The fermionic action

Koen van den Dungen

Scuola Internazionale Superiore di Studi Avanzati (SISSA)

Gauge Theory and Noncommutative Geometry, 4–8 April 2016, Nijmegen
Outline

1. Introduction
2. Krein spectral triples
3. Gauge theory
4. The electroweak theory
5. Conclusion
The fermionic action

Consider a real even spectral triple \((\mathcal{A}, \mathcal{H}, \mathcal{D}, J, \gamma)\) of \(KO\)-dimension 2. The fermionic action is defined as \([\text{Con06}]\)

\[
S_f := \frac{1}{2} \langle J \tilde{\zeta} | \mathcal{D} \tilde{\zeta} \rangle,
\]

where \(\tilde{\zeta}\) is a Grassmann variable corresponding to \(\zeta = \gamma \zeta \in \mathcal{H}^0\).

Two discrepancies:
- signature is Riemannian instead of Lorentzian;
- the definition involves the real structure (‘charge conjugation’).

Solution \([\text{Bar07}]\): consider an action functional of the form \(\langle \psi | \mathcal{D} \psi \rangle\), where \(\langle \cdot | \cdot \rangle\) denotes the indefinite inner product on a Krein space, and where \(\mathcal{D}\) is Krein-self-adjoint.
The fermionic action

- Consider a real even spectral triple \((\mathcal{A}, \mathcal{H}, \mathcal{D}, J, \gamma)\) of \(KO\)-dimension 2. The **fermionic action** is defined as [Con06]

\[
S_f := \frac{1}{2} \langle J\tilde{\zeta} | D\tilde{\zeta} \rangle,
\]

where \(\tilde{\zeta}\) is a Grassmann variable corresponding to \(\zeta = \gamma \bar{\zeta} \in \mathcal{H}^0\).

- Two discrepancies:
 - signature is Riemannian instead of Lorentzian;
 - the definition involves the real structure (‘charge conjugation’).

- Solution [Bar07]: consider an action functional of the form \(\langle \psi | D \psi \rangle\), where \(\langle \cdot | \cdot \rangle\) denotes the indefinite inner product on a Krein space, and where \(D\) is Krein-self-adjoint.
The fermionic action

- Consider a real even spectral triple \((\mathcal{A}, \mathcal{H}, \mathcal{D}, J, \gamma)\) of \(KO\)-dimension 2. The fermionic action is defined as [Con06]

\[
S_f := \frac{1}{2} \langle J \tilde{\zeta} | \mathcal{D} \tilde{\zeta} \rangle,
\]

where \(\tilde{\zeta}\) is a Grassmann variable corresponding to \(\zeta = \gamma \xi \in \mathcal{H}^0\).

- Two discrepancies:
 - signature is Riemannian instead of Lorentzian;
 - the definition involves the real structure (‘charge conjugation’).

- Solution [Bar07]: consider an action functional of the form \(\langle \psi | \mathcal{D} \psi \rangle\), where \(\langle \cdot | \cdot \rangle\) denotes the indefinite inner product on a Krein space, and where \(\mathcal{D}\) is Krein-self-adjoint.
Introduction

Krein spectral triples

Gauge theory

The electroweak theory

Conclusion
Krein spaces

A Krein space is a vector space \mathcal{H} with a non-degenerate inner product $\langle \cdot | \cdot \rangle$ which admits a fundamental decomposition $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$ (i.e., an orthogonal direct sum decomposition into a positive-definite subspace \mathcal{H}^+ and a negative-definite subspace \mathcal{H}^-) such that the subspaces \mathcal{H}^+ and \mathcal{H}^- are intrinsically complete (i.e., complete with respect to the norms $\| \psi \|_{\mathcal{H}^\pm} := |\langle \psi | \psi \rangle|^{1/2}$).

Given a fundamental decomposition $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$, we obtain a corresponding fundamental symmetry $J = P^+ - P^-$, where P^\pm denotes the projection onto \mathcal{H}^\pm.

Given a fundamental symmetry J, we denote by \mathcal{H}_J the corresponding Hilbert space for the positive-definite inner product $\langle \cdot | \cdot \rangle_J := \langle J \cdot | \cdot \rangle$.

