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Abstract:

• Pimsner algebras of ‘tautological’ line bundles: Total spaces

of principal bundles out of a Fock-space construction

• Gysin-like sequences in KK-theory

•Quantum lens spaces as direct sums of line bundles over weighted

quantum projective spaces

• Self-dual connections:

on line bundles: monopole connections

on higher rank bundles: instanton connections

• some hint to T-dual noncommutative bundles



‘grand motivations’ :

Gauge fields on noncommutative spaces

T-duality for noncommutative spaces

Chern-Simons theory

A Gysin sequence for U(1)-bundles

relates H-flux (three-forms on the total space E) to line bundles

(two-forms on the base space M) also giving an isomorphism

between Dixmier-Douady classes on E and line bundles on M



The classical Gysin sequence

Long exact sequence in cohomology; for any sphere bundle

In particular, for circle bundles: U(1)→ E
π−→ X

· · · −→ Hk(E)
π∗−→ Hk−1(X)

∪c1(E)−−−−−→ Hk+1(X)
π∗−→ Hk+1(E) −→ · · ·

· · · −→ H3(E)
π∗−→ H2(X)

∪c1(E)−−−−−→ H4(X) −→ · · ·

H3(E) 3 H 7→ π∗(H) = F ′ = c1(E′)
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· · · −→ H3(E′)
π∗−→ H2(X)

∪c1(E′)−−−−−→ H4(X) −→ · · ·

F ′ ∪ F = 0 = F ∪ F ′

⇒ ∃ H3(E′) 3 H ′ 7→ π∗(H) = F = c1(E)

T-dual (E,H) and (E′, H ′)

Bouwknegt, Evslin, Mathai, 2004



difficult to generalize to quantum spaces

rather go to K-theory ; a six term exact sequence ( see later )



Projective spaces and lens spaces

CPn = S2n+1/U(1) and L(n,r) = S2n+1/Zr

assemble in principal bundles : S2n+1 //L(n,r) π //CPn

This leads to the Gysin sequence in topological K-theory:

0 //K1(L(n,r)) δ //K0(CPn) α //K0(CPn) π
∗
//K0(L(n,r)) //0

δ is a ‘connecting homomorphism’

α is multiplication by the Euler class χ(L−r) := 1− [L−r]

From this:

K1(L(n,r)) ' ker(α) and K0(L(n,r)) ' coker(α)

torsion groups



U(1)-principal bundles

The Hopf algebra

H = O(U(1)) := C[z, z−1]/
〈
1− zz−1

〉
∆ : zn 7→ zn ⊗ zn ; S : zn 7→ z−n ; ε : zn 7→ 1

Let A be a right comodule algebra over H with coaction

∆R : A → A⊗H

B := {x ∈ A |∆R(x) = x⊗ 1} be the subalgebra of coinvariants

Definition 1. The datum
(
A,H,B

)
is a quantum principal U(1)-

bundle when the canonical map is an isomorphism

can : A⊗B A → A⊗H , x⊗ y 7→ x∆R(y) .



Z-graded algebras

A = ⊕n∈ZAn a Z-graded algebra. A right H-comodule algebra:

∆R : A → A⊗H x 7→ x⊗ z−n , for x ∈ An ,

with the subalgebra of coinvariants given by A0.

Proposition 2. The triple
(
A,H,A0

)
is a quantum principal U(1)-

bundle if and only if there exist finite sequences

{ξj}Nj=1 , {βi}
M
i=1 in A1 and {ηj}Nj=1 , {αi}

M
i=1 in A−1

such that: ∑N

j=1
ξjηj = 1A =

∑M

i=1
αiβi .



Corollary 3. Same conditions as above. The right-modules A1
and A−1 are finitely generated and projective over A0.

Proof. For A1: define the module homomorphisms

Φ1 : A1 → (A0)N , Φ1(ζ) =


η1 ζ
η2 ζ

...
ηN ζ

 and

Ψ1 : (A0)N → A1 , Ψ1


x1
x2
...
xN

 =
∑

j
ξj xj .

Then Ψ1Φ1 = IdA1
.

Thus E1 := Φ1Ψ1 is an idempotent in MN(A0).



