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Geometry and number theory

Bianchi groups and Bianchi manifolds:

Let K be an imaginary quadratic field, K = Q(
√
−d) for some

square free positive integer d

OK ⊂ K its ring of integers

a torsion free finite index subgroup Γ ⊂ PSL2(OK )

Γ ⊂ PSL2(C) = Isom(H3) = G

M = H3/Γ noncompact hyperbolic manifold

H∗(M,Z) = H∗(Γ,Z)

H∗(M,Z) = H∗(Γ,Z)
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Hecke operators on (co)homology

For g ∈ G , write Γg := Γ ∩ gΓg−1 ⊂ Γ

Comm(Γ,G ) = {g ∈ G : [Γ : Γg ], [Γ : Γg−1 ] <∞}

Hecke operator

H∗(Γ,Z)
Tg−−−−→ H∗(Γ,Z)

res
y xcores

H∗(Γg ,Z)
Adg−−−−→ H∗(Γg−1 ,Z)

(1)
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Corestriction

The corestriction map H1(∆,Z)→ H1(Γ,Z) is defined for any
finite index subgroup ∆ ⊂ Γ:

coset decomposition Γ =
⋃d

i=1 δi∆

determines t : Γ→ ∆d via γδi = δγ(i)ti (γ)

cores(c)(γ) =
∑d

i=1 c(ti (γ)) for 1-cocycles c : Γ→ Z

Hecke operator Tg (c)(γ) =
∑d

i=1 c(g−1ti (γ)g).

Mesland Hecke operators in K -homology 4 / 21



Corestriction

The corestriction map H1(∆,Z)→ H1(Γ,Z) is defined for any
finite index subgroup ∆ ⊂ Γ:

coset decomposition Γ =
⋃d

i=1 δi∆

determines t : Γ→ ∆d via γδi = δγ(i)ti (γ)

cores(c)(γ) =
∑d

i=1 c(ti (γ)) for 1-cocycles c : Γ→ Z

Hecke operator Tg (c)(γ) =
∑d

i=1 c(g−1ti (γ)g).

Mesland Hecke operators in K -homology 4 / 21



Corestriction

The corestriction map H1(∆,Z)→ H1(Γ,Z) is defined for any
finite index subgroup ∆ ⊂ Γ:

coset decomposition Γ =
⋃d

i=1 δi∆

determines t : Γ→ ∆d via γδi = δγ(i)ti (γ)

cores(c)(γ) =
∑d

i=1 c(ti (γ)) for 1-cocycles c : Γ→ Z

Hecke operator Tg (c)(γ) =
∑d

i=1 c(g−1ti (γ)g).

Mesland Hecke operators in K -homology 4 / 21



Corestriction

The corestriction map H1(∆,Z)→ H1(Γ,Z) is defined for any
finite index subgroup ∆ ⊂ Γ:

coset decomposition Γ =
⋃d

i=1 δi∆

determines t : Γ→ ∆d via γδi = δγ(i)ti (γ)

cores(c)(γ) =
∑d

i=1 c(ti (γ)) for 1-cocycles c : Γ→ Z

Hecke operator Tg (c)(γ) =
∑d

i=1 c(g−1ti (γ)g).

Mesland Hecke operators in K -homology 4 / 21



Corestriction

The corestriction map H1(∆,Z)→ H1(Γ,Z) is defined for any
finite index subgroup ∆ ⊂ Γ:

coset decomposition Γ =
⋃d

i=1 δi∆

determines t : Γ→ ∆d via γδi = δγ(i)ti (γ)

cores(c)(γ) =
∑d

i=1 c(ti (γ)) for 1-cocycles c : Γ→ Z

Hecke operator Tg (c)(γ) =
∑d

i=1 c(g−1ti (γ)g).

Mesland Hecke operators in K -homology 4 / 21



Geometric picture

For g ∈ Comm(Γ,G ), set Mg := H/Γg and Mg−1 := H/Γg−1

H g−−−−→ Hy y
Mg

g−−−−→ Mg−1

πg

y yπg−1

M M

(2)

Hecke correspondence M
πg−1◦g
←−−−− Mg

πg−−−→ M

Tg := (πg−1 ◦ g)∗ ◦ πg ! : H∗(M,Z)→ H∗(M,Z)
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Motivation

In the study of modular forms, the cohomology of Γ as a Hecke
module plays a pivotal rôle.

It captures certain spaces of modular forms that lie at the heart of
the Langlands programme and are conjecturally connected to
motives and Galois representations.

