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Abstract:

e Pimsner algebras of ‘tautological’ line bundles: Total spaces
of principal bundles out of a Fock-space construction

e Gysin-like sequences in KK-theory

e Quantum lens spaces as direct sums of line bundles over weighted
quantum projective spaces

e Self-dual connections:
on line bundles: monopole connections
on higher rank bundles: instanton connections

e some hint to T-dual noncommutative bundles



‘grand motivations’ :
Gauge fields on noncommutative spaces
T-duality for noncommutative spaces

Chern-Simons theory

A Gysin sequence for U(1)-bundles

relates H-flux (three-forms on the total space E) to line bundles
(two-forms on the base space M) also giving an isomorphism
between Dixmier-Douady classes on E and line bundles on M



The classical Gysin sequence
Long exact sequence in cohomology; for any sphere bundle

In particular, for circle bundles: U(1) - E 5 X

s HR(E) Ty ghl(x) 2,

Uc1 (E)

o — H3(E) ™5 H(X) HY(X) — -+

H3(E)> H — 7s(H) = F' = ¢1(E")

HML(X) & B Y(E) — -



E X M E’
E/ \El
S,

Ucy (E')

o — H3 (B &5 H2(X) » HY(X) — -+

FFUF=0=FUF'

= 3 H3E)>H — m(H)=F = c1(E)

T-dual (E,H) and (E', H")

Bouwknegt, Evslin, Mathai, 2004



difficult to generalize to quantum spaces

rather go to K-theory ; a six term exact sequence ( see later )



Projective spaces and lens spaces
CP™ = s2nt1/y(1) and L) = g2nt+l /7,
assemble in principal bundles : S2n+1__| (nr) 7™ cpn

This leads to the Gysin sequence in topological K-theory:
0— K1(L(Mmm)) 2 gO(cpm) -2 KO(CcPm) == KO(L(m)) —0

d is a ‘connecting homomorphism’
a is multiplication by the Euler class x(£_,) ;=1 — [L_,]

From this:
KL(L™M)) ~ ker(a) and  KO(L(™)) ~ coker(a)

torsion groups



U(1)-principal bundles
The Hopf algebra
H = O(U(1)) :=C[z, 2]/ <1 — zz_1>
A2V 22 Szl 2z e zt—1
Let A be a right comodule algebra over H with coaction
A A—-> AQH

B:={rxre A| Ar(x) =x® 1} be the subalgebra of coinvariants

Definition 1. The datum (A,”H,B) is a quantum principal U(1)-
bundle when the canonical map is an isomorphism

can: AR A—>AQH, zy—xzAp(y).



Z~-graded algebras

A = ®,cz7An a Z-graded algebra. A right H-comodule algebra:

Ap  A—>AQH z—x®z ", for x € Ap,
with the subalgebra of coinvariants given by Agp.

Proposition 2. The triple (A, H, Ao) is a quantum principal U(1)-
bundle if and only if there exist finite sequences

(&1, {B84L, in Ay and {301, {ai}idy in A4

such that:

N M



Corollary 3. Same conditions as above. The right-modules A4
and A_q are finitely generated and projective over Ag.

Proof. For Ai: define the module homomorphisms

UINS
P11 AL = (L), P1(Q) = UQ:C and
UINES
T1
Wy ()N = A, Wy -5052 =2 &z
TN

Then Wid; = Id.Al'

Thus E1 := ®1Wq is an idempotent in My(Ap). L]



The above results show that (A,H,Ao> IS @ quantum principal
U(1)-bundle if and only if A is strongly 7Z-graded, that is

AnAm) = A(ntm)

Equivalently, the right-modules A(il) are finitely generated and
projective over Ag if and only if A is strongly Z-graded

C. Nastasescu, F. VVan Oystaeyen, Graded Ring Theory

K.H. Ulbrich, 1981



More generally: G any group with unit e
An algebra A is G-graded if A= ®,cqAg, and AgA, C Ay,

If H := CG the group algebra, then A is G-graded if and only if
A is a right H-comodule algebra for the coaction é : A - AR H

6(ag) = ag ® g, ag € Ag,
coinvariants given by A©" = A., the identity components.

Proposition 4. The datum (A,?—L,Ae) is a noncommutative prin-
cipal H-bundle for the canonical map

can: Ay A—+AQH, a®b|—>zgabg®g,
if and only if A is strongly graded, that is AgAy, = Agp,.

When G =7Z = U/(\l), then CG = O(U(1)) as before.



