Koen van den Dungen

Scuola Internazionale Superiore di Studi Avanzati (SISSA)

Math. Phys. Anal. Geom. 19 (2016) (arXiv:1505.01939)

Gauge Theory and Noncommutative Geometry, 4-8 April 2016, Nijmegen

Outline

1 Introduction

- 2 Krein spectral triples
- **3** Gauge theory
- 4 The electroweak theory

5 Conclusion

• Consider a real even spectral triple $(\mathcal{A}, \mathcal{H}, \mathcal{D}, J, \gamma)$ of *KO*-dimension 2. The *fermionic action* is defined as [Con06]

$$S_f := \frac{1}{2} \langle J \widetilde{\xi} \mid \mathcal{D} \widetilde{\xi} \rangle,$$

where $\widetilde{\xi}$ is a Grassmann variable corresponding to $\xi = \gamma \xi \in \mathcal{H}^0$.

- Two discrepancies:
 - signature is Riemannian instead of Lorentzian;
 - the definition involves the real structure ('charge conjugation').
- Solution [Bar07]: consider an action functional of the form $\langle \psi | \mathcal{D} \psi \rangle$, where $\langle \cdot | \cdot \rangle$ denotes the indefinite inner product on a Krein space, and where \mathcal{D} is Krein-self-adjoint.

• Consider a real even spectral triple $(\mathcal{A}, \mathcal{H}, \mathcal{D}, J, \gamma)$ of *KO*-dimension 2. The *fermionic action* is defined as [Con06]

$$S_f := rac{1}{2} \langle J \widetilde{\xi} \mid \mathcal{D} \widetilde{\xi}
angle,$$

where $\widetilde{\xi}$ is a Grassmann variable corresponding to $\xi = \gamma \xi \in \mathcal{H}^0$.

- Two discrepancies:
 - signature is Riemannian instead of Lorentzian;
 - the definition involves the real structure ('charge conjugation').
- Solution [Bar07]: consider an action functional of the form $\langle \psi | \mathcal{D} \psi \rangle$, where $\langle \cdot | \cdot \rangle$ denotes the indefinite inner product on a Krein space, and where \mathcal{D} is Krein-self-adjoint.

• Consider a real even spectral triple $(\mathcal{A}, \mathcal{H}, \mathcal{D}, J, \gamma)$ of *KO*-dimension 2. The *fermionic action* is defined as [Con06]

$$S_f := rac{1}{2} \langle J \widetilde{\xi} \mid \mathcal{D} \widetilde{\xi}
angle,$$

where $\widetilde{\xi}$ is a Grassmann variable corresponding to $\xi = \gamma \xi \in \mathcal{H}^0$.

- Two discrepancies:
 - signature is Riemannian instead of Lorentzian;
 - the definition involves the real structure ('charge conjugation').
- Solution [Bar07]: consider an action functional of the form $\langle \psi | \mathcal{D} \psi \rangle$, where $\langle \cdot | \cdot \rangle$ denotes the indefinite inner product on a Krein space, and where \mathcal{D} is Krein-self-adjoint.

Krein spectral triples		

3 Gauge theory

4 The electroweak theory

	Krein spectral triples ●0000000	Gauge theory 000	
Krein	spaces		

- A Krein space is a vector space \mathcal{H} with a non-degenerate inner product $\langle \cdot | \cdot \rangle$ which admits a *fundamental decomposition* $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$ (i.e., an orthogonal direct sum decomposition into a positive-definite subspace \mathcal{H}^+ and a negative-definite subspace \mathcal{H}^-) such that the subspaces \mathcal{H}^+ and \mathcal{H}^- are *intrinsically complete* (i.e., complete with respect to the norms $\|\psi\|_{\mathcal{H}^\pm} := |\langle \psi | \psi \rangle|^{1/2}$).
- Given a fundamental decomposition *H* = *H*⁺ ⊕ *H*⁻, we obtain a corresponding fundamental symmetry *J* = *P*⁺ − *P*⁻, where *P*[±] denotes the projection onto *H*[±].
- Given a fundamental symmetry \mathcal{J} , we denote by $\mathcal{H}_{\mathcal{J}}$ the corresponding Hilbert space for the *positive-definite* inner product $\langle \cdot | \cdot \rangle_{\mathcal{J}} := \langle \mathcal{J} \cdot | \cdot \rangle$.
- A Krein space *H* with fundamental symmetry *J* is called Z₂-graded if *H*_J is Z₂-graded and *J* is homogeneous. This means:
 - \square we have a decomposition $\mathcal{H}^0 \oplus \mathcal{H}^1$;
 - \Box this decomposition is respected by the *positive-definite* inner product $\langle \cdot | \cdot \rangle_{\mathcal{J}}$.

	Krein spectral triples •0000000	Gauge theory 000	
Krein	spaces		

- A Krein space is a vector space \mathcal{H} with a non-degenerate inner product $\langle \cdot | \cdot \rangle$ which admits a *fundamental decomposition* $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$ (i.e., an orthogonal direct sum decomposition into a positive-definite subspace \mathcal{H}^+ and a negative-definite subspace \mathcal{H}^-) such that the subspaces \mathcal{H}^+ and \mathcal{H}^- are *intrinsically complete* (i.e., complete with respect to the norms $\|\psi\|_{\mathcal{H}^\pm} := |\langle \psi | \psi \rangle|^{1/2}$).
- Given a fundamental decomposition $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$, we obtain a corresponding fundamental symmetry $\mathcal{J} = P^+ P^-$, where P^{\pm} denotes the projection onto \mathcal{H}^{\pm} .
- Given a fundamental symmetry \mathcal{J} , we denote by $\mathcal{H}_{\mathcal{J}}$ the corresponding Hilbert space for the *positive-definite* inner product $\langle \cdot | \cdot \rangle_{\mathcal{J}} := \langle \mathcal{J} \cdot | \cdot \rangle$.
- A Krein space *H* with fundamental symmetry *J* is called Z₂-graded if *H*_J is Z₂-graded and *J* is homogeneous. This means:
 - \square we have a decomposition $\mathcal{H}^0 \oplus \mathcal{H}^1$;
 - \Box this decomposition is respected by the *positive-definite* inner product $\langle \cdot | \cdot \rangle_{\mathcal{T}}$.

	Krein spectral triples ●0000000	Gauge theory 000	
Krein	spaces		

- A Krein space is a vector space \mathcal{H} with a non-degenerate inner product $\langle \cdot | \cdot \rangle$ which admits a *fundamental decomposition* $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$ (i.e., an orthogonal direct sum decomposition into a positive-definite subspace \mathcal{H}^+ and a negative-definite subspace \mathcal{H}^-) such that the subspaces \mathcal{H}^+ and \mathcal{H}^- are *intrinsically complete* (i.e., complete with respect to the norms $\|\psi\|_{\mathcal{H}^\pm} := |\langle \psi | \psi \rangle|^{1/2}$).
- Given a fundamental decomposition $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$, we obtain a corresponding fundamental symmetry $\mathcal{J} = P^+ P^-$, where P^{\pm} denotes the projection onto \mathcal{H}^{\pm} .
- Given a fundamental symmetry \mathcal{J} , we denote by $\mathcal{H}_{\mathcal{J}}$ the corresponding Hilbert space for the *positive-definite* inner product $\langle \cdot | \cdot \rangle_{\mathcal{J}} := \langle \mathcal{J} \cdot | \cdot \rangle$.
- A Krein space *H* with fundamental symmetry *J* is called *Z*₂-graded if *H*_{*J*} is *Z*₂-graded and *J* is homogeneous. This means:
 - \square we have a decomposition $\mathcal{H}^0 \oplus \mathcal{H}^1$;
 - \Box this decomposition is respected by the *positive-definite* inner product $\langle \cdot | \cdot \rangle_{\mathcal{T}}$.

	Krein spectral triples •0000000	Gauge theory 000	
Krein	spaces		

- A Krein space is a vector space \mathcal{H} with a non-degenerate inner product $\langle \cdot | \cdot \rangle$ which admits a *fundamental decomposition* $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$ (i.e., an orthogonal direct sum decomposition into a positive-definite subspace \mathcal{H}^+ and a negative-definite subspace \mathcal{H}^-) such that the subspaces \mathcal{H}^+ and \mathcal{H}^- are *intrinsically complete* (i.e., complete with respect to the norms $\|\psi\|_{\mathcal{H}^\pm} := |\langle \psi | \psi \rangle|^{1/2}$).
- Given a fundamental decomposition $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$, we obtain a corresponding fundamental symmetry $\mathcal{J} = P^+ P^-$, where P^{\pm} denotes the projection onto \mathcal{H}^{\pm} .
- Given a fundamental symmetry \mathcal{J} , we denote by $\mathcal{H}_{\mathcal{J}}$ the corresponding Hilbert space for the *positive-definite* inner product $\langle \cdot | \cdot \rangle_{\mathcal{J}} := \langle \mathcal{J} \cdot | \cdot \rangle$.
- A Krein space \mathcal{H} with fundamental symmetry \mathcal{J} is called \mathbb{Z}_2 -graded if $\mathcal{H}_{\mathcal{J}}$ is \mathbb{Z}_2 -graded and \mathcal{J} is homogeneous. This means:
 - we have a decomposition $\mathcal{H}^0 \oplus \mathcal{H}^1$;
 - this decomposition is respected by the *positive-definite* inner product $\langle \cdot | \cdot \rangle_{\mathcal{J}}$.

