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The fermionic action

� Consider a real even spectral triple (A,H,D, J, γ) of KO-dimension 2.
The fermionic action is defined as [Con06]

S f :=
1
2
〈Jξ̃ | Dξ̃〉,

where ξ̃ is a Grassmann variable corresponding to ξ = γξ ∈ H0.

� Two discrepancies:

� signature is Riemannian instead of Lorentzian;
� the definition involves the real structure (‘charge conjugation’).

� Solution [Bar07]: consider an action functional of the form 〈ψ|Dψ〉,
where 〈·|·〉 denotes the indefinite inner product on a Krein space, and
where D is Krein-self-adjoint.
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Krein spaces

� A Krein space is a vector space H with a non-degenerate inner product
〈·|·〉 which admits a fundamental decomposition H = H+ ⊕H− (i.e., an
orthogonal direct sum decomposition into a positive-definite subspace
H+ and a negative-definite subspace H−) such that the subspaces H+

and H− are intrinsically complete (i.e., complete with respect to the
norms ‖ψ‖H± := |〈ψ|ψ〉|1/2).

� Given a fundamental decomposition H = H+ ⊕H−, we obtain a
corresponding fundamental symmetry J = P+ − P−, where P± denotes
the projection onto H±.

� Given a fundamental symmetry J , we denote by HJ the corresponding
Hilbert space for the positive-definite inner product 〈·|·〉J := 〈J · |·〉.

� A Krein space H with fundamental symmetry J is called Z2-graded if
HJ is Z2-graded and J is homogeneous. This means:

� we have a decomposition H0 ⊕H1;
� this decomposition is respected by the positive-definite inner product 〈·|·〉J .
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Lorentzian manifolds

� Let (M, g) be an n-dimensional space- and time-oriented Lorentzian spin
manifold with an orthogonal direct sum decomposition of the tangent
bundle TM = Et ⊕ Es with dim Et = 1 (with basis vector e0) and
dim Es = n− 1 (with basis vectors e1, . . . , en−1) such that the metric g
is negative-definite on Et and positive-definite on Es.

� We have a timelike projection T : TM→ Et and a spacelike reflection
r = 1− 2T = (−1)⊕ 1 on TM = Et ⊕ Es.

� We can define a ‘Wick rotated’ metric gr on M by setting

gr(v, w) := g(rv, w).

Then (M, gr) is a Riemannian manifold.
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Lorentzian spinors

� Given a decomposition TM = Et ⊕ Es there exists a positive-definite
hermitian structure [Baum81]

(·|·)JM : Γ∞
c (S)× Γ∞

c (S)→ C∞
c (M).

which gives rise to the inner product 〈·|·〉JM :=
∫

M(·|·)JM dvolg. The

completion of Γ∞
c (S) with respect to this inner product is denoted L2(S).

� The operator JM := γ(e0) on L2(S) is self-adjoint and unitary, and is
related to the spacelike reflection r via JMγ(v)JM = −γ(rv). Then
L2(S) is a Krein space with the indefinite inner product
〈·|·〉 := 〈JM · |·〉JM and with fundamental symmetry JM. This
indefinite inner product 〈·|·〉 is independent of the choice of
decomposition TM = Et ⊕ Es.

Koen van den Dungen: The fermionic action Page 6 of 24



Introduction Krein spectral triples Gauge theory The electroweak theory Conclusion

Lorentzian spinors

� Given a decomposition TM = Et ⊕ Es there exists a positive-definite
hermitian structure [Baum81]

(·|·)JM : Γ∞
c (S)× Γ∞

c (S)→ C∞
c (M).

which gives rise to the inner product 〈·|·〉JM :=
∫

M(·|·)JM dvolg. The

completion of Γ∞
c (S) with respect to this inner product is denoted L2(S).

� The operator JM := γ(e0) on L2(S) is self-adjoint and unitary, and is
related to the spacelike reflection r via JMγ(v)JM = −γ(rv). Then
L2(S) is a Krein space with the indefinite inner product
〈·|·〉 := 〈JM · |·〉JM and with fundamental symmetry JM. This
indefinite inner product 〈·|·〉 is independent of the choice of
decomposition TM = Et ⊕ Es.

