty} < \infty$. Then the operator *-algebras

$$C^1_0(\mathcal{M})
times G$$
 and $C^1_0(\mathcal{M}/G)$

Let A be an operator *-algebra and let $\mathcal{L} \subseteq \mathcal{A}$ be a closed right ideal. Suppose that

Then the operator *-algebras

 $\mathcal{L}\cap\mathcal{L}^*$ and \mathcal{A}

are Morita equivalent.

∃ >

Let A be an operator *-algebra and let $\mathcal{L} \subseteq \mathcal{A}$ be a closed right ideal. Suppose that

The C*-closure L ⊆ A is countably generated as a Hilbert C*-module over A;

Then the operator *-algebras

 $\mathcal{L}\cap\mathcal{L}^*$ and \mathcal{A}

Let \mathcal{A} be an operator *-algebra and let $\mathcal{L} \subseteq \mathcal{A}$ be a closed right ideal. Suppose that

- The C*-closure L ⊆ A is countably generated as a Hilbert C*-module over A;
- O The *-subalgebra

$$L^* \cdot L = \operatorname{span}_{\mathbb{C}} \{ \xi^* \cdot \eta \mid \xi, \eta \in L \} \subseteq A$$

is dense.

Then the operator *-algebras

$$\mathcal{L}\cap\mathcal{L}^*$$
 and \mathcal{A}

Theorem (K.)

Suppose that A and B are Morita equivalent operator *-algebras. Then there is a bijective correspondence between the twisted spectral triples over A and the twisted spectral triples over B (up to twisted bounded perturbations and unitary equivalence). This bijective correspondence is implemented by the unbounded Kasparov product as developed by Mesland, Lesch, K. and others.