Lorentzian manifolds

- Let (M, g) be an *n*-dimensional space- and time-oriented Lorentzian spin manifold with an orthogonal direct sum decomposition of the tangent bundle $TM = E_t \oplus E_s$ with dim $E_t = 1$ (with basis vector e_0) and dim $E_s = n - 1$ (with basis vectors e_1, \ldots, e_{n-1}) such that the metric gis negative-definite on E_t and positive-definite on E_s .
- We have a timelike projection $T: TM \to E_t$ and a spacelike reflection $r = 1 2T = (-1) \oplus 1$ on $TM = E_t \oplus E_s$.
- We can define a 'Wick rotated' metric g_r on M by setting

 $g_r(v,w) := g(rv,w).$

Then (M, g_r) is a Riemannian manifold.

Lorentzian manifolds

- Let (M, g) be an *n*-dimensional space- and time-oriented Lorentzian spin manifold with an orthogonal direct sum decomposition of the tangent bundle $TM = E_t \oplus E_s$ with dim $E_t = 1$ (with basis vector e_0) and dim $E_s = n - 1$ (with basis vectors e_1, \ldots, e_{n-1}) such that the metric gis negative-definite on E_t and positive-definite on E_s .
- We have a timelike projection $T: TM \rightarrow E_t$ and a spacelike reflection $r = 1 2T = (-1) \oplus 1$ on $TM = E_t \oplus E_s$.
- We can define a 'Wick rotated' metric g_r on M by setting

 $g_r(v,w) := g(rv,w).$

Then (M, g_r) is a Riemannian manifold.

Lorentzian manifolds

- Let (M, g) be an *n*-dimensional space- and time-oriented Lorentzian spin manifold with an orthogonal direct sum decomposition of the tangent bundle $TM = E_t \oplus E_s$ with dim $E_t = 1$ (with basis vector e_0) and dim $E_s = n - 1$ (with basis vectors e_1, \ldots, e_{n-1}) such that the metric gis negative-definite on E_t and positive-definite on E_s .
- We have a timelike projection $T: TM \to E_t$ and a spacelike reflection $r = 1 2T = (-1) \oplus 1$ on $TM = E_t \oplus E_s$.
- We can define a 'Wick rotated' metric g_r on M by setting

$$g_r(v,w):=g(rv,w).$$

Then (M, g_r) is a Riemannian manifold.

• Given a decomposition $TM = E_t \oplus E_s$ there exists a positive-definite hermitian structure [Baum81]

$$(\cdot|\cdot)_{\mathcal{J}_M} \colon \Gamma^{\infty}_c(\mathbf{S}) \times \Gamma^{\infty}_c(\mathbf{S}) \to C^{\infty}_c(M).$$

which gives rise to the inner product $\langle \cdot | \cdot \rangle_{\mathcal{J}_M} := \int_M (\cdot | \cdot)_{\mathcal{J}_M} \operatorname{dvol}_g$. The completion of $\Gamma_c^{\infty}(S)$ with respect to this inner product is denoted $L^2(S)$.

• The operator $\mathcal{J}_M := \gamma(e_0)$ on $L^2(\mathbb{S})$ is self-adjoint and unitary, and is related to the spacelike reflection r via $\mathcal{J}_M\gamma(v)\mathcal{J}_M = -\gamma(rv)$. Then $L^2(\mathbb{S})$ is a Krein space with the indefinite inner product $\langle \cdot | \cdot \rangle := \langle \mathcal{J}_M \cdot | \cdot \rangle_{\mathcal{J}_M}$ and with fundamental symmetry \mathcal{J}_M . This indefinite inner product $\langle \cdot | \cdot \rangle$ is independent of the choice of decomposition $TM = \mathbb{E}_t \oplus \mathbb{E}_{\mathbb{S}}$.

• Given a decomposition $TM = E_t \oplus E_s$ there exists a positive-definite hermitian structure [Baum81]

$$(\cdot|\cdot)_{\mathcal{J}_M}$$
: $\Gamma^{\infty}_c(\mathbf{S}) \times \Gamma^{\infty}_c(\mathbf{S}) \to C^{\infty}_c(M).$

which gives rise to the inner product $\langle \cdot | \cdot \rangle_{\mathcal{J}_M} := \int_M (\cdot | \cdot)_{\mathcal{J}_M} \operatorname{dvol}_g$. The completion of $\Gamma_c^{\infty}(S)$ with respect to this inner product is denoted $L^2(S)$.

• The operator $\mathcal{J}_M := \gamma(e_0)$ on $L^2(S)$ is self-adjoint and unitary, and is related to the spacelike reflection r via $\mathcal{J}_M\gamma(v)\mathcal{J}_M = -\gamma(rv)$. Then $L^2(S)$ is a Krein space with the indefinite inner product $\langle \cdot | \cdot \rangle := \langle \mathcal{J}_M \cdot | \cdot \rangle_{\mathcal{J}_M}$ and with fundamental symmetry \mathcal{J}_M . This indefinite inner product $\langle \cdot | \cdot \rangle$ is independent of the choice of decomposition $TM = E_t \oplus E_s$.

Krein spectral triples 000●0000	Gauge theory 000	

The Dirac operator

Define the Lorentzian Dirac operator

$$D := \sum_{j=0}^{n-1} \kappa(j) \gamma(e_j) \nabla^S_{e_j},$$

where ∇^S is the lift of the Levi-Civita connection corresponding to g, and $\kappa(0) = -1$ and $\kappa(j) = 1$ for $j = 1, \ldots, n-1$.

- **Theorem [Baum81]:** Suppose there exists a decomposition $TM = E_t \oplus E_s$ such that g_r is complete. Then iD is essentially *Krein-self-adjoint*.
- We are going to consider the data

$$(C_c^{\infty}(M), L^2(S), i D, \mathcal{J}_M = \gamma(e_0))$$

Krein spectral triples 00000000	Gauge theory 000	

The Dirac operator

Define the Lorentzian Dirac operator

$$D := \sum_{j=0}^{n-1} \kappa(j) \gamma(e_j) \nabla^S_{e_j},$$

where ∇^S is the lift of the Levi-Civita connection corresponding to g, and $\kappa(0) = -1$ and $\kappa(j) = 1$ for $j = 1, \ldots, n-1$.

- **Theorem [Baum81]:** Suppose there exists a decomposition $TM = E_t \oplus E_s$ such that g_r is complete. Then iD is essentially Krein-self-adjoint.
- We are going to consider the data

$$(C_c^{\infty}(M), L^2(\mathbf{S}), i \mathcal{D}, \mathcal{J}_M = \gamma(e_0))$$

Krein spectral triples 00000000	Gauge theory 000	

The Dirac operator

Define the Lorentzian Dirac operator

$$D := \sum_{j=0}^{n-1} \kappa(j) \gamma(e_j) \nabla^S_{e_j},$$

where ∇^S is the lift of the Levi-Civita connection corresponding to g, and $\kappa(0) = -1$ and $\kappa(j) = 1$ for $j = 1, \ldots, n-1$.

- **Theorem [Baum81]:** Suppose there exists a decomposition $TM = E_t \oplus E_s$ such that g_r is complete. Then iD is essentially Krein-self-adjoint.
- We are going to consider the data

$$(C_c^{\infty}(M), L^2(\mathbf{S}), i \mathcal{D}, \mathcal{J}_M = \gamma(e_0))$$

Spectral triples

Definition: An even spectral triple $(\mathcal{A}, \mathcal{H}, \mathcal{D})$ consists of

- a \mathbb{Z}_2 -graded Hilbert space \mathcal{H} ;
- an even *-algebra representation $\pi: \mathcal{A} \to B^0(\mathcal{H})$;

- ${\scriptstyle \bullet}$ a closed, odd operator $\mathcal{D}\colon \, Dom\, \mathcal{D} \to \mathcal{H}$ such that:
 - 1 the linear subspace $\mathcal{E} := \text{Dom } \mathcal{D}$ is dense in \mathcal{H} ;
 - **2** the operator \mathcal{D} is essentially self-adjoint on \mathcal{E} ;
 - **3** the commutator $[\mathcal{D}, \pi(a)]$ is bounded on \mathcal{E} for each $a \in \mathcal{A}$;
 - 4 the map $\pi(a) \circ \iota \colon \mathcal{E} \hookrightarrow \mathcal{H} \to \mathcal{H}$ is compact for each $a \in \mathcal{A}$.

Remark: condition 4 is equivalent to compactness of $\pi(a)(\mathcal{D}\pm i)^{-1}$.

Spectral triples

Definition: An even spectral triple $(\mathcal{A}, \mathcal{H}, \mathcal{D})$ consists of

- a \mathbb{Z}_2 -graded Hilbert space \mathcal{H} ;
- an even *-algebra representation $\pi: \mathcal{A} \to B^0(\mathcal{H})$;

- a closed, odd operator $\mathcal{D} \colon \text{Dom}\,\mathcal{D} \to \mathcal{H}$ such that:
 - 1 the linear subspace $\mathcal{E} := \text{Dom } \mathcal{D}$ is dense in \mathcal{H} ;
 - **2** the operator \mathcal{D} is essentially self-adjoint on \mathcal{E} ;
 - **3** the commutator $[\mathcal{D}, \pi(a)]$ is bounded on \mathcal{E} for each $a \in \mathcal{A}$;
 - 4 the map $\pi(a) \circ \iota \colon \mathcal{E} \hookrightarrow \mathcal{H} \to \mathcal{H}$ is compact for each $a \in \mathcal{A}$.