Koen van den Dungen: The fermionic action Page 6 of 24



Introduction Krein spectral triples Gauge theory The electroweak theory Conclusion

The Dirac operator

� Define the Lorentzian Dirac operator

/D :=
n−1

∑
j=0

κ(j)γ(ej)∇S
ej

,

where ∇S is the lift of the Levi-Civita connection corresponding to g, and
κ(0) = −1 and κ(j) = 1 for j = 1, . . . , n− 1.

� Theorem [Baum81]: Suppose there exists a decomposition
TM = Et ⊕ Es such that gr is complete. Then i /D is essentially
Krein-self-adjoint.

� We are going to consider the data(
C∞

c (M), L2(S), i /D,JM = γ(e0)
)
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Spectral triples

Definition: An even spectral triple (A,H,D ) consists of

� a Z2-graded Hilbert space H;

� an even ∗-algebra representation π : A → B0(H);

�

� a closed, odd operator D : DomD → H such that:

1 the linear subspace E := DomD is dense in H;
2 the operator D is essentially self-adjoint on E ;
3 the commutator [D, π(a)] is bounded on E for each a ∈ A;
4 the map π(a) ◦ ι : E ↪→ H → H is compact for each a ∈ A.

Remark: condition 4 is equivalent to compactness of π(a)(D ± i)−1.
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Krein spectral triples

Definition: An even Krein spectral triple (A,H,D,J ) consists of

� a Z2-graded Krein space H;

� an even ∗-algebra representation π : A → B0(H);

� a fundamental symmetry J which commutes with the algebra A and
which is either even or odd;

� a closed, odd operator D : DomD → H such that:

1 the linear subspace E := DomD ∩ J ·DomD is dense in H;
2 the operator D is essentially Krein-self-adjoint on E ;
3 the commutator [D, π(a)] is bounded on E for each a ∈ A;
4 the map π(a) ◦ ι : E ↪→ H → H is compact for each a ∈ A.

Note: E is equipped with the norm ‖ψ‖E := ‖ψ‖+ ‖J Dψ‖+ ‖DJ ψ‖.

We say an even Krein spectral triple (A,H,D,J ) is of Lorentz-type when
J is odd.
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Almost-commutative manifolds

� Let (M, g) be an even-dimensional time- and space-oriented Lorentzian
spin manifold. Suppose there exists a spacelike reflection r such that gr
is complete. Then (

C∞
c (M), L2(S), i /D,JM = γ(e0)

)
is a Lorentz-type spectral triple.

� A finite space F is an even Krein spectral triple (AF,HF,DF,JF) such
that dimHF < ∞ and JF is even.

� Definition: An almost-commutative Lorentzian manifold F×M is the
product of a finite space F with the manifold M, given by

(A,H,D,J ) :=
(

C∞
c (M,AF),HF ⊗̂ L2(S), 1 ⊗̂ i /D + iDF ⊗̂ 1,JF ⊗̂ JM

)
.
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The Krein action

� Let (A,H,D,J ) be a Lorentz-type spectral triple. Then we have:

� 〈ψ|Dφ〉 = 〈φ|Dψ〉 for any ψ, φ ∈ DomD;
� 〈ψ0|Dψ1〉 = 0 for any ψ0 ∈ H0 ∩DomD and ψ1 ∈ H1 ∩DomD.

� We define the Krein action SK : H0 ∩DomD → C to be the functional

SK[ψ] := 〈ψ|Dψ〉.

We note that SK[ψ] is real-valued and (in general) non-zero.

� Remark: this action is classical. In particular, there are no Grassmann
variables.
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The perturbation semi-group

� Let A be a unital ∗-algebra. Let A = ∑j aj ⊗ bopj ∈ A�A
op.

Define A := ∑ b∗j ⊗ a∗opj .

� A is real if A = A.
� A is normalised if ∑ ajbj = 1 ∈ A.

� Definition [CCvS13]: The perturbation semi-group Pert(A) consists of
the real normalised elements in A�Aop.