More general scheme: Pimsner algebras M.V. Pimsner '97
The right-modules A; and A_1 before are ‘line bundles’ over Ag
The slogan: a line bundle is a self-Morita equivalence bimodule
E a (right) Hilbert module over B

B-valued hermitian structure (-,-) on E

L(FE) adjointable operators; K(FE) C L(E) compact operators
with §,n € E, denote 6, , € K(E) defined by 0¢ ,({) = £(n, ()

There is an isomorphism ¢ : B — K(FE) and E is a B-bimodule



Comparing with before:

Ag~ B and A1~ FE
Look for the analogue of A ~» O Pimsner algebra

Examples

B = O(CPZ) quantum (weighted) projective spaces
E=L_,~(L_1)" (powers of) tautological line bundle

Op = O(LC(]”’T)) guantum lens spaces



Define the B-module
NEeZ

E®¢E the inner tensor product: a B-Hilbert module with B-
valued hermitian structure

(€1 ® 11,82 @ n2) = (N1, ¢({§1,62))n2)

E~1 = E* the dual module;
its elements are written as A¢ for £ € E 1 Ae(n) = (£, )



For each £ € E a bounded adjointable operator

generated by S; : E®N _y p®s(N+1).

Se(b) :=¢0, be B,
Se(61®-®&N) =EREL®- - VN, N >0,
Sg()\&@"'@)\g_]v) = )\gng—lwgl,g)®>\€3®"'®>\£_N, N < 0.

Definition 5. The Pimsner algebra O of the pair (¢, E) is the
smallest subalgebra of L(Ex) which contains the operators Sg :

Esw — Ex for all £ € E.

Pimsner: universality of Og



There is a natural inclusion

B — Opg a generalized principal circle bundle

roughly: as a vector space Ofp ~ E~x and

EOsN S0 gAY, A e U(l)

Two natural classes in KK-theory:

1. the class [E] € KKy(B, B)
of the even Kasparov module (E, ¢,0) (with trivial grading)

the map 1 — [E] has the role of the Euler class x(FE) : =1 — [F]

of the line bundle E over the ‘noncommutative space’ B



2. the class [0] € KK1(Og, B)

of the odd Kasparov module (Exso, ¢, F):

F:=2P -1 ¢ L(Ex) of the projection P : Fsc — Eoo With
Im(P) = (8f=0 E%") C Fo

and inclusion ¢ : Op — L(E).

The Kasparov product induces group homomorphisms
[F] : K«(B) = K«(B), |[E]: K*(B)— K*(B)
and

0] : K+«(Op) — K,411(B), [0]: K*(B) - K*T1(0p),



Associated six-terms exact sequences Gysin sequences:
in K-theory:

1—-(F Ty
Ko(B) UL koB) In Ko(Op)

[aﬂ l[a] ;

K1(Og) . K1(B) W K1(B)

the corresponding one in K-homology:

K%(B) T K°(B) <+ K°Ogp)

l[a] [aﬂ

Klop 2 ki) 2P gip

In fact in KK-theory



The quantum spheres and the projective spaces

The coordinate algebra 0(55”“) of quantum sphere Sg'”’"'l:
x-algebra generated by 2n + 2 elements {z;, 2] };=0... . n S.t.:

zizj=q_1zjzi 0<i1<3< n,
2 2j = qzj%; LFJ
n
[z 2n] =0, [2f,2]1=(1—¢%) > zjz; 1=0,...,n—1,
j=it+1

and a sphere relation:

1 = 20205 + 2127 + ... + znz;, .

L. Vaksman, Ya. Soibelman, 1991 : M. Welk, 2000



The x-subalgebra of 0(53”“) generated by

Dij = Z;{ZJ
coordinate algebra O(CPy) of the quantum projective space CPy

Invariant elements for the U(1)-action on the algebra O(S%”"‘l):

(z0,21,..-,2n) — (Az0, A21, ..., A\zZn), A e U(1).

the fibration s§“+1 — CPy is a quantum U(1)-principal bundle:

O(CP?) = o(s2nthHV) . o(s2ntly.



The C*-algebras C(S(?”“Ll) and C(CPy) of continuous functions:
completions of O(S%”‘H) and O(CPy) in the universal C*-norms

these are graph algebras J.H. Hong, W. Szymanski 2002
= Ko(CP?) ~ 7zt ~ KO(C(CPY))
F. D'Andrea, G. L. 2010

Generators of the homology group KO(C(CPQ)) given explicitly
as (classes of) even Fredholm modules

Ui = (O(CPZ’), H(k)? ﬂ'(k), Y(k): F(k))7 for O0< k<n.