Remark: condition 4 is equivalent to compactness of $\pi(a)(\mathcal{D} \pm i)^{-1}$.

Definition: An even Krein spectral triple $(\mathcal{A}, \mathcal{H}, \mathcal{D}, \mathcal{J})$ consists of

- a \mathbb{Z}_2 -graded Krein space \mathcal{H} ;
- an even *-algebra representation $\pi \colon \mathcal{A} \to B^0(\mathcal{H})$;
- \blacksquare a fundamental symmetry ${\cal J}$ which commutes with the algebra ${\cal A}$ and which is either even or odd;
- a closed, odd operator $\mathcal{D}\colon \operatorname{Dom} \mathcal{D} \to \mathcal{H}$ such that:
 - **1** the linear subspace $\mathcal{E} := \text{Dom } \mathcal{D} \cap \mathcal{J} \cdot \text{Dom } \mathcal{D}$ is dense in \mathcal{H} ;
 - **2** the operator \mathcal{D} is essentially Krein-self-adjoint on \mathcal{E} ;
 - **3** the commutator $[\mathcal{D}, \pi(a)]$ is bounded on \mathcal{E} for each $a \in \mathcal{A}$;
 - 4 the map $\pi(a) \circ \iota \colon \mathcal{E} \hookrightarrow \mathcal{H} \to \mathcal{H}$ is compact for each $a \in \mathcal{A}$.

Note: \mathcal{E} is equipped with the norm $\|\psi\|_{\mathcal{E}} := \|\psi\| + \|\mathcal{J}\mathcal{D}\psi\| + \|\mathcal{D}\mathcal{J}\psi\|$. We say an even Krein spectral triple $(\mathcal{A}, \mathcal{H}, \mathcal{D}, \mathcal{J})$ is of Lorentz-type when \mathcal{J} is *odd*.

Definition: An even Krein spectral triple $(\mathcal{A}, \mathcal{H}, \mathcal{D}, \mathcal{J})$ consists of

- a \mathbb{Z}_2 -graded Krein space \mathcal{H} ;
- an even *-algebra representation $\pi \colon \mathcal{A} \to B^0(\mathcal{H})$;
- \blacksquare a fundamental symmetry ${\cal J}$ which commutes with the algebra ${\cal A}$ and which is either even or odd;
- a closed, odd operator $\mathcal{D}\colon \operatorname{Dom} \mathcal{D} \to \mathcal{H}$ such that:
 - **1** the linear subspace $\mathcal{E} := \text{Dom } \mathcal{D} \cap \mathcal{J} \cdot \text{Dom } \mathcal{D}$ is dense in \mathcal{H} ;
 - **2** the operator \mathcal{D} is essentially Krein-self-adjoint on \mathcal{E} ;
 - **B** the commutator $[\mathcal{D}, \pi(a)]$ is bounded on \mathcal{E} for each $a \in \mathcal{A}$;
 - 4 the map $\pi(a) \circ \iota \colon \mathcal{E} \hookrightarrow \mathcal{H} \to \mathcal{H}$ is compact for each $a \in \mathcal{A}$.
- Note: \mathcal{E} is equipped with the norm $\|\psi\|_{\mathcal{E}} := \|\psi\| + \|\mathcal{J}\mathcal{D}\psi\| + \|\mathcal{D}\mathcal{J}\psi\|.$

We say an even Krein spectral triple $(\mathcal{A}, \mathcal{H}, \mathcal{D}, \mathcal{J})$ is of Lorentz-type when \mathcal{J} is *odd*.

Definition: An even Krein spectral triple $(\mathcal{A}, \mathcal{H}, \mathcal{D}, \mathcal{J})$ consists of

- a \mathbb{Z}_2 -graded Krein space \mathcal{H} ;
- an even *-algebra representation $\pi: \mathcal{A} \to B^0(\mathcal{H})$;
- \blacksquare a fundamental symmetry ${\cal J}$ which commutes with the algebra ${\cal A}$ and which is either even or odd;
- a closed, odd operator $\mathcal{D}\colon \operatorname{Dom} \mathcal{D} \to \mathcal{H}$ such that:
 - **1** the linear subspace $\mathcal{E} := \text{Dom } \mathcal{D} \cap \mathcal{J} \cdot \text{Dom } \mathcal{D}$ is dense in \mathcal{H} ;
 - **2** the operator \mathcal{D} is essentially Krein-self-adjoint on \mathcal{E} ;
 - **3** the commutator $[\mathcal{D}, \pi(a)]$ is bounded on \mathcal{E} for each $a \in \mathcal{A}$;
 - 4 the map $\pi(a) \circ \iota \colon \mathcal{E} \hookrightarrow \mathcal{H} \to \mathcal{H}$ is compact for each $a \in \mathcal{A}$.

Note: \mathcal{E} is equipped with the norm $\|\psi\|_{\mathcal{E}} := \|\psi\| + \|\mathcal{J}\mathcal{D}\psi\| + \|\mathcal{D}\mathcal{J}\psi\|$. We say an even Krein spectral triple $(\mathcal{A}, \mathcal{H}, \mathcal{D}, \mathcal{J})$ is of Lorentz-type when \mathcal{J} is odd. ntroduction Krein spectral triples Gauge theory The electroweak theory Conclusion

Almost-commutative manifolds

• Let (M, g) be an even-dimensional time- and space-oriented Lorentzian spin manifold. Suppose there exists a spacelike reflection r such that g_r is complete. Then

$$(C_c^{\infty}(M), L^2(S), i D, \mathcal{J}_M = \gamma(e_0))$$

is a Lorentz-type spectral triple.

- A finite space F is an even Krein spectral triple $(\mathcal{A}_F, \mathcal{H}_F, \mathcal{D}_F, \mathcal{J}_F)$ such that dim $\mathcal{H}_F < \infty$ and \mathcal{J}_F is even.
- Definition: An almost-commutative Lorentzian manifold F × M is the product of a finite space F with the manifold M, given by

$$(\mathcal{A}, \mathcal{H}, \mathcal{D}, \mathcal{J}) := \left(C_c^{\infty}(M, \mathcal{A}_F), \mathcal{H}_F \, \hat{\otimes} \, L^2(\mathbf{S}), 1 \, \hat{\otimes} \, i \mathcal{D} + i \mathcal{D}_F \, \hat{\otimes} \, 1, \mathcal{J}_F \, \hat{\otimes} \, \mathcal{J}_M \right).$$

ntroduction Krein spectral triples Gauge theory The electroweak theory Conclusion

Almost-commutative manifolds

• Let (M, g) be an even-dimensional time- and space-oriented Lorentzian spin manifold. Suppose there exists a spacelike reflection r such that g_r is complete. Then

$$(C_c^{\infty}(M), L^2(S), i D, \mathcal{J}_M = \gamma(e_0))$$

is a Lorentz-type spectral triple.

- A finite space F is an even Krein spectral triple $(\mathcal{A}_F, \mathcal{H}_F, \mathcal{D}_F, \mathcal{J}_F)$ such that dim $\mathcal{H}_F < \infty$ and \mathcal{J}_F is even.
- Definition: An almost-commutative Lorentzian manifold F × M is the product of a finite space F with the manifold M, given by

$$(\mathcal{A}, \mathcal{H}, \mathcal{D}, \mathcal{J}) := \left(C_c^{\infty}(M, \mathcal{A}_F), \mathcal{H}_F \, \hat{\otimes} \, L^2(\mathbf{S}), 1 \, \hat{\otimes} \, i \mathcal{D} + i \mathcal{D}_F \, \hat{\otimes} \, 1, \mathcal{J}_F \, \hat{\otimes} \, \mathcal{J}_M \right).$$

ntroduction Krein spectral triples Gauge theory The electroweak theory Conclusion 0 000000€0 000 000000

Almost-commutative manifolds

 Let (M, g) be an even-dimensional time- and space-oriented Lorentzian spin manifold. Suppose there exists a spacelike reflection r such that gr is complete. Then

$$(C_c^{\infty}(M), L^2(S), i D, \mathcal{J}_M = \gamma(e_0))$$

is a Lorentz-type spectral triple.