� For a Krein spectral triple (B,H,D,J ) we consider the generalised

one-forms given by Ω1
D(B) :=

{
∑j aj[D, bj]

∣∣∣ aj, bj ∈ B
}

.

� For B = A�Aop, define the map ηD : A�Aop → Ω1
D(A�Aop) by

ηD
(

∑
j

aj ⊗ bopj

)
:= ∑

j,k

(
aj(a∗k )

op)[D, bj(b∗k )
op].

Fact: if A ∈ Pert(A) is real, then ηD(A) is Krein-self-adjoint.
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the real normalised elements in A�Aop.

� For a Krein spectral triple (B,H,D,J ) we consider the generalised

one-forms given by Ω1
D(B) :=

{
∑j aj[D, bj]

∣∣∣ aj, bj ∈ B
}

.

� For B = A�Aop, define the map ηD : A�Aop → Ω1
D(A�Aop) by

ηD
(

∑
j

aj ⊗ bopj

)
:= ∑

j,k

(
aj(a∗k )

op)[D, bj(b∗k )
op].

Fact: if A ∈ Pert(A) is real, then ηD(A) is Krein-self-adjoint.
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Fluctuations

� If (A�Aop,H,D,J ) satisfies the order-one condition[
a, [D, bop]

]
= 0 ∀a, b ∈ A,

then
ηD
(

∑
j

aj ⊗ bopj

)
= ∑

j
aj[D, bj] + ∑

j
a∗opj [D, b∗opj ].

� By the fluctuation of D by A ∈ Pert(A) we mean the map

D 7→ DA := D + ηD(A),

and we refer to DA as the fluctuated Dirac operator.

� Proposition [CCvS13]: A fluctuation of a fluctuated Dirac operator is
again a fluctuated Dirac operator. To be precise: (DA)A′ = DA′A for all
perturbations A, A′ ∈ Pert(A).
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The gauge group

� The unitary group U (A) acts on Pert(A) via

∆(u)A :=
(
u⊗ (u∗)op

)(
∑ aj ⊗ bopj

)
= ∑ uaj ⊗ (bju∗)op.

We can compose ∆ with the ∗-algebra representation
π : A�Aop → B(H) to obtain a group representation

ρ := π ◦ ∆ : U (A)→ B(H).

We define the gauge group as

G(A) :=
{

ρ(u) | u ∈ U (A)
}
' U (A)/ Ker ρ.

� Proposition: The Krein action SK[ψ, A] := 〈ψ|DAψ〉 of the fluctuated
Dirac operator DA is invariant under the action of the gauge group given
by ψ 7→ ρ(u)ψ and A 7→ ∆(u)A.
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The finite space (1)

� Define HF := C4 with the basis {νR, eR, νL, eL} and the Z2-grading

H0
F = HL = span{νL, eL}, H1

F = HR = span{νR, eR}

� Define AF := C⊕H, with the representations
π : AF → B(HR)⊕B(HL) and πop : Aop

F → B(HR)⊕B(HL) given
for λ ∈ C and q = α + βj ∈H by

π(λ, q) := qλ ⊕ q :=
(

λ 0
0 λ

)
⊕
(

α β

−β α

)
, πop((λ, q)op

)
:= λ⊕ λ.

� The representation π̃ := π ⊗ πop of AF �Aop
F on HR ⊕HL is then

given by
π̃((λ, q)⊗ (λ′, q′)op) = λ′qλ ⊕ λ′q.
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The finite space (2)

� We define the mass matrix on the basis {νR, eR, νL, eL} as

DF :=


0 0 −imν 0
0 0 0 −ime

imν 0 0 0
0 ime 0 0

 .

� We then consider the even finite space FEW := (AF,HF,DF,JF = 1).

� The gauge group of FEW equals

G(FEW) =
(
U(1)× SU(2)

)
/Z2.
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Fluctuations

� We consider the almost-commutative manifold

FEW×M :=
(

C∞
c (M,AF �Aop

F ),HF ⊗̂ L2(S), 1 ⊗̂ i /D + iDF ⊗̂ 1, 1 ⊗̂ JM

)
.