The above results show that
(
A,H,A0

)
is a quantum principal

U(1)-bundle if and only if A is strongly Z-graded, that is

AnA(m) = A(n+m)

Equivalently, the right-modules A(±1) are finitely generated and

projective over A0 if and only if A is strongly Z-graded

C. Nastasescu, F. Van Oystaeyen, Graded Ring Theory

K.H. Ulbrich, 1981



More generally: G any group with unit e

An algebra A is G-graded if A = ⊕g∈GAg, and AgAh ⊆ Agh

If H := CG the group algebra, then A is G-graded if and only if
A is a right H-comodule algebra for the coaction δ : A → A⊗H

δ(ag) = ag ⊗ g, ag ∈ Ag;
coinvariants given by AcoH = Ae, the identity components.

Proposition 4. The datum
(
A,H,Ae

)
is a noncommutative prin-

cipal H-bundle for the canonical map

can : A⊗Ae A → A⊗H , a⊗ b 7→
∑

g
abg ⊗ g ,

if and only if A is strongly graded, that is AgAh = Agh.

When G = Z = Û(1), then CG = O(U(1)) as before.



More general scheme: Pimsner algebras M.V. Pimsner ’97

The right-modules A1 and A−1 before are ‘line bundles’ over A0

The slogan: a line bundle is a self-Morita equivalence bimodule

E a (right) Hilbert module over B

B-valued hermitian structure 〈·, ·〉 on E

L(E) adjointable operators; K(E) ⊆ L(E) compact operators

with ξ, η ∈ E, denote θξ,η ∈ K(E) defined by θξ,η(ζ) = ξ 〈η, ζ〉

There is an isomorphism φ : B → K(E) and E is a B-bimodule



Comparing with before:

A0 ; B and A−1 ; E

Look for the analogue of A ; OE Pimsner algebra

Examples

B = O(CPnq ) quantum (weighted) projective spaces

E = L−r ' (L−1)r (powers of) tautological line bundle

OE = O(L(n,r)
q ) quantum lens spaces



Define the B-module

E∞ :=
⊕
N∈Z

E⊗̂φN , E0 = B

E ⊗φ E the inner tensor product: a B-Hilbert module with B-

valued hermitian structure

〈ξ1 ⊗ η1, ξ2 ⊗ η2〉 = 〈η1, φ(〈ξ1, ξ2〉)η2〉

E−1 = E∗ the dual module;

its elements are written as λξ for ξ ∈ E : λξ(η) = 〈ξ, η〉



For each ξ ∈ E a bounded adjointable operator

Sξ : E∞ → E∞

generated by Sξ : E⊗̂φN → E⊗̂φ(N+1):

Sξ(b) := ξ b , b ∈ B ,
Sξ(ξ1 ⊗ · · · ⊗ ξN) := ξ ⊗ ξ1 ⊗ · · · ⊗ ξN , N > 0 ,

Sξ(λξ1
⊗ · · · ⊗ λξ−N) := λξ2 φ−1(θξ1,ξ)

⊗ λξ3
⊗ · · · ⊗ λξ−N , N < 0 .

Definition 5. The Pimsner algebra OE of the pair (φ,E) is the

smallest subalgebra of L(E∞) which contains the operators Sξ :

E∞ → E∞ for all ξ ∈ E.

Pimsner: universality of OE



There is a natural inclusion

B ↪→ OE a generalized principal circle bundle

roughly: as a vector space OE ' E∞ and

E⊗̂φN 3 η 7→ ηλ−N , λ ∈ U(1)

Two natural classes in KK-theory:

1. the class [E] ∈ KK0(B,B)
of the even Kasparov module (E, φ,0) (with trivial grading)

the map 1− [E] has the role of the Euler class χ(E) := 1− [E]

of the line bundle E over the ‘noncommutative space’ B



2. the class [∂] ∈ KK1(OE, B)

of the odd Kasparov module (E∞, φ̃, F ):

F := 2P − 1 ∈ L(E∞) of the projection P : E∞ → E∞ with

Im(P ) =
(
⊕∞N=0 E

⊗̂φN
)
⊆ E∞

and inclusion φ̃ : OE → L(E∞).

The Kasparov product induces group homomorphisms

[E] : K∗(B)→ K∗(B) , [E] : K∗(B)→ K∗(B)

and

[∂] : K∗(OE)→ K∗+1(B) , [∂] : K∗(B)→ K∗+1(OE) ,



Associated six-terms exact sequences Gysin sequences:
in K-theory:

K0(B)
1−[E]−−−−→ K0(B)

i∗−→ K0(OE)

[∂]

x y[∂] ;

K1(OE) ←−
i∗

K1(B) ←−−−−
1−[E]

K1(B)

the corresponding one in K-homology:

K0(B) ←−−−−
1−[E]

K0(B) ←−
i∗

K0(OE)y[∂] [∂]

x .