- A finite space F is an even Krein spectral triple $(\mathcal{A}_F, \mathcal{H}_F, \mathcal{D}_F, \mathcal{J}_F)$ such that dim $\mathcal{H}_F < \infty$ and \mathcal{J}_F is even.
- **Definition:** An almost-commutative Lorentzian manifold $F \times M$ is the product of a finite space F with the manifold M, given by

$$(\mathcal{A},\mathcal{H},\mathcal{D},\mathcal{J}):=\left(C_c^{\infty}(M,\mathcal{A}_F),\mathcal{H}_F\,\hat{\otimes}\,L^2(\mathbf{S}),1\,\hat{\otimes}\,i\mathcal{D}+i\mathcal{D}_F\,\hat{\otimes}\,1,\mathcal{J}_F\,\hat{\otimes}\,\mathcal{J}_M\right).$$

	Krein spectral triples 0000000●	Gauge theory 000	
The 🖌	Krein action		

• Let $(\mathcal{A}, \mathcal{H}, \mathcal{D}, \mathcal{J})$ be a Lorentz-type spectral triple. Then we have: $\overline{\langle \psi | \mathcal{D} \phi \rangle} = \langle \phi | \mathcal{D} \psi \rangle$ for any $\psi, \phi \in \text{Dom } \mathcal{D}$;

- $\ \ \, \cup \ \ \, |\mathcal{D}\psi_1\rangle=0 \ \, \text{for any} \ \, \psi_0\in\mathcal{H}^0\cap\text{Dom}\,\mathcal{D} \ \text{and} \ \, \psi_1\in\mathcal{H}^1\cap\text{Dom}\,\mathcal{D}.$
- We define the Krein action $S_{\mathcal{K}} \colon \mathcal{H}^0 \cap \text{Dom } \mathcal{D} \to \mathbb{C}$ to be the functional

 $S_{\mathcal{K}}[\psi] := \langle \psi | \mathcal{D} \psi \rangle.$

We note that $S_{\mathcal{K}}[\psi]$ is real-valued and (in general) non-zero.

Remark: this action is *classical*. In particular, there are no Grassmann variables.

	Krein spectral triples 0000000●	Gauge theory 000	
The K	Krein action		

Let (A, H, D, J) be a Lorentz-type spectral triple. Then we have:

 [□] (ψ|Dφ) = ⟨φ|Dψ⟩ for any ψ, φ ∈ Dom D;
 [□] ⟨ψ₀|Dψ₁⟩ = 0 for any ψ₀ ∈ H⁰ ∩ Dom D and ψ₁ ∈ H¹ ∩ Dom D.

• We define the Krein action $S_{\mathcal{K}} \colon \mathcal{H}^0 \cap \text{Dom } \mathcal{D} \to \mathbb{C}$ to be the functional

 $S_{\mathcal{K}}[\psi] := \langle \psi | \mathcal{D} \psi \rangle.$

We note that $S_{\mathcal{K}}[\psi]$ is real-valued and (in general) non-zero.

• **Remark:** this action is *classical*. In particular, there are no Grassmann variables.

	Krein spectral triples 0000000●	Gauge theory 000	
The 🖌	Krein action		

Let (A, H, D, J) be a Lorentz-type spectral triple. Then we have:

 [□] (ψ|Dφ) = ⟨φ|Dψ⟩ for any ψ, φ ∈ Dom D;
 [□] ⟨ψ₀|Dψ₁⟩ = 0 for any ψ₀ ∈ H⁰ ∩ Dom D and ψ₁ ∈ H¹ ∩ Dom D.

• We define the Krein action $S_{\mathcal{K}} \colon \mathcal{H}^0 \cap \text{Dom } \mathcal{D} \to \mathbb{C}$ to be the functional

 $S_{\mathcal{K}}[\psi] := \langle \psi | \mathcal{D} \psi \rangle.$

We note that $S_{\mathcal{K}}[\psi]$ is real-valued and (in general) non-zero.

• **Remark:** this action is *classical*. In particular, there are no Grassmann variables.

	Gauge theory	

1 Introduction

2 Krein spectral triples

3 Gauge theory

4 The electroweak theory

	Gauge theory	
	•00	

- Let A be a unital *-algebra. Let A = ∑_j a_j ⊗ b_j^{op} ∈ A ⊙ A^{op}. Define A := ∑b_j^{*} ⊗ a_j^{*op}.
 A is real if A = A.
 A is normalised if ∑a_jb_j = 1 ∈ A.
- Definition [CCvS13]: The perturbation semi-group Pert(A) consists of the real normalised elements in A ⊙ A^{op}.
- For a Krein spectral triple $(\mathcal{B}, \mathcal{H}, \mathcal{D}, \mathcal{J})$ we consider the generalised one-forms given by $\Omega^1_{\mathcal{D}}(\mathcal{B}) := \left\{ \sum_j a_j[\mathcal{D}, b_j] \mid a_j, b_j \in \mathcal{B} \right\}.$
- For $\mathcal{B} = \mathcal{A} \odot \mathcal{A}^{\mathrm{op}}$, define the map $\eta_{\mathcal{D}} \colon \mathcal{A} \odot \mathcal{A}^{\mathrm{op}} \to \Omega^1_{\mathcal{D}}(\mathcal{A} \odot \mathcal{A}^{\mathrm{op}})$ by

$$\eta_{\mathcal{D}}\Big(\sum_{j} a_{j} \otimes b_{j}^{\mathsf{op}}\Big) := \sum_{j,k} \left(a_{j}(a_{k}^{*})^{\mathsf{op}}\right) \left[\mathcal{D}, b_{j}(b_{k}^{*})^{\mathsf{op}}\right].$$

	Gauge theory	
	000	

- Let A be a unital *-algebra. Let A = ∑_j a_j ⊗ b_j^{op} ∈ A ⊙ A^{op}. Define A := ∑b_j^{*} ⊗ a_j^{*op}.
 A is real if A = A.
 A is normalised if ∑a_jb_j = 1 ∈ A.
- Definition [CCvS13]: The *perturbation semi-group* Pert(A) consists of the real normalised elements in A ⊙ A^{op}.
- For a Krein spectral triple $(\mathcal{B}, \mathcal{H}, \mathcal{D}, \mathcal{J})$ we consider the *generalised* one-forms given by $\Omega^1_{\mathcal{D}}(\mathcal{B}) := \left\{ \sum_j a_j [\mathcal{D}, b_j] \mid a_j, b_j \in \mathcal{B} \right\}.$
- For $\mathcal{B} = \mathcal{A} \odot \mathcal{A}^{\mathsf{op}}$, define the map $\eta_{\mathcal{D}} \colon \mathcal{A} \odot \mathcal{A}^{\mathsf{op}} \to \Omega^1_{\mathcal{D}}(\mathcal{A} \odot \mathcal{A}^{\mathsf{op}})$ by

$$\eta_{\mathcal{D}}\Big(\sum_{j} a_{j} \otimes b_{j}^{\mathsf{op}}\Big) := \sum_{j,k} \left(a_{j}(a_{k}^{*})^{\mathsf{op}}\right) \left[\mathcal{D}, b_{j}(b_{k}^{*})^{\mathsf{op}}\right].$$

	Gauge theory	
	000	

- Let A be a unital *-algebra. Let A = ∑_j a_j ⊗ b_j^{op} ∈ A ⊙ A^{op}. Define A := ∑b_j^{*} ⊗ a_j^{*op}.
 A is real if A = A.
 A is normalised if ∑a_jb_j = 1 ∈ A.
- Definition [CCvS13]: The *perturbation semi-group* Pert(A) consists of the real normalised elements in A ⊙ A^{op}.
- For a Krein spectral triple $(\mathcal{B}, \mathcal{H}, \mathcal{D}, \mathcal{J})$ we consider the generalised one-forms given by $\Omega^1_{\mathcal{D}}(\mathcal{B}) := \left\{ \sum_j a_j[\mathcal{D}, b_j] \mid a_j, b_j \in \mathcal{B} \right\}.$

• For $\mathcal{B} = \mathcal{A} \odot \mathcal{A}^{\mathsf{op}}$, define the map $\eta_{\mathcal{D}} \colon \mathcal{A} \odot \mathcal{A}^{\mathsf{op}} \to \Omega^1_{\mathcal{D}}(\mathcal{A} \odot \mathcal{A}^{\mathsf{op}})$ by

$$\eta_{\mathcal{D}}\Big(\sum_{j} a_{j} \otimes b_{j}^{\mathsf{op}}\Big) := \sum_{j,k} \left(a_{j}(a_{k}^{*})^{\mathsf{op}}\right) \left[\mathcal{D}, b_{j}(b_{k}^{*})^{\mathsf{op}}\right].$$

	Gauge theory	
	000	

- Let A be a unital *-algebra. Let A = ∑_j a_j ⊗ b_j^{op} ∈ A ⊙ A^{op}. Define A := ∑b_j^{*} ⊗ a_j^{*op}.
 A is real if A = A.
 A is normalised if ∑a_jb_j = 1 ∈ A.
- Definition [CCvS13]: The *perturbation semi-group* Pert(A) consists of the real normalised elements in A ⊙ A^{op}.
- For a Krein spectral triple $(\mathcal{B}, \mathcal{H}, \mathcal{D}, \mathcal{J})$ we consider the generalised one-forms given by $\Omega^1_{\mathcal{D}}(\mathcal{B}) := \left\{ \sum_j a_j[\mathcal{D}, b_j] \mid a_j, b_j \in \mathcal{B} \right\}.$
- For $\mathcal{B} = \mathcal{A} \odot \mathcal{A}^{\mathsf{op}}$, define the map $\eta_{\mathcal{D}} \colon \mathcal{A} \odot \mathcal{A}^{\mathsf{op}} \to \Omega^1_{\mathcal{D}}(\mathcal{A} \odot \mathcal{A}^{\mathsf{op}})$ by

$$\eta_{\mathcal{D}}\Big(\sum_{j}a_{j}\otimes b_{j}^{\mathsf{op}}\Big):=\sum_{j,k}\left(a_{j}(a_{k}^{*})^{\mathsf{op}}\right)\left[\mathcal{D},b_{j}(b_{k}^{*})^{\mathsf{op}}\right].$$

	Krein spectral triples 00000000	Gauge theory O●O	
Fluctu	uations		

• If $(\mathcal{A} \odot \mathcal{A}^{op}, \mathcal{H}, \mathcal{D}, \mathcal{J})$ satisfies the order-one condition

$$\left[a, \left[\mathcal{D}, b^{\mathsf{op}}\right]\right] = 0 \qquad \forall a, b \in \mathcal{A},$$

then

$$\eta_{\mathcal{D}}\Big(\sum_{j} a_{j} \otimes b_{j}^{\mathsf{op}}\Big) = \sum_{j} a_{j}[\mathcal{D}, b_{j}] + \sum_{j} a_{j}^{*\mathsf{op}}[\mathcal{D}, b_{j}^{*\mathsf{op}}].$$

• By the *fluctuation* of \mathcal{D} by $A \in \operatorname{Pert}(\mathcal{A})$ we mean the map

 $\mathcal{D}\mapsto \mathcal{D}_A:=\mathcal{D}+\eta_{\mathcal{D}}(A),$

and we refer to \mathcal{D}_A as the *fluctuated Dirac operator*.