The Hecke module H1(Γ,Z) can be studied using

the group model H1(Γ,Z)

the manifold model H1(M,Z)

There is a third picture in which modular forms appear as
distributions on the boundary P1(C) = ∂H3.
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C ∗-algebras and K -homology

K -homology of C ∗-algebras provides a unifying framework to study
the Hecke module from all these perspectives at once:

There is an exact sequence of G -C ∗-algebras

0→ C0(H)→ C (H)→ C (∂H)→ 0,

inducing an exact sequence of the crossed products

0→ C0(H) o Γ→ C (H) o Γ→ C (∂H) o Γ→ 0.
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C ∗-algebras and K -homology

Using that

C0(H) o Γ ∼ C0(M) Morita equivalence

C (H) o Γ ∼ C ∗r (Γ) KK-equivalence (Meyer-Nest)

we obtain the exact hexagon

K 0(C0(M))
∂−−−−→ K 1(C (∂H) o Γ) −−−−→ K 1(C ∗r (Γ))x y

K 0(C ∗r (Γ)) ←−−−− K 0(C (∂H) o Γ) ←−−−−
∂

K 1(C0(M))

(3)
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Hecke operators in KK -theory

Lemma
Let B be a Γ-C ∗-algebra and g ∈ Comm(Γ,G ). For
d := [Γ : Γg−1 ], the right C ∗-B or Γ-module (B or Γg )d admits a
left B or Γ action by compact operators.

By using the embedding (B or Γg )d → (B or Γ)d we obtain a
B or Γ-bimodule T Γ

g and an element [T Γ
g ] ∈ KK0(B or Γ,B or Γ).
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Hecke operators in KK -theory

Lemma

Let g ∈ Comm(Γ,G ) and M
πg−1◦g
←−−−− Mg

πg−→ M the associated
Hecke correspondence. The C ∗-algebra C0(Mg ) can be made into a
C ∗-C0(M)-bimodule, whose left action is by compact operators.

The above bimodule is denoted TM
g and defines an element

[TM
g ] ∈ KK0(C0(M),C0(M)).
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Morita compatibilty

Let C0(H)oΓL
2(H)C0(M) denote the natural (C0(H) o Γ,C0(M))

Morita equivalence bimodule.

Proposition

There is a unitary isomorphism of (C0(H) o Γ,C0(M))-bimodules

T Γ
g ⊗C0(H)oΓ L2(H)C0(M)

∼−→ L2(H)⊗C0(M) T
M
g .

In particular

[T Γ
g ]⊗[L2(H)C0(M)] = [L2(H)C0(M)]⊗[TM

g ] ∈ KK0(C0(H)oΓ,C0(M))),

and the action of the Hecke operators is compatible with the
isomorphism K ∗(C0(H) o Γ)

∼−→ K ∗(C0(M)).
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The boundary map

In KK -theory, the boundary map ∂ : K ∗(A)→ K ∗(C ) associated to
an extension

0→ A→ B → C → 0,

of C ∗-algebras is given by the Kasparov product with a class
[∂] ∈ KK1(C ,A) representing the extension.

We describe this class for the G -equivariant extension

0→ C0(H)→ C (H)→ C (∂H)→ 0.
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Harmonic measures

For x ∈ H, the stabiliser Gx ⊂ G = Isom(H) is a compact group.

Denote by νx the unique Gx invariant probability measure on ∂H.

The measures νx satisfy dνxg (ξg) = dνx(ξ) for all g ∈ G .

Write T1(H) = ∂H×H and define a C0(H)-valued inner product
on Cc(T1H) via

〈Φ,Ψ〉(x) :=

∫
Φ(ξ, x)Ψ(ξ, x)dνx(ξ),

and denote the C ∗-module completion by L2(T1(H), νx)C0(H). It is
a left module over C (∂H).

Mesland Hecke operators in K -homology 13 / 21



Harmonic measures

For x ∈ H, the stabiliser Gx ⊂ G = Isom(H) is a compact group.

Denote by νx the unique Gx invariant probability measure on ∂H.

The measures νx satisfy dνxg (ξg) = dνx(ξ) for all g ∈ G .

Write T1(H) = ∂H×H and define a C0(H)-valued inner product
on Cc(T1H) via

〈Φ,Ψ〉(x) :=

∫
Φ(ξ, x)Ψ(ξ, x)dνx(ξ),

and denote the C ∗-module completion by L2(T1(H), νx)C0(H). It is
a left module over C (∂H).

Mesland Hecke operators in K -homology 13 / 21



Harmonic measures

For x ∈ H, the stabiliser Gx ⊂ G = Isom(H) is a compact group.

Denote by νx the unique Gx invariant probability measure on ∂H.

The measures νx satisfy dνxg (ξg) = dνx(ξ) for all g ∈ G .

Write T1(H) = ∂H×H and define a C0(H)-valued inner product
on Cc(T1H) via

〈Φ,Ψ〉(x) :=

∫
Φ(ξ, x)Ψ(ξ, x)dνx(ξ),

and denote the C ∗-module completion by L2(T1(H), νx)C0(H). It is
a left module over C (∂H).

Mesland Hecke operators in K -homology 13 / 21



Harmonic measures

For x ∈ H, the stabiliser Gx ⊂ G = Isom(H) is a compact group.

Denote by νx the unique Gx invariant probability measure on ∂H.

The measures νx satisfy dνxg (ξg) = dνx(ξ) for all g ∈ G .

Write T1(H) = ∂H×H and define a C0(H)-valued inner product
on Cc(T1H) via

〈Φ,Ψ〉(x) :=

∫
Φ(ξ, x)Ψ(ξ, x)dνx(ξ),

and denote the C ∗-module completion by L2(T1(H), νx)C0(H). It is
a left module over C (∂H).

