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The Gribov problem in standard gauge theory
The gauge fixing

A= space of gauge connections

G = Map(R4 → G) with g(x)→ 1 as |x | → ∞

B = A/G space of physical configurations

Euclidean action for gauge fileds

S [A] =
1

4
Tr

∫

FµνF
µν =

1

2

∫

Aa
µM

µνAa
ν

with F = dA+ A ∧ A
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The Gribov problem in standard gauge theory
The gauge fixing

A= space of gauge connections

G = Map(R4 → G) with g(x)→ 1 as |x | → ∞

B = A/G space of physical configurations

Euclidean action for gauge fileds

S [A] =
1

4
Tr

∫

FµνF
µν =

1

2

∫

Aa
µM

µνAa
ν

with F = dA+ A ∧ A

Mµν = −�δµν + ∂µ∂ν

not invertible because of gauge invariance g(x) = exp α(x)

(Ag
µ = Aµ + ∂µα,
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The Gribov problem in standard gauge theory
The gauge fixing

A= space of gauge connections

G = Map(R4 → G) with g(x)→ 1 as |x | → ∞

B = A/G space of physical configurations

Euclidean action for gauge fileds

S [A] =
1

4
Tr

∫

FµνF
µν =

1

2

∫

Aa
µM

µνAa
ν

with F = dA+ A ∧ A

Mµν = −�δµν + ∂µ∂ν

not invertible because of gauge invariance g(x) = exp α(x)

(Ag
µ = Aµ + ∂µα, ∂µα is a zero mode).
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The Gribov problem in standard gauge theory
The gauge fixing

=⇒ We can’t perform the Gaussian integral

Z [J] =

∫

[dµ(A)]exp (−S [A] + J · A)
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and integrate over equivalence classes

[dµ(A)]→ [dµ(A/G)]

Patrizia Vitale The Gribov problem in Noncommutative QED



The Gribov problem in standard gauge theory
The gauge fixing

=⇒ We can’t perform the Gaussian integral

Z [J] =

∫

[dµ(A)]exp (−S [A] + J · A)

unless we fix the gauge

δ(f (A)− h)

and integrate over equivalence classes

[dµ(A)]→ [dµ(A/G)]

This amounts to choose a surface Σf ⊂ A which possibly intersects
the gauge orbits only once: a section for the principal bundle

A ← G
↓
B
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The Gribov problem in standard gauge theory
The gauge fixing

Locally A = B × G =⇒

[dµ(A)] = [dµ(B)] [dµ(G)]
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The Gribov problem in standard gauge theory
The gauge fixing

Locally A = B × G =⇒

[dµ(A)] = [dµ(B)] [dµ(G)]

for gauge transformations close to the identity [dµ(G)] ≃ [dα]

To perform the change of variable [dα]→ [df a(A)]:
insert the Jacobian

Det∆ = Det
δfa(x)

δαb(y)
=⇒
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Locally A = B × G =⇒

[dµ(A)] = [dµ(B)] [dµ(G)]

for gauge transformations close to the identity [dµ(G)] ≃ [dα]

To perform the change of variable [dα]→ [df a(A)]:
insert the Jacobian

Det∆ = Det
δfa(x)

δαb(y)
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The Gribov problem in standard gauge theory
The gauge fixing

Locally A = B × G =⇒

[dµ(A)] = [dµ(B)] [dµ(G)]

for gauge transformations close to the identity [dµ(G)] ≃ [dα]

To perform the change of variable [dα]→ [df a(A)]:
insert the Jacobian

Det∆ = Det
δfa(x)

δαb(y)
=⇒

[dµ(A)]Det∆ = [[dµ(B)][dα]Det∆ = [dµ(B)] [dfa(A)]

and integrate over [df] with the delta function:

[dµ(B)] = [dµ(A)] Det∆ δ(f(A) − h(x))

.
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The Gribov problem in standard gauge theory
Topological obstructions