• **Proposition [CCvS13]:** A fluctuation of a fluctuated Dirac operator is again a fluctuated Dirac operator. To be precise: $(\mathcal{D}_A)_{A'} = \mathcal{D}_{A'A}$ for all perturbations $A, A' \in \text{Pert}(\mathcal{A})$.

	Krein spectral triples 00000000	Gauge theory O●O	
Fluctı	iations		

• If $(\mathcal{A} \odot \mathcal{A}^{op}, \mathcal{H}, \mathcal{D}, \mathcal{J})$ satisfies the order-one condition

$$\left[a, \left[\mathcal{D}, b^{\mathsf{op}}\right]\right] = 0 \qquad \forall a, b \in \mathcal{A},$$

then

$$\eta_{\mathcal{D}}\Big(\sum_{j}a_{j}\otimes b_{j}^{\mathsf{op}}\Big)=\sum_{j}a_{j}[\mathcal{D},b_{j}]+\sum_{j}a_{j}^{*\mathsf{op}}[\mathcal{D},b_{j}^{*\mathsf{op}}].$$

• By the *fluctuation* of \mathcal{D} by $A \in \operatorname{Pert}(\mathcal{A})$ we mean the map

$$\mathcal{D}\mapsto \mathcal{D}_A:=\mathcal{D}+\eta_{\mathcal{D}}(A),$$

and we refer to \mathcal{D}_A as the *fluctuated Dirac operator*.

• **Proposition [CCvS13]:** A fluctuation of a fluctuated Dirac operator is again a fluctuated Dirac operator. To be precise: $(\mathcal{D}_A)_{A'} = \mathcal{D}_{A'A}$ for all perturbations $A, A' \in \text{Pert}(\mathcal{A})$.

	Krein spectral triples 00000000	Gauge theory O●O	
Fluctu	ations		

• If $(\mathcal{A} \odot \mathcal{A}^{op}, \mathcal{H}, \mathcal{D}, \mathcal{J})$ satisfies the order-one condition

$$\left[a, \left[\mathcal{D}, b^{\mathsf{op}}\right]\right] = 0 \qquad \forall a, b \in \mathcal{A},$$

then

$$\eta_{\mathcal{D}}\Big(\sum_{j}a_{j}\otimes b_{j}^{\mathsf{op}}\Big)=\sum_{j}a_{j}[\mathcal{D},b_{j}]+\sum_{j}a_{j}^{*\mathsf{op}}[\mathcal{D},b_{j}^{*\mathsf{op}}].$$

• By the *fluctuation* of \mathcal{D} by $A \in \operatorname{Pert}(\mathcal{A})$ we mean the map

$$\mathcal{D}\mapsto \mathcal{D}_A:=\mathcal{D}+\eta_{\mathcal{D}}(A),$$

and we refer to \mathcal{D}_A as the *fluctuated Dirac operator*.

• **Proposition [CCvS13]:** A fluctuation of a fluctuated Dirac operator is again a fluctuated Dirac operator. To be precise: $(\mathcal{D}_A)_{A'} = \mathcal{D}_{A'A}$ for all perturbations $A, A' \in \text{Pert}(\mathcal{A})$.

• The unitary group $\mathcal{U}(\mathcal{A})$ acts on $\operatorname{Pert}(\mathcal{A})$ via

$$\Delta(u)A := \left(u \otimes (u^*)^{\mathsf{op}}\right) \left(\sum a_j \otimes b_j^{\mathsf{op}}\right) = \sum ua_j \otimes (b_j u^*)^{\mathsf{op}}.$$

We can compose Δ with the *-algebra representation $\pi: \mathcal{A} \odot \mathcal{A}^{\mathsf{op}} \to \mathcal{B}(\mathcal{H})$ to obtain a group representation

$$\rho := \pi \circ \Delta \colon \mathcal{U}(\mathcal{A}) \to \mathcal{B}(\mathcal{H}).$$

We define the gauge group as

$$\mathcal{G}(\mathcal{A}) := \left\{ \rho(u) \mid u \in \mathcal{U}(\mathcal{A}) \right\} \simeq \mathcal{U}(\mathcal{A}) / \operatorname{Ker} \rho.$$

• **Proposition:** The Krein action $S_{\mathcal{K}}[\psi, A] := \langle \psi | \mathcal{D}_A \psi \rangle$ of the fluctuated Dirac operator \mathcal{D}_A is invariant under the action of the gauge group given by $\psi \mapsto \rho(u)\psi$ and $A \mapsto \Delta(u)A$.

• The unitary group $\mathcal{U}(\mathcal{A})$ acts on $\operatorname{Pert}(\mathcal{A})$ via

$$\Delta(u)A := \left(u \otimes (u^*)^{\mathsf{op}}\right) \left(\sum a_j \otimes b_j^{\mathsf{op}}\right) = \sum ua_j \otimes (b_j u^*)^{\mathsf{op}}.$$

We can compose Δ with the *-algebra representation $\pi: \mathcal{A} \odot \mathcal{A}^{\mathsf{op}} \to \mathcal{B}(\mathcal{H})$ to obtain a group representation

$$\rho := \pi \circ \Delta \colon \mathcal{U}(\mathcal{A}) \to \mathcal{B}(\mathcal{H}).$$

We define the gauge group as

$$\mathcal{G}(\mathcal{A}) := \{ \rho(u) \mid u \in \mathcal{U}(\mathcal{A}) \} \simeq \mathcal{U}(\mathcal{A}) / \operatorname{Ker} \rho.$$

• **Proposition:** The Krein action $S_{\mathcal{K}}[\psi, A] := \langle \psi | \mathcal{D}_A \psi \rangle$ of the fluctuated Dirac operator \mathcal{D}_A is invariant under the action of the gauge group given by $\psi \mapsto \rho(u)\psi$ and $A \mapsto \Delta(u)A$.

	The electroweak theory	

1 Introduction

2 Krein spectral triples

3 Gauge theory

4 The electroweak theory

The finite space (1)

• Define $\mathcal{H}_F := \mathbb{C}^4$ with the basis $\{\nu_R, e_R, \nu_L, e_L\}$ and the \mathbb{Z}_2 -grading

$$\mathcal{H}_F^0 = \mathcal{H}_L = \operatorname{span}\{\nu_L, e_L\}, \qquad \mathcal{H}_F^1 = \mathcal{H}_R = \operatorname{span}\{\nu_R, e_R\}$$

• Define $\mathcal{A}_F := \mathbb{C} \oplus \mathbb{H}$, with the representations $\pi \colon \mathcal{A}_F \to \mathcal{B}(\mathcal{H}_R) \oplus \mathcal{B}(\mathcal{H}_L)$ and $\pi^{\mathsf{op}} \colon \mathcal{A}_F^{\mathsf{op}} \to \mathcal{B}(\mathcal{H}_R) \oplus \mathcal{B}(\mathcal{H}_L)$ given for $\lambda \in \mathbb{C}$ and $q = \alpha + \beta j \in \mathbb{H}$ by

$$\pi(\lambda,q) := q_{\lambda} \oplus q := \begin{pmatrix} \lambda & 0 \\ 0 & \overline{\lambda} \end{pmatrix} \oplus \begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix}, \quad \pi^{\mathsf{op}}\big((\lambda,q)^{\mathsf{op}}\big) := \lambda \oplus \lambda.$$

• The representation $\tilde{\pi} := \pi \otimes \pi^{op}$ of $\mathcal{A}_F \odot \mathcal{A}_F^{op}$ on $\mathcal{H}_R \oplus \mathcal{H}_L$ is then given by

$$\tilde{\pi}((\lambda,q)\otimes(\lambda',q')^{\mathsf{op}})=\lambda'q_{\lambda}\oplus\lambda'q.$$

The finite space (1)

• Define $\mathcal{H}_F := \mathbb{C}^4$ with the basis $\{\nu_R, e_R, \nu_L, e_L\}$ and the \mathbb{Z}_2 -grading

$$\mathcal{H}_F^0 = \mathcal{H}_L = \operatorname{span}\{\nu_L, e_L\}, \qquad \mathcal{H}_F^1 = \mathcal{H}_R = \operatorname{span}\{\nu_R, e_R\}$$