Mesland Hecke operators in K -homology 13 / 21



The equivariant extension class

The expectation operator P : L2(T1(H, νx))→ L2(T1(H, νx)) is
defined through

PΦ(ξ, x) :=

∫
Φ(ξ, x)dνxξ,

and defines a projection operator.

Proposition

The pair (L2(T1(H), νx), 2P − 1) is a G -equivariant Kasparov
module for (C (∂H),C0(H)) that represents the class of the
equivairant extension

0→ C0(H)→ C (H)→ C (∂H)→ 0,

in KKG
1 (C (∂H),C0(H)).
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Boundary compatibilty

By Kasparov descent, we obtain the Kasparov module
(L2(T1H) o Γ, νx), 2P − 1) representing the extension

0→ C0(H) o Γ→ C (H) o Γ→ C (∂H) o Γ→ 0,

in KK1(C (∂H) o Γ,C0(H) o Γ).

Proposition
There is a unitary isomorphism

T Γ
g ⊗C(∂H)oΓ L2(T1H) o Γ, νx)

∼−→ L2(T1H) o Γ, νx)⊗C0(H)oΓ T Γ
g ,

of (C (∂H) o Γ,C0(H) o Γ)-bimodules intertwining the operators
1⊗ P and P ⊗ 1.

In particular [T Γ
g ]⊗ [∂] = [∂]⊗ [T Γ

g ] ∈ KK1(C (∂H)oΓ,C0(H)oΓ).
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The Gysin sequence

Theorem (Sengun-M.)

The exact sequence

K 0(C0(M))
∂−−−−→ K 1(C (∂H) o Γ) −−−−→ K 1(C ∗r (Γ))x y

K 0(C ∗r (Γ)) ←−−−− K 0(C (∂H) o Γ) ←−−−−
∂

K 1(C0(M))

(4)

is Hecke equivariant.
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Back to dimension 3

Proposition
Let Γ be a discrete torsion free noncocompact subgroup of
PSL2(C). Then

K 1(C ∗r (Γ)) ∼= H1(Γ,Z)

K 1(P1(C) o Γ) ∼= H1(Γ,Z2)

K 0(C0(M)) ∼= H2(M, ∂M) ∼= H1(Γ,Z)

These isomorphisms follow from an application of the Kasparov
spectral sequence and work by M. Matthey. They are non-explicit.

Here M denotes the Borel-Serre compactification. In general M is a
manifold with corners.
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Back to dimension 3

Theorem (Sengun-M.)

Let Γ be a discrete torsion free noncocompact subgroup of
PSL2(C). There are explicit Hecke equivariant isomorphisms

H1(Γ,Z)→ K 1(C ∗r (Γ)), H2(M, ∂M)→ K 0(C0(M)).

H1(Γ,Z)→ K1(C ∗r (Γ)), H2(M, ∂M)→ K0(C0(M)).

Under these isomorphisms, the cohomology pairing H∗ × H∗ → Z
corresponds to the index pairing K∗ × K ∗ → Z.

The isomorphisms are obtained by constructing explicit spectral
triples associated to a cohomology class.
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Further results

The K -homology hexagon simplifies to

0→ K 0(C0(M))→ K 1(C (∂H) o Γ)→ K 1(C ∗r (Γ))→ 0,

and the isomorphism H1(Γ,Z)→ K 1(C ∗r (Γ)) extends to a map
H1(Γ,Z)→ K 1(C (∂H) o Γ) compatible with the restriction map.

By constructing an explicit unbounded representative of the
extension class, we can explicitly compute the map
∂ : K 0(C0(M))→ K 1(C (∂H) o Γ) on the level of spectral triples.

The unbounded extension class involves operators constructed from
the inverse of the Riesz potential operator

IεΨ(ξ, x) =

∫
Ψ(η, x)

dx(ξ, η)n−ε
dνxη.
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The main theorem

Theorem (Sengun-M.)

There is an explicit Hecke equivariant isomorphism of exact
sequences

K 0(C0(M)) −−−−→ K 1(C (∂H) o Γ) −−−−→ K 1(C ∗r (Γ))x x x
H2(M, ∂M) −−−−→ H1(Γ,Z2) −−−−→ H1(Γ,Z)

(5)

defined on the level of spectral triples.
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Some words on the construction

A cocycle c : Γ→ Z gives an spectral triple:
(C (∂H) o Γ, `2(Z)⊗ L2(H,S),N ⊗ 1 + 1⊗ γH).

Here N is the “number operator” and γH is the “gamma-element”
obtained from Kasparov’s Dirac-dual-Dirac construction.

Any class in K 0(C0(M)) ∼= H2(M, ∂M) is represented by an
embedded surface f : Σ→ M with ∂Σ→ ∂M. The interior Σ◦ is a
hyperbolic Riemann surface with a self-adjoint Dirac operator
DΣ◦ .This gives spectral triples:

(C (∂H) o Γ, L2(T1(H))⊗C0(M) L
2(Σ◦,SΣ◦),S ⊗ 1 + 1⊗∇ DΣ◦).

Here S is the operator in the unbounded extension class.
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