• A is an affine space

Aτ = (1− τ)A1 + τA2 0 ≤ τ ≤ 1

with
Ag
τ = gAτg

−1 + dgg−1

=⇒ topologically trivial

• G = Map(S4,G) (g(x)→ 1, |x | → ∞)
=⇒ Π1(G) = {g : S5 → G}

Π1(G) = Π5(G )

for G = U(N) Π5 = Z , N ≥ 3; Π5 = Z2, N = 2; Π5 = 0, N = 1
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The Gribov problem in standard gauge theory
Topological obstructions

• B = A/G

Πk(B) = Πk−1(G)

=⇒ both G and B only trivial for QED G = U(1).
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The Gribov problem in standard gauge theory
Topological obstructions

• B = A/G

Πk(B) = Πk−1(G)

=⇒ both G and B only trivial for QED G = U(1).
(This translates into �α = 0 only trivial solutions)

=⇒
A 6= G × B

for G = U(N),N ≥ 2.
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The Gribov problem in standard gauge theory
Topological obstructions

• B = A/G

Πk(B) = Πk−1(G)

=⇒ both G and B only trivial for QED G = U(1).
(This translates into �α = 0 only trivial solutions)

=⇒
A 6= G × B

for G = U(N),N ≥ 2.

Summary: Non-Abelian gauge theories do not admit global sections

This amounts to the FP operator ∆ having non trivial zero modes
(the determinant of the Jacobian changes its sign when the surface
of gauge fixing meets the gauge orbits more than once).
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dell’Antonio-Zwanziger:
They have shown that the functional integral can be restricted to
the ”first Gribov region” because
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functional space of transverse gauge potentials).
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Every gauge orbit passes inside the Gribov horizon.

When this is taken into account in the functional integral the
propagator gets modified in the infrared:
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The Gribov problem in standard gauge theory
dell’Antonio - Zwanziger solution

dell’Antonio-Zwanziger:
They have shown that the functional integral can be restricted to
the ”first Gribov region” because

The Gribov region is bounded in every direction (in the
functional space of transverse gauge potentials).

The Faddeev-Popov determinant changes sign at the Gribov
horizon.

Every gauge orbit passes inside the Gribov horizon.

When this is taken into account in the functional integral the
propagator gets modified in the infrared:

GGZ (p) ≃
p2

p4 + a4
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Noncommutative QED on R
2n
θ

The Moyal algebra

The Moyal algebra R
2n
θ

It is the associative algebra [J. Gracia Bondia, Varilly ’89]

L ∩R = {T ∈ S ′ : T ⋆ f ∈ S, f ⋆ T ∈ S,∀f ∈ S}
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Noncommutative QED on R
2n
θ

The Moyal algebra

The Moyal algebra R
2n
θ

It is the associative algebra [J. Gracia Bondia, Varilly ’89]

L ∩R = {T ∈ S ′ : T ⋆ f ∈ S, f ⋆ T ∈ S,∀f ∈ S}

The star product is defined for Schwartz functions on R
2n

f ⋆ g(x) =

∫

f (x + y)g(x + z)e−2iy
µΘ−1

µν z
ν

dy dz
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Noncommutative QED on R
2n
θ

The Moyal algebra

The Moyal algebra R
2n
θ

It is the associative algebra [J. Gracia Bondia, Varilly ’89]

L ∩R = {T ∈ S ′ : T ⋆ f ∈ S, f ⋆ T ∈ S,∀f ∈ S}

The star product is defined for Schwartz functions on R
2n

f ⋆ g(x) =

∫

f (x + y)g(x + z)e−2iy
µΘ−1

µν z
ν

dy dz

and extended to tempered distributions by duality.
Θ is block diagonal, antisymmetric with θi real.