• Define $\mathcal{A}_F := \mathbb{C} \oplus \mathbb{H}$, with the representations $\pi \colon \mathcal{A}_F \to \mathcal{B}(\mathcal{H}_R) \oplus \mathcal{B}(\mathcal{H}_L)$ and $\pi^{op} \colon \mathcal{A}_F^{op} \to \mathcal{B}(\mathcal{H}_R) \oplus \mathcal{B}(\mathcal{H}_L)$ given for $\lambda \in \mathbb{C}$ and $q = \alpha + \beta j \in \mathbb{H}$ by

$$\pi(\lambda,q) := q_{\lambda} \oplus q := \begin{pmatrix} \lambda & 0 \\ 0 & \overline{\lambda} \end{pmatrix} \oplus \begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix}, \quad \pi^{\mathsf{op}}\big((\lambda,q)^{\mathsf{op}}\big) := \lambda \oplus \lambda.$$

• The representation $\tilde{\pi} := \pi \otimes \pi^{op}$ of $\mathcal{A}_F \odot \mathcal{A}_F^{op}$ on $\mathcal{H}_R \oplus \mathcal{H}_L$ is then given by

$$\tilde{\pi}((\lambda,q)\otimes(\lambda',q')^{\mathsf{op}})=\lambda'q_{\lambda}\oplus\lambda'q.$$

The finite space (1)

• Define $\mathcal{H}_F := \mathbb{C}^4$ with the basis $\{\nu_R, e_R, \nu_L, e_L\}$ and the \mathbb{Z}_2 -grading

$$\mathcal{H}_F^0 = \mathcal{H}_L = \operatorname{span}\{\nu_L, e_L\}, \qquad \mathcal{H}_F^1 = \mathcal{H}_R = \operatorname{span}\{\nu_R, e_R\}$$

• Define $\mathcal{A}_F := \mathbb{C} \oplus \mathbb{H}$, with the representations $\pi \colon \mathcal{A}_F \to \mathcal{B}(\mathcal{H}_R) \oplus \mathcal{B}(\mathcal{H}_L)$ and $\pi^{op} \colon \mathcal{A}_F^{op} \to \mathcal{B}(\mathcal{H}_R) \oplus \mathcal{B}(\mathcal{H}_L)$ given for $\lambda \in \mathbb{C}$ and $q = \alpha + \beta j \in \mathbb{H}$ by

$$\pi(\lambda,q) := q_{\lambda} \oplus q := \begin{pmatrix} \lambda & 0 \\ 0 & \overline{\lambda} \end{pmatrix} \oplus \begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix}, \quad \pi^{\mathsf{op}}\big((\lambda,q)^{\mathsf{op}}\big) := \lambda \oplus \lambda.$$

• The representation $\tilde{\pi} := \pi \otimes \pi^{op}$ of $\mathcal{A}_F \odot \mathcal{A}_F^{op}$ on $\mathcal{H}_R \oplus \mathcal{H}_L$ is then given by

$$\tilde{\pi}((\lambda,q)\otimes(\lambda',q')^{\mathsf{op}})=\lambda'q_{\lambda}\oplus\lambda'q.$$

• We define the mass matrix on the basis $\{v_R, e_R, v_L, e_L\}$ as

$$\mathcal{D}_F := egin{pmatrix} 0 & 0 & -im_
u & 0 \ 0 & 0 & 0 & -im_e \ im_
u & 0 & 0 & 0 \ 0 & im_e & 0 & 0 \end{pmatrix}$$

•

- We then consider the even finite space $F_{EW} := (\mathcal{A}_F, \mathcal{H}_F, \mathcal{D}_F, \mathcal{J}_F = 1)$.
- The gauge group of F_{EW} equals

$$\mathcal{G}(F_{EW}) = (U(1) \times SU(2)) / \mathbb{Z}_2.$$

• We define the mass matrix on the basis $\{v_R, e_R, v_L, e_L\}$ as

$$\mathcal{D}_F := egin{pmatrix} 0 & 0 & -im_
u & 0 \ 0 & 0 & 0 & -im_e \ im_
u & 0 & 0 & 0 \ 0 & im_e & 0 & 0 \end{pmatrix}$$

•

- We then consider the even finite space $F_{EW} := (\mathcal{A}_F, \mathcal{H}_F, \mathcal{D}_F, \mathcal{J}_F = 1)$.
- The gauge group of F_{EW} equals

$$\mathcal{G}(F_{EW}) = (U(1) \times SU(2))/\mathbb{Z}_2.$$

• We define the *mass matrix* on the basis $\{v_R, e_R, v_L, e_L\}$ as

$$\mathcal{D}_F := egin{pmatrix} 0 & 0 & -im_
u & 0 \ 0 & 0 & 0 & -im_e \ im_
u & 0 & 0 & 0 \ 0 & im_e & 0 & 0 \end{pmatrix}$$

.

- We then consider the even finite space $F_{EW} := (\mathcal{A}_F, \mathcal{H}_F, \mathcal{D}_F, \mathcal{J}_F = 1)$.
- The gauge group of F_{EW} equals

$$\mathcal{G}(F_{EW}) = (U(1) \times SU(2))/\mathbb{Z}_2.$$

	Krein spectral triples 00000000	Gauge theory 000	The electroweak theory	
Fluctu	uations			

We consider the almost-commutative manifold

 $F_{EW} \times M := \left(C_c^{\infty}(M, \mathcal{A}_F \odot \mathcal{A}_F^{\mathsf{op}}), \mathcal{H}_F \otimes L^2(\mathbf{S}), 1 \otimes i\mathcal{D} + i\mathcal{D}_F \otimes 1, 1 \otimes \mathcal{J}_M \right).$

• **Proposition:** The fluctuation of $\mathcal{D} := 1 \otimes i\mathcal{D} + i\mathcal{D}_F \otimes 1$ by $A \in \operatorname{Pert}(C_c^{\infty}(M, \mathcal{A}_F))$ is

 $\mathcal{D}_A = \mathcal{D} + \eta_{\mathcal{D}}(A) = 1 \,\hat{\otimes} \, i \mathcal{D} + A_\mu \,\hat{\otimes} \, i \gamma^\mu + (i \mathcal{D}_F + \phi) \,\hat{\otimes} \, 1,$

where the gauge field A_μ and the Higgs field ϕ are given by

$$A_{\mu} = \begin{pmatrix} 0 & 0 \\ 0 & -2\Lambda_{\mu} \\ & Q_{\mu} - \Lambda_{\mu} \end{pmatrix}, \quad \phi = \begin{pmatrix} 0 & 0 & m_{\nu}\overline{\phi_{1}} & m_{\nu}\overline{\phi_{2}} \\ 0 & 0 & -m_{e}\phi_{2} & m_{e}\phi_{1} \\ -m_{\nu}\phi_{1} & m_{e}\overline{\phi_{2}} & 0 & 0 \\ -m_{\nu}\phi_{2} & -m_{e}\overline{\phi_{1}} & 0 & 0 \end{pmatrix},$$

for the gauge fields $(\Lambda_{\mu}, Q_{\mu}) \in C_c^{\infty}(M, i\mathbb{R} \oplus \mathfrak{su}(2))$ and the Higgs field $(\phi_1, \phi_2) \in C_c^{\infty}(M, \mathbb{C}^2)$.

• We consider the almost-commutative manifold

 $F_{EW} \times M := \left(C_c^{\infty}(M, \mathcal{A}_F \odot \mathcal{A}_F^{\mathsf{op}}), \mathcal{H}_F \otimes L^2(\mathtt{S}), 1 \otimes i \mathcal{D} + i \mathcal{D}_F \otimes 1, 1 \otimes \mathcal{J}_M \right).$

• **Proposition:** The fluctuation of $\mathcal{D} := 1 \otimes i \mathcal{D} + i \mathcal{D}_F \otimes 1$ by $A \in \operatorname{Pert}(C^{\infty}_c(M, \mathcal{A}_F))$ is

$$\mathcal{D}_A = \mathcal{D} + \eta_\mathcal{D}(A) = 1 \,\hat{\otimes} \, i D \!\!\!/ + A_\mu \,\hat{\otimes} \, i \gamma^\mu + (i \mathcal{D}_F + \phi) \,\hat{\otimes} \, 1,$$

where the gauge field A_{μ} and the Higgs field ϕ are given by

$$A_{\mu} = \begin{pmatrix} 0 & 0 \\ 0 & -2\Lambda_{\mu} \\ & Q_{\mu} - \Lambda_{\mu} \end{pmatrix}, \quad \phi = \begin{pmatrix} 0 & 0 & m_{\nu}\overline{\phi_{1}} & m_{\nu}\overline{\phi_{2}} \\ 0 & 0 & -m_{e}\phi_{2} & m_{e}\phi_{1} \\ -m_{\nu}\phi_{1} & m_{e}\overline{\phi_{2}} & 0 & 0 \\ -m_{\nu}\phi_{2} & -m_{e}\overline{\phi_{1}} & 0 & 0 \end{pmatrix},$$

for the gauge fields $(\Lambda_{\mu}, Q_{\mu}) \in C_c^{\infty}(M, i\mathbb{R} \oplus \mathfrak{su}(2))$ and the Higgs field $(\phi_1, \phi_2) \in C_c^{\infty}(M, \mathbb{C}^2)$.