K1(OE)
i∗−→ K1(B)

1−[E]−−−−→ K1(B)

In fact in KK-theory



The quantum spheres and the projective spaces

The coordinate algebra O(S2n+1
q ) of quantum sphere S2n+1

q :
∗-algebra generated by 2n+ 2 elements {zi, z∗i }i=0,...,n s.t.:

zizj = q−1zjzi 0 ≤ i < j ≤ n ,
z∗i zj = qzjz

∗
i i 6= j ,

[z∗n, zn] = 0 , [z∗i , zi] = (1− q2)
n∑

j=i+1

zjz
∗
j i = 0, . . . , n− 1 ,

and a sphere relation:

1 = z0z
∗
0 + z1z

∗
1 + . . .+ znz

∗
n .

L. Vaksman, Ya. Soibelman, 1991 ; M. Welk, 2000



The ∗-subalgebra of O(S2n+1
q ) generated by

pij := z∗i zj

coordinate algebra O(CPnq ) of the quantum projective space CPnq

Invariant elements for the U(1)-action on the algebra O(S2n+1
q ):

(z0, z1, . . . , zn) 7→ (λz0, λz1, . . . , λzn), λ ∈ U(1).

the fibration S2n+1
q → CPnq is a quantum U(1)-principal bundle:

O(CPnq ) = O(S2n+1
q )U(1) ↪→ O(S2n+1

q ) .



The C∗-algebras C(S2n+1
q ) and C(CPnq ) of continuous functions:

completions of O(S2n+1
q ) and O(CPnq ) in the universal C∗-norms

these are graph algebras J.H. Hong, W. Szymański 2002

⇒ K0(CPnq ) ' Zn+1 ' K0(C(CPnq ))

F. D’Andrea, G. L. 2010

Generators of the homology group K0(C(CPnq )) given explicitly

as (classes of) even Fredholm modules

µk = (O(CPnq ), H(k), π
(k), γ(k), F(k)) , for 0 ≤ k ≤ n .



Generators of the K-theory K0(CPnq ) also given explicitly as pro-

jections whose entries are polynomial functions:

line bundles & projections

For N ∈ Z, vector-valued functions

ΨN := (ψNj0,...,jn) s.t. Ψ∗NΨN = 1

⇒ PN := ΨNΨ∗N is a projection:

PN ∈MdN
(O(CPnq )), dN :=

(|N |+ n

n

)
,

Entries of PN are U(1)-invariant and so elements of O(CPnq )



Proposition 6. For all N ∈ N and for all 0 ≤ k ≤ n it holds that〈
[µk], [P−N ]

〉
:= TrHk(γ(k)(π(k)(TrP−N)) =

(
N
k

)
,

[µ0], . . . , [µn] are generators of K0(C(CPnq )),

and [P0], . . . , [P−n] are generators of K0(CPnq )

The matrix of couplings M ∈Mn+1(Z) is invertible over Z:

Mij :=
〈
[µi], [P−j]

〉
=
(
j
i

)
, (M−1)ij = (−1)i+j

(
j
i

)
.

These are bases of Zn+1 as Z-modules;

they generate Zn+1 as an Abelian group.



The inclusion O(CPnq ) ↪→ O(S2n+1
q ) is a U(1) q.p.b.

To a projection PN there corresponds an associated line bundle

LN ' (O(CPnq ))dNPN ' P−N(O(CPnq ))dN

LN made of elements of O(S2n+1
q ) transforming under U(1) as

ϕN 7→ ϕNλ
−N , λ ∈ U(1)

Each LN is indeed a bimodule over L0 = O(CPnq ); – the bimodule

of equivariant maps for the IRREP of U(1) with weight N . Also,

LN ⊗O(CPnq ) LM ' LN+M



Denote [PN ] = [LN ] in the group K0(CPnq ).

The module LN is a line bundle, in the sense that its ‘rank’ (as

computed by pairing with [µ0]) is equal to 1

Completely characterized by its ‘first Chern number’ (as com-

puted by pairing with the class [µ1]):

Proposition 7. For all N ∈ Z it holds that

〈[µ0], [LN ]〉 = 1 and 〈[µ1], [LN ]〉 = −N .