A Krein space \mathcal{H} with fundamental symmetry J is called \mathbb{Z}_2-graded if \mathcal{H}_J is \mathbb{Z}_2-graded and J is homogeneous. This means:

- we have a decomposition $\mathcal{H}^0 \oplus \mathcal{H}^1$;
- this decomposition is respected by the positive-definite inner product $\langle \cdot | \cdot \rangle_J$.
Krein spaces

- A **Krein space** is a vector space \mathcal{H} with a non-degenerate inner product $\langle \cdot | \cdot \rangle$ which admits a *fundamental decomposition* $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$ (i.e., an orthogonal direct sum decomposition into a positive-definite subspace \mathcal{H}^+ and a negative-definite subspace \mathcal{H}^-) such that the subspaces \mathcal{H}^+ and \mathcal{H}^- are *intrinsically complete* (i.e., complete with respect to the norms $\|\psi\|_{\mathcal{H}^\pm} := |\langle \psi | \psi \rangle|^{1/2}$).

- Given a fundamental decomposition $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$, we obtain a corresponding *fundamental symmetry* $\mathcal{J} = P^+ - P^-$, where P^\pm denotes the projection onto \mathcal{H}^\pm.

- Given a fundamental symmetry \mathcal{J}, we denote by $\mathcal{H}_\mathcal{J}$ the corresponding Hilbert space for the *positive-definite* inner product $\langle \cdot | \cdot \rangle_{\mathcal{J}} := \langle \mathcal{J} \cdot | \cdot \rangle$.

- A Krein space \mathcal{H} with fundamental symmetry \mathcal{J} is called \mathbb{Z}_2-*graded* if $\mathcal{H}_\mathcal{J}$ is \mathbb{Z}_2-graded and \mathcal{J} is homogeneous. This means:
 - we have a decomposition $\mathcal{H}^0 \oplus \mathcal{H}^1$;
 - this decomposition is respected by the *positive-definite* inner product $\langle \cdot | \cdot \rangle_{\mathcal{J}}$.

Koen van den Dungen: The fermionic action
Krein spaces

- A **Krein space** is a vector space \mathcal{H} with a non-degenerate inner product $\langle \cdot | \cdot \rangle$ which admits a **fundamental decomposition** $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$ (i.e., an orthogonal direct sum decomposition into a positive-definite subspace \mathcal{H}^+ and a negative-definite subspace \mathcal{H}^-) such that the subspaces \mathcal{H}^+ and \mathcal{H}^- are **intrinsically complete** (i.e., complete with respect to the norms $\| \psi \|_{\mathcal{H}^\pm} : = | \langle \psi | \psi \rangle |^{1/2}$).

- Given a fundamental decomposition $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$, we obtain a corresponding **fundamental symmetry** $\mathcal{J} = P^+ - P^-$, where P^\pm denotes the projection onto \mathcal{H}^\pm.

- Given a fundamental symmetry \mathcal{J}, we denote by $\mathcal{H}_\mathcal{J}$ the corresponding Hilbert space for the **positive-definite** inner product $\langle \cdot | \cdot \rangle_\mathcal{J} : = \langle \mathcal{J} \cdot | \cdot \rangle$.

- A Krein space \mathcal{H} with fundamental symmetry \mathcal{J} is called **\mathbb{Z}_2-graded** if $\mathcal{H}_\mathcal{J}$ is \mathbb{Z}_2-graded and \mathcal{J} is homogeneous. This means:
 - we have a decomposition $\mathcal{H}^0 \oplus \mathcal{H}^1$;
 - this decomposition is respected by the **positive-definite** inner product $\langle \cdot | \cdot \rangle_\mathcal{J}$.
Krein spaces

- A **Krein space** is a vector space \mathcal{H} with a non-degenerate inner product $\langle \cdot | \cdot \rangle$ which admits a *fundamental decomposition* $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$ (i.e., an orthogonal direct sum decomposition into a positive-definite subspace \mathcal{H}^+ and a negative-definite subspace \mathcal{H}^-) such that the subspaces \mathcal{H}^+ and \mathcal{H}^- are *intrinsically complete* (i.e., complete with respect to the norms $\| \psi \|_{\mathcal{H}^\pm} := |\langle \psi | \psi \rangle|^{1/2}$).

- Given a fundamental decomposition $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$, we obtain a corresponding *fundamental symmetry* $\mathcal{J} = P^+ - P^-$, where P^\pm denotes the projection onto \mathcal{H}^\pm.

- Given a fundamental symmetry \mathcal{J}, we denote by $\mathcal{H}_\mathcal{J}$ the corresponding Hilbert space for the *positive-definite* inner product $\langle \cdot | \cdot \rangle_{\mathcal{J}} := \langle \mathcal{J} \cdot | \cdot \rangle$.