	Krein spectral triples	Gauge theory 000	The electroweak theory 000000	
The K	rein action			

• Consider $\xi = \nu_R \otimes \psi_R^{\nu} + e_R \otimes \psi_R^e + \nu_L \otimes \psi_L^{\nu} + e_L \otimes \psi_L^e \in \mathcal{H}^0$, and define

$$\begin{split} \Psi_L &:= \begin{pmatrix} \psi_L^{\nu} \\ \psi_L^{\ell} \end{pmatrix} \in L^2(\mathbb{S})^0 \otimes \mathbb{C}^2, \qquad \Psi_R := \begin{pmatrix} \psi_R^{\nu} \\ \psi_R^{\ell} \end{pmatrix} \in L^2(\mathbb{S})^1 \otimes \mathbb{C}^2, \\ \Psi &:= \Psi_L + \Psi_R \in L^2(\mathbb{S}) \otimes \mathbb{C}^2. \end{split}$$

• **Proposition:** The Krein action for $F_{EW} \times M$ is given by

 $S_{EW}[\Psi, A] = \langle \Psi | i D \Psi \rangle + \langle \psi_R^e | -2i\gamma^{\mu} \Lambda_{\mu} \psi_R^e \rangle + \langle \Psi_L | i\gamma^{\mu} (Q_{\mu} - \Lambda_{\mu}) \Psi_L$ + $\langle \Psi_R | \Phi \Psi_L \rangle + \langle \Psi_L | \Phi^* \Psi_R \rangle,$

where the Higgs field (ϕ_1,ϕ_2) acts via

$$\Phi := \begin{pmatrix} -m_{\nu}\overline{(\phi_1+1)} & -m_{\nu}\overline{\phi_2} \\ m_{e}\phi_2 & -m_{e}(\phi_1+1) \end{pmatrix}.$$

	Krein spectral triples 00000000	Gauge theory 000	The electroweak theory	
The K	rein action			

• Consider $\xi = \nu_R \otimes \psi_R^{\nu} + e_R \otimes \psi_R^e + \nu_L \otimes \psi_L^{\nu} + e_L \otimes \psi_L^e \in \mathcal{H}^0$, and define

$$\Psi_L := \begin{pmatrix} \psi_L^{\nu} \\ \psi_L^{e} \end{pmatrix} \in L^2(\mathbf{S})^0 \otimes \mathbb{C}^2, \qquad \Psi_R := \begin{pmatrix} \psi_R^{\nu} \\ \psi_R^{e} \end{pmatrix} \in L^2(\mathbf{S})^1 \otimes \mathbb{C}^2,$$

 $\Psi := \Psi_L + \Psi_R \in L^2(\mathbf{S}) \otimes \mathbb{C}^2.$

• **Proposition:** The Krein action for $F_{EW} \times M$ is given by

$$S_{\scriptscriptstyle EW}[\Psi, A] = \langle \Psi \,|\, i D \!\!\!/ \Psi \rangle + \langle \psi_R^e \,|\, -2i \gamma^\mu \Lambda_\mu \psi_R^e
angle + \langle \Psi_L \,|\, i \gamma^\mu (Q_\mu - \Lambda_\mu) \Psi_L \rangle + \langle \Psi_R \,|\, \Phi \Psi_L
angle + \langle \Psi_L \,|\, \Phi^* \Psi_R
angle,$$

where the Higgs field (ϕ_1, ϕ_2) acts via

$$\Phi := \begin{pmatrix} -m_{\nu}\overline{(\phi_1+1)} & -m_{\nu}\overline{\phi_2} \\ m_{e}\phi_2 & -m_{e}(\phi_1+1) \end{pmatrix}.$$

	Krein spectral triples 00000000	Gauge theory 000	The electroweak theory 0000€0	
Majorana	a masses			

• On $\hat{\mathcal{H}}_F := \mathcal{H}_F \oplus \mathcal{H}_{\overline{F}}$, we consider the operators

$$\begin{split} \hat{\mathcal{D}}_F &:= \begin{pmatrix} \mathcal{D}_F & -\mathcal{D}_M^* \\ \mathcal{D}_M & \overline{\mathcal{D}}_F \end{pmatrix}, \qquad \qquad \hat{\mathcal{J}}_F &:= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \\ \hat{\Gamma}_F &:= \begin{pmatrix} \Gamma_F & 0 \\ 0 & -\Gamma_F \end{pmatrix}, \qquad \qquad \hat{J}_F &:= \begin{pmatrix} 0 & \text{c. c.} \\ \text{c. c. } & 0 \end{pmatrix}, \end{split}$$

where $\mathcal{D}_M \nu_R := im_R \overline{\nu_R}$ and $\mathcal{D}_M e_R = \mathcal{D}_M \nu_L = \mathcal{D}_M e_L = 0$.

• Define $\hat{\pi} \colon \mathcal{A}_F \to \mathcal{B}(\mathcal{H}_F \oplus \mathcal{H}_{\overline{F}})$ and $\hat{\pi}^{\mathsf{op}} \colon \mathcal{A}_F^{\mathsf{op}} \to \mathcal{B}(\mathcal{H}_F \oplus \mathcal{H}_{\overline{F}})$ by

 $\hat{\pi}(a) := \pi(a) \oplus \pi^{\mathsf{op}}(a^t), \qquad \hat{\pi}^{\mathsf{op}}(a) := \hat{J}_F \hat{\pi}(a^*) \hat{J}_F.$

• We obtain a new finite space $\hat{F}_{EW} := (\mathcal{A}_F \odot \mathcal{A}_F^{op}, \hat{\mathcal{H}}_F, \hat{\mathcal{D}}_F, \hat{\mathcal{J}}_F)$ with grading operator $\hat{\Gamma}_F$ and additionally with a real structure \hat{J}_F .

	Krein spectral triples 00000000	Gauge theory 000	The electroweak theory 0000●0	
Majora	ina masses			

• On $\hat{\mathcal{H}}_F := \mathcal{H}_F \oplus \mathcal{H}_{\overline{F}}$, we consider the operators

$$\begin{split} \hat{\mathcal{D}}_F &:= \begin{pmatrix} \mathcal{D}_F & -\mathcal{D}_M^* \\ \mathcal{D}_M & \overline{\mathcal{D}}_F \end{pmatrix}, \qquad \qquad \hat{\mathcal{J}}_F &:= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \\ \hat{\Gamma}_F &:= \begin{pmatrix} \Gamma_F & 0 \\ 0 & -\Gamma_F \end{pmatrix}, \qquad \qquad \hat{J}_F &:= \begin{pmatrix} 0 & \text{c. c.} \\ \text{c. c. } & 0 \end{pmatrix}, \end{split}$$

where $\mathcal{D}_M \nu_R := im_R \overline{\nu_R}$ and $\mathcal{D}_M e_R = \mathcal{D}_M \nu_L = \mathcal{D}_M e_L = 0$. • Define $\hat{\pi} : \mathcal{A}_F \to \mathcal{B}(\mathcal{H}_F \oplus \mathcal{H}_{\overline{F}})$ and $\hat{\pi}^{op} : \mathcal{A}_F^{op} \to \mathcal{B}(\mathcal{H}_F \oplus \mathcal{H}_{\overline{F}})$ by

$$\hat{\pi}(a) := \pi(a) \oplus \pi^{\operatorname{op}}(a^t), \qquad \qquad \hat{\pi}^{\operatorname{op}}(a) := \hat{J}_F \hat{\pi}(a^*) \hat{J}_F.$$

• We obtain a new finite space $\hat{F}_{EW} := (\mathcal{A}_F \odot \mathcal{A}_F^{op}, \hat{\mathcal{H}}_F, \hat{\mathcal{D}}_F, \hat{\mathcal{J}}_F)$ with grading operator $\hat{\Gamma}_F$ and additionally with a real structure \hat{J}_F .

	Krein spectral triples 00000000	Gauge theory 000	The electroweak theory 0000●0	
Majora	ina masses			

• On $\hat{\mathcal{H}}_F := \mathcal{H}_F \oplus \mathcal{H}_{\overline{F}}$, we consider the operators

$$\begin{split} \hat{\mathcal{D}}_F &:= \begin{pmatrix} \mathcal{D}_F & -\mathcal{D}_M^* \\ \mathcal{D}_M & \overline{\mathcal{D}}_F \end{pmatrix}, \qquad \qquad \hat{\mathcal{J}}_F &:= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \\ \hat{\Gamma}_F &:= \begin{pmatrix} \Gamma_F & 0 \\ 0 & -\Gamma_F \end{pmatrix}, \qquad \qquad \hat{J}_F &:= \begin{pmatrix} 0 & \text{c. c.} \\ \text{c. c. } & 0 \end{pmatrix}, \end{split}$$

where $\mathcal{D}_M \nu_R := i m_R \overline{\nu_R}$ and $\mathcal{D}_M e_R = \mathcal{D}_M \nu_L = \mathcal{D}_M e_L = 0$.

• Define $\hat{\pi} \colon \mathcal{A}_F \to \mathcal{B}(\mathcal{H}_F \oplus \mathcal{H}_{\overline{F}})$ and $\hat{\pi}^{\mathsf{op}} \colon \mathcal{A}_F^{\mathsf{op}} \to \mathcal{B}(\mathcal{H}_F \oplus \mathcal{H}_{\overline{F}})$ by

$$\hat{\pi}(a) := \pi(a) \oplus \pi^{\mathsf{op}}(a^t), \qquad \qquad \hat{\pi}^{\mathsf{op}}(a) := \hat{J}_F \hat{\pi}(a^*) \hat{J}_F.$$

• We obtain a new finite space $\hat{F}_{EW} := (\mathcal{A}_F \odot \mathcal{A}_F^{op}, \hat{\mathcal{H}}_F, \hat{\mathcal{D}}_F, \hat{\mathcal{J}}_F)$ with grading operator $\hat{\Gamma}_F$ and additionally with a real structure \hat{J}_F .