The line bundle L−1 emerges as a central character:
its only non-vanishing charges are

〈[µ0], [L−1]〉 = 1 〈[µ1], [L−1]〉 = 1

L−1 is the tautological line bundle for CPnq ,

with Euler class

u = χ([L−1]) := 1− [L−1] .

Proposition 8. It holds that

K0(CPnq ) ' Z[u]/un+1 ' Zn+1 .

[µk] and (−u)j are dual bases of K-homology and K-theory



The quantum lens spaces

Fix an integer r ≥ 2 and define

O(L(n,r)
q ) :=

⊕
N∈Z

LrN .

Proposition 9.
O(L(n,r)

q ) is a ∗-algebra; all elements of O(S2n+1
q ) invariant under

the action αr : Zr → Aut(O(S2n+1
q )) of the cyclic group Zr:

(z0, z1, . . . , zn) 7→ (e2πi/rz0, e
2πi/rz1, . . . , e

2πi/rzn) .

The ‘dual’ L(n,r)
q :

the quantum lens space of dimension 2n+ 1 (and index r)

There are algebra inclusions

j : O(CPnq ) ↪→ O(L(n,r)
q ) ↪→ O(S2n+1

q ) .



Pulling back line bundles

Proposition 10. The algebra inclusion j : O(CPnq ) ↪→ O(L(n,r)
q )

is a quantum principal bundle with structure group Ũ(1) :=

U(1)/Zr:

O(CPnq ) = O(L(n,r)
q )Ũ(1) .

Then one can ‘pull-back’ line bundles from CPnq to L(n,r)
q .

L̃N
��

LN
j∗oo

��

O(L(n,r)q) O(CPnq ) .
j
oo



Definition 11. For each LN an O(CPnq )-bimodule (a line bundle

over CPnq ), its ‘pull-back’ to L(n,r)
q is the O(L(n,r)

q )-bimodule

L̃N = j∗(LN) := O(L(n,r)
q )⊗O(CPnq ) LN .

The algebra inclusion j : O(CPnq )→ O(L(n,r)
q ) induces a map

j∗ : K0(CPnq )→ K0(L(n,r)
q )



Each LN over CPnq is not free when N 6= 0,

this need not be the case for L̃N over L(n,r)
q :

the pull-back L̃−r of L−r is tautologically free :

L̃−r = O(L(n,r)
q )⊗L0

L−r ' O(L(n,r)
q ) = L̃0 .

⇒ (L̃−N)⊗r ' L̃−rN also has trivial class for any N ∈ Z

L̃−N define torsion classes; they generate the group K0(L(n,r)
q )



Multiplying by the Euler class

A second crucial ingredient

α : K0(CPnq )→ K0(CPnq ),

α is multiplication by χ(L−r) := 1− [L−r]

the Euler class of the line bundle L−r



Assembly these into an exact sequence, the Gysin sequence

0→ K1(L(n,r)
q ) ∂ // K0(CPnq ) α // K0(CPnq ) //K0(L(n,r)

q ) //0

0→ K1(L(n,r)
q )

IndD// K0(CPnq ) // .....

and

..... // K0(L(n,r)
q )

IndD// 0

IndD comes from Kasparov theory



Some practical and important applications, notably, the compu-
tation of the K-theory of the quantum lens spaces L(n,r)

q .

Thus

K1(L(n,r)
q ) ' ker(α), K0(L(n,r)

q ) ' coker(α) .

Moreover, geometric generators of the groups

K1(L(n,r)
q ) K0(L(n,r)

q )

for the latter as pulled-back line bundles from CPnq to L(n,r)
q

Explicit generators as integral combinations of powers of the
pull-back to the lens space L(n,r)

q of the generator

u := 1− [L−1]



The K-theory of quantum lens spaces

Proposition 12. The (n+ 1)× (n+ 1) matrix α has rank n:

K1(C(L(n,r)
q )) ' Z .

On the other hand, the structure of the cokernel of the matrix

A depends on the divisibility properties of the integer r.

This leads to

K0(L(n,r)
q ) = Z⊕ Z/α1Z⊕ · · · ⊕ Z/αnZ .

for suitable integers α1, . . . , αn.



Example 13. For n = 1

K0(C(L(1,r)
q )) = Z⊕ Zr .

From definition [L̃−r] = 1, thus L̃−1 generates the torsion part.

Alternatively, from u2 = 0 it follows that L−j = −(j−1) + jL−1;

upon lifting to L(1,r)
q , for j = r this yields

r(1− [L̃−1]) = 0

or 1− [L̃−1] is cyclic of order r.