Θ =





0 −θ1
θ1 0

..





with these defs R2n
θ is unital and involutive. It contains S and

polynomials. Constants are in the center.
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Noncommutative QED on R
2n
θ

The differential calculus

We consider the minimal derivation based differential calculus
over the Moyal algebra. [Dubois-Violette, Masson, Wallet]

∂µ = −iθ−1µν [x
ν , ·]⋆ generate the Lie algebra of derivations

(inner, not a left module)
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over the Moyal algebra. [Dubois-Violette, Masson, Wallet]

∂µ = −iθ−1µν [x
ν , ·]⋆ generate the Lie algebra of derivations

(inner, not a left module)
d , i∂µ defined algebraically. Forms are constructed by duality.
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Noncommutative QED on R
2n
θ

The differential calculus

We consider the minimal derivation based differential calculus
over the Moyal algebra. [Dubois-Violette, Masson, Wallet]

∂µ = −iθ−1µν [x
ν , ·]⋆ generate the Lie algebra of derivations

(inner, not a left module)
d , i∂µ defined algebraically. Forms are constructed by duality.

Vector bundles are replaced by right modules over the algebra
R
2n
θ , with Hermitian structure h

h(m1 ⋆ f1,m2 ⋆ f2) = f
†
1 ⋆ h(m1,m2) ⋆ f2, fi ∈ R

2n
θ ,mi ∈ H
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Noncommutative QED on R
2n
θ

The gauge connection

The connection is defined as

∇ : Der(R2n
θ )×H → H, ∇µ(m ⋆ f ) = ∇µm ⋆ f +m ⋆ ∂µf

preserving the Hermitian structure. It is completely defined by the
action on a basis of H.
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Noncommutative QED on R
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The gauge connection

The connection is defined as

∇ : Der(R2n
θ )×H → H, ∇µ(m ⋆ f ) = ∇µm ⋆ f +m ⋆ ∂µf

preserving the Hermitian structure. It is completely defined by the
action on a basis of H.
We want to generalize the U(1) gauge connection
U(1) vector bundle is replaced by the right module (one generator)

H = C⊗ R
2n
θ

(h(f1, f2) = f
†
1 ⋆ f2).
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Noncommutative QED on R
2n
θ

The gauge connection

The connection is defined as

∇ : Der(R2n
θ )×H → H, ∇µ(m ⋆ f ) = ∇µm ⋆ f +m ⋆ ∂µf

preserving the Hermitian structure. It is completely defined by the
action on a basis of H.
We want to generalize the U(1) gauge connection
U(1) vector bundle is replaced by the right module (one generator)

H = C⊗ R
2n
θ

(h(f1, f2) = f
†
1 ⋆ f2).

• The gauge connection is defined by its action on the basis

∇µ(1) ≡ −iA(∂µ)

so that ∇µf = ∇µ(1 ⋆ f ) = ∂µf − iAµ ⋆ f
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Noncommutative QED on R
2n
θ

The gauge connection

• Gauge transformations are automorphisms of the module
preserving the Hermitian structure → the unitaries U(R2n

θ )
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Noncommutative QED on R
2n
θ

The gauge connection

• Gauge transformations are automorphisms of the module
preserving the Hermitian structure → the unitaries U(R2n

θ )
Indeed
γ(f ) = γ(1 ⋆ f ) = γ(1) ⋆ f
h(γ(f1), γ(f2)) = h(f1, f2) −→ γ(1)† ⋆ γ(1) = 1

we pose γ(1) = U ∈ U(R2n
θ )
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Noncommutative QED on R
2n
θ

The gauge connection

• Gauge transformations are automorphisms of the module
preserving the Hermitian structure → the unitaries U(R2n

θ )
Indeed
γ(f ) = γ(1 ⋆ f ) = γ(1) ⋆ f
h(γ(f1), γ(f2)) = h(f1, f2) −→ γ(1)† ⋆ γ(1) = 1

we pose γ(1) = U ∈ U(R2n
θ )

Properties of the gauge connection

(∇A
µ)

γ(φ) := γ(∇A
µ(γ
−1φ)) = U ⋆∇A

µU
−1 ⋆ φ

AU
µ = U ⋆ Aµ ⋆ U−1 + iU ⋆ ∂µU

−1

Fµν = i([∇A
µ ,∇

A
ν ]−∇

A
[Xµ,Xν ]