Generators of the K-theory KO((CP’(’;) also given explicitly as pro-
jections whose entries are polynomial functions:

line bundles & projections

For N € Z, vector-valued functions

Wy = ) s.t. WiV =1
= Py = W WY is a projection:
N|+n
Py € Mg (0P, dy = (N7,

Entries of Py are U(1)-invariant and so elements of O(CPy)



Proposition 6. For all N € N and for all 0 < k <n it holds that

: N
([, [P_N) := Trag (v G (Tr P_y)) = ()

[110], - - -, [un] are generators of K9(C(CP)),

and [Pp], ..., [P-p] are generators of Kq(CPy)

The matrix of couplings M € M,,;1(Z) is invertible over Z:

M;j = ([wil, [P_;1) = (1), (M1 = (1) (7).

These are bases of Z"t1 as Z-modules:

they generate 7" *T1 as an Abelian group.



The inclusion O(CPp) — O(Sgn"'l) isa U(1l) g.p.b.

To a projection Py there corresponds an associated line bundle

Ly =~ (O(CPM)INPy =~ P_\(O(CP))IN

Ly made of elements of O(S§”+1) transforming under U(1) as

on = onAY A€ U(1)

Each L, is indeed a bimodule over Ly = O((CP’@;); — the bimodule
of equivariant maps for the IRREP of U(1) with weight N. Also,

LN ®ocpr) LM = LN+M



Denote [Py] = [Lyn] in the group Kq(CPy).

The module Ly is a line bundle, in the sense that its ‘rank’ (as
computed by pairing with [ug]) is equal to 1

Completely characterized by its ‘first Chern number’ (as com-
puted by pairing with the class [u1]):

Proposition 7. For all N € Z it holds that

(lwol, [N =1 and  ([pa], [LN]) = —N.



The line bundle £_1 emerges as a central character:
its only non-vanishing charges are

([nol, [£-1]) =1 ([p1],[£-1]) =1

L_1 is the tautological line bundle for CPy,

with Euler class

u=x([£-1]) :=1-[L_4].

Proposition 8. It holds that
Ko(CPY) ~ Z[u] /u" T ~ 271

(] and (—u)? are dual bases of K-homology and K-theory



The quantum lens spaces

Fix an integer r > 2 and define
O(L(gn’r)) = @ 'CTN°
NEZ

Proposition 9.
O(L(gn”)) is a x-algebra; all elements of O(S7" 1) invariant under
the action ay : Zy — Aut((’)(SgM'l)) of the cyclic group Zy:

,GQWI/T

(z0,21,...,2n) — (627”/Tzo, eQW'/Tzl, . Zn) .

The ‘dual’ L™
the quantum lens space of dimension 2n 4+ 1 (and index r)

There are algebra inclusions

j: O(CP?) = O(L{™) — o(s2+1y .



Pulling back line bundles

Proposition 10. The algebra inclusion j : O(CP") — O(LY""™)
is a quantum principal bundle with structure group U(1) :=
U(1)/Zy:

O(CP™) = O(L{» )V

Then one can ‘pull-back’ line bundles from CP} to L((J”’T).

Ly Jx Ly

O(L(ﬁﬂq) - O(dpg) .



Definition 11. For each Ly an O(CPy)-bimodule (a line bundle
over CPY), its ‘pull-back’ to Lgnﬂ“) is the O(Lgn’r))—bimodu/e

Ly = j:(Ln) = O(L"") ®@ocpny £

The algebra inclusion j : O(CP?) — O(LC(]”’T)) induces a map

js : Ko(CP?) — Ko(L™™)



Each Ly over CPy is not free when N # 0O,

this need not be the case for £y over L{™™

the pull-back LN_T of L_, is tautologically free :

Lo =0 @p Ly~ 0L = L.

= (L_nN)®" ~ L£_.n also has trivial class for any N € Z

~

L_n define torsion classes; they generate the group KO(L((J”’T))



Multiplying by the Euler class

A second crucial ingredient

Q. Ko(CPZ’) — KO(CPZ),

a is multiplication by x(L_p) i =1—[L_;]

the Euler class of the line bundle L_,



Assembly these into an exact sequence, the Gysin sequence

0 — K1(L{™) 2~ Ko(CP?) & Ko(CPM)— Ko(L{™™)—

and

Indy comes from Kasparov theory



Some practical and important applications, notably, the compu-
tation of the K-theory of the quantum lens spaces L{™".

Thus

K1 (LEM)) ~ ker(a), Ko(L{™™)) ~ coker(a) .