Example 14. If r = 2 L(n,2)
q = S2n+1

q /Z2 = RP2n+1
q ,

the quantum real projective space, we get

K0(C(RP2n+1
q )) = Z⊕ Z2n

the generator 1− [L̃−1] is cyclic with the correct order 2n.

Example 15. For n = 2 there are two cases.

When r = 2k + 1:

r ũ = 0, r ũ2 = 0, K0(L(2,r)
q ) = Z⊕ Zr ⊕ Zr

When r = 2k:

1
2r (ũ2 + 2 ũ) = 0, 2r ũ = 0, K0(C(L(2,r)

q )) = Z⊕ Z r
2
⊕ Z2r



T-dual Pimsner algebras: a simple example

0→ K1(L(1,r)
q ) ∂ // K0(CP1

q )
1−[L−r]// K0(CP1

q ) //K0(L(1,r)
q ) //0

ker(1− [L−r]) =< u >=< 1− [L−1] >

⇒

K1(L(1,r)
q ) 3 h 7→ ∂(h) = h(1− [L−1]) ' 1− [L−h]

and

(1− [L−r])(1− [L−h]) = 0 = (1− [L−h])(1− [L−r])



The exactness of the dual sequence for

0→ K1(L(1,h)
q ) ∂ // K0(CP1

q )
1−[L−h]

// K0(CP1
q ) //K0(L(1,h)

q ) //0

implies there exists a r ∈ K1(L(1,r)
q ) such that

K1(L(1,h)
q ) 3 r 7→ ∂(r) = r(1− [L−1]) ' 1− [L−r]

The couples

(
L(1,r)
q , h ∈ K1(L(1,r)

q )
)

and
(
L(1,h)
q , r ∈ K1(L(1,h)

q )
)

are ‘T-dual’



More generally : Quantum w. projective lines and lens spaces:

B = O(Wq(k, l)) = quantum weighted projective line
the fixed point algebra for a weighted circle action on O(S3

q )

z0 7→ λkz0 , z1 7→ λlz1 , λ ∈ U(1)

The corresponding universal enveloping C∗-algebra C(Wq(k, l))
does not in fact depend on the label k: isomorphic to the uni-
talization of l copies of K = compact operators on l2(N0)

C(Wq(k, l)) = ⊕̃ls=0K

Then: K0(C(Wq(k, l))) = Zl+1 , K1(C(Wq(k, l))) = 0

a partial resolution of singularity, since classically

K0(C(W (k, l))) = Z2 .



OE = O(Lq(lk; k, l)) = quantum lens space

Indeed, a vector space decomposition

O(Lq(lk; k, l)) = ⊕N∈ZLn(k, l) ,

with E = L1(k, l) a right finitely projective module

L1(k, l) := (z∗1)k · O(Wq(k, l)) + (z∗0)l · O(Wq(k, l))

Also, O(Lq(lk; k, l)) the fixes point algebra of a cyclic action

Z/(lk)Z× S3
q → S3

q

z0 7→ exp(
2πi

l
) z0 , z1 7→ exp(

2πi

k
) z1 .



K-theory and K-homology of quantum lens space

Denote the diagonal inclusion by ι : Z → Zl, 1 7→ (1, . . . ,1) with
transpose ιt : Zl → Z, ιt(m1, . . . ,ml) = m1 + . . .+ml.

Proposition 16. (Arici, Kaad, L.) With k, l ∈ N coprime:

K0

(
Lq(lk; k, l))

)
' coker(1− E) ' Z⊕

(
Zl/Im(ι)

)
K1

(
Lq(lk; k, l))

)
' ker(1− E) ' Zl

as well as

K0
(
Lq(lk; k, l))

)
' ker(1− Et) ' Z⊕

(
ker(ιt)

)
K1

(
Lq(lk; k, l))

)
' coker(1− Et) ' Zl .

Again there is no dependence on the label k.



‘grand motivations / applications’ :

Gauge fields on noncommutative spaces

T-duality for noncommutative spaces

Chern-Simons theory

A Gysin sequence for U(1)-bundles

relates H-flux (three-forms on the total space E) to line bundles

(two-forms on the base space M) also giving an isomorphism

between Dixmier-Douady classes on E and line bundles on M



Summing up:

many nice and elegant and useful geometry structures

hope you enjoyed it

Thank you !!