) = ∂µAν − ∂νAµ − i [Aµ,Aν ]⋆

FU
µν = U ⋆ Fµν ⋆ U

−1
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Noncommutative QED on R
2n
θ

The natural QED action is gauge and Poincaré invariant but yields
new pathologies w.r.t. the commutative case (UV/IR mixing)
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Gribov copies in NC QED

Asymptotycally:

(f ⋆ g)(x) = f (x) exp

{
i

2
θρσ
←
∂ρ
→
∂σ

}

g(x)
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Gribov copies in NC QED

Asymptotycally:

(f ⋆ g)(x) = f (x) exp

{
i

2
θρσ
←
∂ρ
→
∂σ

}

g(x)

Under the U(1) gauge transformation in NCQED the gauge field A

transforms as

A→ A′µ[α] = U ⋆ Aµ ⋆ U† + i U ⋆ ∂µU
†, U ≡ exp⋆ (iα)
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Gribov copies in NC QED

Asymptotycally:

(f ⋆ g)(x) = f (x) exp

{
i

2
θρσ
←
∂ρ
→
∂σ

}

g(x)

Under the U(1) gauge transformation in NCQED the gauge field A

transforms as

A→ A′µ[α] = U ⋆ Aµ ⋆ U† + i U ⋆ ∂µU
†, U ≡ exp⋆ (iα)

with

exp⋆(f ) ≡

∞∑

n=0

1

n!
f ⋆ ... ⋆ f
︸ ︷︷ ︸

n times

,
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Gribov copies in NC QED

Asymptotycally:

(f ⋆ g)(x) = f (x) exp

{
i

2
θρσ
←
∂ρ
→
∂σ

}

g(x)

Under the U(1) gauge transformation in NCQED the gauge field A

transforms as

A→ A′µ[α] = U ⋆ Aµ ⋆ U† + i U ⋆ ∂µU
†, U ≡ exp⋆ (iα)

with

exp⋆(f ) ≡

∞∑

n=0

1

n!
f ⋆ ... ⋆ f
︸ ︷︷ ︸

n times

,

Infinitesimally

A→ A′µ[α] = Aµ + Dµα+O(α)

Patrizia Vitale The Gribov problem in Noncommutative QED



Gribov copies in NC QED

Asymptotycally:

(f ⋆ g)(x) = f (x) exp

{
i

2
θρσ
←
∂ρ
→
∂σ

}

g(x)

Under the U(1) gauge transformation in NCQED the gauge field A

transforms as

A→ A′µ[α] = U ⋆ Aµ ⋆ U† + i U ⋆ ∂µU
†, U ≡ exp⋆ (iα)

with

exp⋆(f ) ≡

∞∑

n=0

1

n!
f ⋆ ... ⋆ f
︸ ︷︷ ︸

n times

,

Infinitesimally

A→ A′µ[α] = Aµ + Dµα+O(α)

where
Dµf = ∂µf + i (f ⋆ Aµ − Aµ ⋆ f )

. Patrizia Vitale The Gribov problem in Noncommutative QED



Gribov copies in NCQED
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Gribov copies in NCQED

Choose the Landau gauge, ∂µAµ = 0 and replace for A′µ
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Gribov copies in NCQED

Choose the Landau gauge, ∂µAµ = 0 and replace for A′µ
∂µA′µ[α] = 0→
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Gribov copies in NCQED

Choose the Landau gauge, ∂µAµ = 0 and replace for A′µ
∂µA′µ[α] = 0→

∂µDµα = 0

eq. of copies, which may now have non trivial solutions, compared
to the commutative case.
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Gribov copies in NCQED

Choose the Landau gauge, ∂µAµ = 0 and replace for A′µ
∂µA′µ[α] = 0→

∂µDµα = 0

eq. of copies, which may now have non trivial solutions, compared
to the commutative case.
Fourier transforming we get a homogeneous Fredholm equation of
second kind