� Proposition: The fluctuation of D := 1 ⊗̂ i /D + iDF ⊗̂ 1 by
A ∈ Pert(C∞

c (M,AF)) is

DA = D + ηD(A) = 1 ⊗̂ i /D + Aµ ⊗̂ iγµ + (iDF + φ) ⊗̂ 1,

where the gauge field Aµ and the Higgs field φ are given by

Aµ =

 0 0
0 −2Λµ

Qµ −Λµ

 , φ =


0 0 mνφ1 mνφ2
0 0 −meφ2 meφ1

−mνφ1 meφ2 0 0
−mνφ2 −meφ1 0 0

 ,

for the gauge fields (Λµ, Qµ) ∈ C∞
c
(

M, iR⊕ su(2)
)

and the Higgs field

(φ1, φ2) ∈ C∞
c (M, C2).
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The Krein action

� Consider ξ = νR ⊗̂ ψν
R + eR ⊗̂ ψe

R + νL ⊗̂ ψν
L + eL ⊗̂ ψe

L ∈ H0, and define

ΨL :=
(

ψν
L

ψe
L

)
∈ L2(S)0 ⊗C2, ΨR :=

(
ψν

R
ψe

R

)
∈ L2(S)1 ⊗C2,

Ψ := ΨL + ΨR ∈ L2(S)⊗C2.

� Proposition: The Krein action for FEW ×M is given by

SEW [Ψ, A] = 〈Ψ | i /DΨ〉+ 〈ψe
R | −2iγµΛµψe

R〉+ 〈ΨL | iγµ(Qµ−Λµ)ΨL〉
+ 〈ΨR |ΦΨL〉+ 〈ΨL |Φ∗ΨR〉,

where the Higgs field (φ1, φ2) acts via

Φ :=
(
−mν(φ1 + 1) −mνφ2

meφ2 −me(φ1 + 1)

)
.
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Majorana masses

� On ĤF := HF ⊕HF, we consider the operators

D̂F :=
(
DF −D∗M
DM DF

)
, ĴF :=

(
1 0
0 −1

)
,

Γ̂F :=
(

ΓF 0
0 −ΓF

)
, ĴF :=

(
0 c. c.

c. c. 0

)
,

where DMνR := imRνR and DMeR = DMνL = DMeL = 0.

� Define π̂ : AF → B(HF ⊕HF) and π̂op : Aop
F → B(HF ⊕HF) by

π̂(a) := π(a)⊕ πop(at), π̂op(a) := ĴFπ̂(a∗) ĴF.

� We obtain a new finite space F̂EW := (AF �Aop
F , ĤF, D̂F, ĴF) with

grading operator Γ̂F and additionally with a real structure ĴF.
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The Krein action + Majorana masses

� Consider F̂EW ×M with the real structure J := ĴF ⊗̂ JM.

� Following [Bar07], consider η ∈ H0 such that Jη = η. Then η = ξ + Jξ,
with ξ ∈ (HF ⊗̂ L2(S))0 as before. We have

〈η | DAη〉 = 〈ξ | DAξ〉+ 〈Jξ | DAξ〉+ 〈ξ | DA Jξ〉+ 〈Jξ | DA Jξ〉.

� One finds that 〈Jξ | DA Jξ〉 = 〈ξ | DAξ〉 = SEW [Ψ, A].

� The new contributions are

〈Jξ|DAξ〉 = −mR
〈

JMψν
R|ψν

R
〉
, 〈ξ|DA Jξ〉 = −mR

〈
ψν

R|JMψν
R
〉
.

� Summarising, we obtain the new action SEW+M given by

SEW+M[Ψ, A] = 2SEW [Ψ, A]−mR〈ψν
R|JMψν

R〉 −mR〈JMψν
R|ψν

R〉,
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Conclusion

� The fermionic action in Lorentzian signature (the Krein action) matches
exactly with the physical Lagrangian.

� The action is purely classical; there are no anti-commuting variables.

� Majorana masses can be described by giving the finite space a Krein
structure as well.
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