Moreover, geometric generators of the groups

Ky (L) Ko (L)

for the latter as pulled-back line bundles from CP7 to L)

Explicit generators as integral combinations of powers of the
pull-back to the lens space LC(]”’T) of the generator

u:=1-— [[,_1]



The K-theory of quantum lens spaces

Proposition 12. The (n+ 1) x (n 4+ 1) matrix a has rank n:

K1(C(LE™) ~ 7.

On the other hand, the structure of the cokernel of the matrix
A depends on the divisibility properties of the integer r.

This leads to

Ko(L" N =Z®Z/a1Z® - & Z/anZ.

for suitable integers «aq,..., an.



Example 13. Forn=1

Ko(C(L&) =202,

From definition [£_,] = 1, thus £_; generates the torsion part.

Alternatively, from u2 = 0 it follows that £_; = —(j — 1) 4+jL_1;
upon lifting to L(gl’r), for j = r this yields

r(l—[£_1]) =0

or 1 — [£_1] is cyclic of order r.



Example 14, If r = 2 L2 = g2ntl 7, = rp2ntt
the quantum real projective space, we get

Ko(C(RP;"T1)) = Z® Zon

the generator 1 — [£_1] is cyclic with the correct order 2".

Example 15. For n = 2 there are two cases.

When r = 2k + 1
ri=0, ru2=0, Ko(LP ) =207, & Z,
When r = 2k:

L@ +2a) =0, 2ri=0, Ko(C(LP") =282 &Ly,



T-dual Pimsner algebras: a simple example

1-[£-]

0 — K1 (L{M) 2 Ko(CPl) Ko(CPL) —Ko(L{)—0

ker(l1 —[L_,;]) =<u>=<1-[L_1] >

K1(L§) 3 hs 8(h) = h(1 — [£_1]) = 1 — [£_)

and

I-[LDA-[Lp]) =0=0—-[L_psDA = [L-+])



The exactness of the dual sequence for

1-[£_p]

0 — K1 (L) 2 Ko(cPD) Ko(CPL)— Ko(LYM")—0

implies there exists a r € Kl(Lgl’T)) such that

KLY 3 0(r) = r(1 - [£-1]) >~ 1 — [£-,)

The couples
(LS h e Ko (LEY™)) and (LEWM, e e Ky (LEM))

are ‘"T-dual’



More generally : Quantum w. projective lines and lens spaces:
B = O(Wy(k,l)) = quantum weighted projective line
the fixed point algebra for a weighted circle action on (’)(Sg)

ZOI—>)\kZO, zZ1 I—))\lzl, A€eU(l)

The corresponding universal enveloping C*-algebra C(Wy(k,1))
does not in fact depend on the label k: isomorphic to the uni-
talization of I copies of K = compact operators on [2(Np)

C(Wy(k, 1)) = @l_oK

Then: Ko(C(Wy(k,1))) =71 K (C(Wy(k,1))) =0

a partial resolution of singularity, since classically

Ko(C(W (k, 1)) =77



Op = O(L4¢(lk; k,1)) = quantum lens space

Indeed, a vector space decomposition

O(LQ(lkr ka l)) — @Nezﬁn(ka l) ’

with £ = £41(k,l) a right finitely projective module

L1(k,1) = (PP O(Wy(k, 1) + (z8)" - O(Wq(k, 1))

Also, O(Lq(lk; k,1)) the fixes point algebra of a cyclic action
Z/(Ik)Z x S2 — S3

27i 27i
zg = exp(T) z0, 21— exp(T) 21 -



K-theory and K-homology of quantum lens space

Denote the diagonal inclusion by ¢ : Z — Z!, 1 — (1,...,1) with
transpose ' : Z - Z, Jt(mq,...,m)) =m1+ ...+ my.

Proposition 16. (Arici, Kaad, L.) With k,l € N coprime:
Ko(Lq(lk; k,1))) ~ coker(1 — E) ~ Z & (Z'/Im(1))
K1 (Lq(lk; k, l))) ~ ker(l — E) ~ 7!

as well as
KO (Lq(lk; k, l))) ~ker(l—EY ~7 @ (ker(uf))
Kl(Lq(lk; k, l))) ~ coker(1 — EY) ~ 7.

Again there is no dependence on the label k.



‘grand motivations / applications’ :
Gauge fields on noncommutative spaces
T-duality for noncommutative spaces

Chern-Simons theory

A Gysin sequence for U(1)-bundles

relates H-flux (three-forms on the total space E) to line bundles
(two-forms on the base space M) also giving an isomorphism
between Dixmier-Douady classes on E and line bundles on M



Summing up:

many nice and elegant and useful geometry structures

hope you enjoyed it

Thank you !