	The electroweak theory	
	000000	

- Consider $\hat{F}_{EW} \times M$ with the real structure $J := \hat{J}_F \otimes J_M$.
- Following [Bar07], consider $\eta \in \mathcal{H}^0$ such that $J\eta = \eta$. Then $\eta = \xi + J\xi$, with $\xi \in (\mathcal{H}_F \otimes L^2(S))^0$ as before. We have

 $\langle \eta \mid \mathcal{D}_A \eta \rangle = \langle \xi \mid \mathcal{D}_A \xi \rangle + \langle J \xi \mid \mathcal{D}_A \xi \rangle + \langle \xi \mid \mathcal{D}_A J \xi \rangle + \langle J \xi \mid \mathcal{D}_A J \xi \rangle.$

- One finds that $\langle J\xi | \mathcal{D}_A J\xi \rangle = \langle \xi | \mathcal{D}_A \xi \rangle = S_{EW}[\Psi, A].$
- The new contributions are

 $\langle J\xi | \mathcal{D}_A \xi \rangle = -m_R \langle J_M \psi_R^{\nu} | \psi_R^{\nu} \rangle, \quad \langle \xi | \mathcal{D}_A J \xi \rangle = -m_R \langle \psi_R^{\nu} | J_M \psi_R^{\nu} \rangle.$

• Summarising, we obtain the new action S_{EW+M} given by

	The electroweak theory	
	000000	

- Consider $\hat{F}_{EW} \times M$ with the real structure $J := \hat{J}_F \otimes J_M$.
- Following [Bar07], consider $\eta \in \mathcal{H}^0$ such that $J\eta = \eta$. Then $\eta = \xi + J\xi$, with $\xi \in (\mathcal{H}_F \otimes L^2(S))^0$ as before. We have

 $\langle \eta | \mathcal{D}_A \eta \rangle = \langle \xi | \mathcal{D}_A \xi \rangle + \langle J \xi | \mathcal{D}_A \xi \rangle + \langle \xi | \mathcal{D}_A J \xi \rangle + \langle J \xi | \mathcal{D}_A J \xi \rangle.$

- One finds that $\langle J\xi | \mathcal{D}_A J\xi \rangle = \langle \xi | \mathcal{D}_A \xi \rangle = S_{EW}[\Psi, A].$
- The new contributions are

 $\langle J\xi | \mathcal{D}_A \xi \rangle = -m_R \langle J_M \psi_R^{\nu} | \psi_R^{\nu} \rangle, \quad \langle \xi | \mathcal{D}_A J \xi \rangle = -m_R \langle \psi_R^{\nu} | J_M \psi_R^{\nu} \rangle.$

• Summarising, we obtain the new action S_{EW+M} given by

	The electroweak theory	
	000000	

- Consider $\hat{F}_{EW} \times M$ with the real structure $J := \hat{J}_F \otimes J_M$.
- Following [Bar07], consider $\eta \in \mathcal{H}^0$ such that $J\eta = \eta$. Then $\eta = \xi + J\xi$, with $\xi \in (\mathcal{H}_F \otimes L^2(S))^0$ as before. We have

 $\langle \eta | \mathcal{D}_A \eta \rangle = \langle \xi | \mathcal{D}_A \xi \rangle + \langle J \xi | \mathcal{D}_A \xi \rangle + \langle \xi | \mathcal{D}_A J \xi \rangle + \langle J \xi | \mathcal{D}_A J \xi \rangle.$

• One finds that $\langle J\xi | \mathcal{D}_A J\xi \rangle = \langle \xi | \mathcal{D}_A \xi \rangle = S_{EW}[\Psi, A].$

The new contributions are

 $\langle J\xi | \mathcal{D}_A \xi \rangle = -m_R \langle J_M \psi_R^{\nu} | \psi_R^{\nu} \rangle, \quad \langle \xi | \mathcal{D}_A J \xi \rangle = -m_R \langle \psi_R^{\nu} | J_M \psi_R^{\nu} \rangle.$

• Summarising, we obtain the new action S_{EW+M} given by

	The electroweak theory	
	000000	

- Consider $\hat{F}_{EW} \times M$ with the real structure $J := \hat{J}_F \otimes J_M$.
- Following [Bar07], consider $\eta \in \mathcal{H}^0$ such that $J\eta = \eta$. Then $\eta = \xi + J\xi$, with $\xi \in (\mathcal{H}_F \otimes L^2(S))^0$ as before. We have

 $\langle \eta | \mathcal{D}_A \eta \rangle = \langle \xi | \mathcal{D}_A \xi \rangle + \langle J \xi | \mathcal{D}_A \xi \rangle + \langle \xi | \mathcal{D}_A J \xi \rangle + \langle J \xi | \mathcal{D}_A J \xi \rangle.$

- One finds that $\langle J\xi | \mathcal{D}_A J\xi \rangle = \langle \xi | \mathcal{D}_A \xi \rangle = S_{EW}[\Psi, A].$
- The new contributions are

 $\langle J\xi | \mathcal{D}_A \xi \rangle = -m_R \langle J_M \psi_R^{\nu} | \psi_R^{\nu} \rangle, \quad \langle \xi | \mathcal{D}_A J \xi \rangle = -m_R \langle \psi_R^{\nu} | J_M \psi_R^{\nu} \rangle.$

• Summarising, we obtain the new action S_{EW+M} given by

	The electroweak theory	
	000000	

- Consider $\hat{F}_{EW} \times M$ with the real structure $J := \hat{J}_F \otimes J_M$.
- Following [Bar07], consider $\eta \in \mathcal{H}^0$ such that $J\eta = \eta$. Then $\eta = \xi + J\xi$, with $\xi \in (\mathcal{H}_F \otimes L^2(S))^0$ as before. We have

 $\langle \eta | \mathcal{D}_A \eta \rangle = \langle \xi | \mathcal{D}_A \xi \rangle + \langle J \xi | \mathcal{D}_A \xi \rangle + \langle \xi | \mathcal{D}_A J \xi \rangle + \langle J \xi | \mathcal{D}_A J \xi \rangle.$

- One finds that $\langle J\xi | \mathcal{D}_A J\xi \rangle = \langle \xi | \mathcal{D}_A \xi \rangle = S_{EW}[\Psi, A].$
- The new contributions are

$$\langle J\xi | \mathcal{D}_A \xi \rangle = -m_R \langle J_M \psi_R^{\nu} | \psi_R^{\nu} \rangle, \quad \langle \xi | \mathcal{D}_A J \xi \rangle = -m_R \langle \psi_R^{\nu} | J_M \psi_R^{\nu} \rangle.$$

• Summarising, we obtain the new action S_{EW+M} given by

$$S_{\rm EW+M}[\Psi,A] = 2S_{\rm EW}[\Psi,A] - m_R \langle \psi_R^{\nu} | J_M \psi_R^{\nu} \rangle - m_R \langle J_M \psi_R^{\nu} | \psi_R^{\nu} \rangle,$$

	Krein spectral triples 00000000	Gauge theory 000	Conclusion
Conclu	sion		

• The fermionic action in Lorentzian signature (the Krein action) matches *exactly* with the physical Lagrangian.

The action is purely classical; there are no anti-commuting variables.

• Majorana masses can be described by giving the finite space a Krein structure as well.

	Krein spectral triples 00000000	Gauge theory 000	Conclusion
Conclusi	on		

• The fermionic action in Lorentzian signature (the Krein action) matches *exactly* with the physical Lagrangian.

• The action is purely classical; there are no anti-commuting variables.

• Majorana masses can be described by giving the finite space a Krein structure as well.

	Krein spectral triples 00000000	Gauge theory 000	Conclusion
Conclusi	on		

• The fermionic action in Lorentzian signature (the Krein action) matches *exactly* with the physical Lagrangian.

• The action is purely classical; there are no anti-commuting variables.

• Majorana masses can be described by giving the finite space a Krein structure as well.

- [Bar07] J. W. Barrett, A Lorentzian version of the non-commutative geometry of the standard model of particle physics, J. Math. Phys. 48 (2007), 012303.
- [Baum81] H. Baum, Spin-Strukturen und Dirac-Operatoren über pseudo-Riemannschen Mannigfaltigkeiten, in: Teubner-Texte zur Mathematik, vol. 41, Teubner-Verlag, Leipzig, 1981.
- [Bognár74] J. Bognár, Indefinite inner product spaces, Ergebnisse Mathematik und GrenzGeb., Springer, Berlin, 1974.
- [CCvS13] A. H. Chamseddine, A. Connes, and W. D. van Suijlekom, Inner fluctuations in noncommutative geometry without the first order condition, J. Geom. Phys. 73 (2013), 222–234.
- [Con06] A. Connes, Noncommutative geometry and the standard model with neutrino mixing, JHEP 0611 (2006), 081.
- [vdD16] K. van den Dungen, Krein spectral triples and the fermionic action, Math. Phys. Anal. Geom. (2016), to appear. (arXiv:1505.01939)