α̂(k) =

∫

ddq Q(q, k) α̂(q)

with the kernel Q given by

Q(q, k) = −
2i kµÂµ(k − q)

k2
sin

(
1

2
θρσqρkσ

)
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Gribov copies in NCQED

Choose the Landau gauge, ∂µAµ = 0 and replace for A′µ
∂µA′µ[α] = 0→

∂µDµα = 0

eq. of copies, which may now have non trivial solutions, compared
to the commutative case.
Fourier transforming we get a homogeneous Fredholm equation of
second kind

α̂(k) =

∫

ddq Q(q, k) α̂(q)

with the kernel Q given by

Q(q, k) = −
2i kµÂµ(k − q)

k2
sin

(
1

2
θρσqρkσ

)

The existence of Gribov copies has been recast into an eigenvalue
equation for the operator Q. [properties]
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Gribov copies in NCQED
Solutions
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Gribov copies in NCQED
Solutions

We want to show that gauge potentials for which this equation has
solutions exist.
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in Fourier transform it reads Âµ(k) = −iΘ
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Gribov copies in NCQED
Solutions

We want to show that gauge potentials for which this equation has
solutions exist.
• Simplest situation: The gauge invariant connection
Aµ(x) = −Θ

−1
µν x

ν

it verifies the Landau gauge

in Fourier transform it reads Âµ(k) = −iΘ
−1
µν ∂

νδ(k)

the equation of copies is satisfied for arbitrary α
Unfortunately, this connection is gauge invariant: a fixed point of
the gauge group → no new copies.
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Gribov copies in NCQED
Solutions

• Next to the simplest situation
Aµ(x) ∝ Θ−1µν x

νx2

2-dimensions

it satisfies the Landau gauge

in Fourier transform Aµ(x) ∝ ǫµν�∂νδ(k)

zero modes equation:

(

−4k2�− 8 εµνεηλkµkη∂ν∂λ −
4k2

Qθ
+ θ2k4

)

α̂(k) = 0
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Gribov copies in NCQED
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• Next to the simplest situation
Aµ(x) ∝ Θ−1µν x

νx2

2-dimensions

it satisfies the Landau gauge

in Fourier transform Aµ(x) ∝ ǫµν�∂νδ(k)

zero modes equation:

(

−4k2�− 8 εµνεηλkµkη∂ν∂λ −
4k2

Qθ
+ θ2k4

)

α̂(k) = 0

infinite number of solutions in terms of special functions.

α̂nm(r , φ) = (C1 cos nφ+C2 sin nφ)r
√
3n2+1−1 exp(−

r2θ

4
)L
√
3n2+1

m (
θr2

2
)

Patrizia Vitale The Gribov problem in Noncommutative QED



Gribov copies in NCQED
Solutions

• Next to the simplest situation
Aµ(x) ∝ Θ−1µν x

νx2

2-dimensions

it satisfies the Landau gauge

in Fourier transform Aµ(x) ∝ ǫµν�∂νδ(k)

zero modes equation:

(

−4k2�− 8 εµνεηλkµkη∂ν∂λ −
4k2

Qθ
+ θ2k4

)

α̂(k) = 0

infinite number of solutions in terms of special functions.

α̂nm(r , φ) = (C1 cos nφ+C2 sin nφ)r
√
3n2+1−1 exp(−

r2θ

4
)L
√
3n2+1

m (
θr2

2
)

can be extended to 4d case.
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Summary

Summary

• We have studied NCQED and found the equation for Gribov
copies
• We have studied some of the properties of the Fredholm equation
• We have explicitly exhibited potentials for which the equation
has an infinite number of solutions
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Outlook

Is it possible to extend the Gribov-Zwanziger-Dell’Antonio
restriction to NC QED?

What would be the modified propagator?

is there any relation with the UV/IR mixing where a ”Gribov
like” propagator emerges?

Is it possible to perform a global analysis in terms of global
properties of the algebras involved?

Scalar case φ→ U ⋆ φ ⋆ U−1

Compute S [φU ]− S [φ] and study the equation of ”copies” and
the correction to the propagator.
Compare with the translation invariant scalar model Gurau,
Magnen, Rivasseau, Tanasa ’09
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