- A Krein space \mathcal{H} with fundamental symmetry \mathcal{J} is called *\mathbb{Z}_2-graded* if $\mathcal{H}_\mathcal{J}$ is \mathbb{Z}_2-graded and \mathcal{J} is homogeneous. This means:
 - we have a decomposition $\mathcal{H}^0 \oplus \mathcal{H}^1$;
 - this decomposition is respected by the *positive-definite* inner product $\langle \cdot | \cdot \rangle_{\mathcal{J}}$.
Lorentzian manifolds

Let \((M, g)\) be an \(n\)-dimensional space- and time-oriented Lorentzian spin manifold with an orthogonal direct sum decomposition of the tangent bundle \(TM = E_t \oplus E_s\) with \(\dim E_t = 1\) (with basis vector \(e_0\)) and \(\dim E_s = n - 1\) (with basis vectors \(e_1, \ldots, e_{n-1}\)) such that the metric \(g\) is negative-definite on \(E_t\) and positive-definite on \(E_s\).

We have a timelike projection \(T : TM \to E_t\) and a spacelike reflection \(r = 1 - 2T = (-1) \oplus 1\) on \(TM = E_t \oplus E_s\).

We can define a ‘Wick rotated’ metric \(g_r\) on \(M\) by setting

\[
gr(v, w) := g(rv, w).
\]

Then \((M, g_r)\) is a Riemannian manifold.
Lorentzian manifolds

- Let \((M, g) \) be an \(n \)-dimensional space- and time-oriented Lorentzian spin manifold with an orthogonal direct sum decomposition of the tangent bundle \(TM = E_t \oplus E_s \) with \(\dim E_t = 1 \) (with basis vector \(e_0 \)) and \(\dim E_s = n - 1 \) (with basis vectors \(e_1, \ldots, e_{n-1} \)) such that the metric \(g \) is negative-definite on \(E_t \) and positive-definite on \(E_s \).

- We have a timelike projection \(T : TM \to E_t \) and a spacelike reflection \(r = 1 - 2T = (−1) \oplus 1 \) on \(TM = E_t \oplus E_s \).

- We can define a ‘Wick rotated’ metric \(g_r \) on \(M \) by setting

\[
g_r(v, w) := g(rv, w).
\]

Then \((M, g_r) \) is a Riemannian manifold.
Lorentzian manifolds

- Let \((M, g)\) be an \(n\)-dimensional space- and time-oriented Lorentzian spin manifold with an orthogonal direct sum decomposition of the tangent bundle \(TM = E_t \oplus E_s\) with \(\dim E_t = 1\) (with basis vector \(e_0\)) and \(\dim E_s = n - 1\) (with basis vectors \(e_1, \ldots, e_{n-1}\)) such that the metric \(g\) is negative-definite on \(E_t\) and positive-definite on \(E_s\).

- We have a *timelike projection* \(T: TM \to E_t\) and a *spacelike reflection* \(r = 1 - 2T = (-1) \oplus 1\) on \(TM = E_t \oplus E_s\).

- We can define a ‘Wick rotated’ metric \(g_r\) on \(M\) by setting

\[
g_r(v, w) := g(rv, w).
\]

Then \((M, g_r)\) is a Riemannian manifold.
Lorentzian spinors

- Given a decomposition $TM = E_t \oplus E_s$ there exists a positive-definite hermitian structure [Baum81]

$$ (\cdot|\cdot)_{J_M} : \Gamma_c^\infty(S) \times \Gamma_c^\infty(S) \to C_c^\infty(M). $$

which gives rise to the inner product $\langle \cdot|\cdot \rangle_{J_M} := \int_M (\cdot|\cdot)_{J_M} \, dvol_g$. The completion of $\Gamma_c^\infty(S)$ with respect to this inner product is denoted $L^2(S)$.

- The operator $J_M := \gamma(e_0)$ on $L^2(S)$ is self-adjoint and unitary, and is related to the spacelike reflection r via $J_M \gamma(v) J_M = -\gamma(rv)$. Then $L^2(S)$ is a Krein space with the indefinite inner product $\langle \cdot|\cdot \rangle := \langle J_M \cdot|\cdot \rangle_{J_M}$ and with fundamental symmetry J_M. This indefinite inner product $\langle \cdot|\cdot \rangle$ is independent of the choice of decomposition $TM = E_t \oplus E_s$.

Koen van den Dungen: The fermionic action
Lorentzian spinors

- Given a decomposition $TM = E_t \oplus E_s$ there exists a positive-definite hermitian structure [Baum81]

$$\langle \cdot | \cdot \rangle_J^M : \Gamma_c^\infty(S) \times \Gamma_c^\infty(S) \to C_c^\infty(M).$$

which gives rise to the inner product $\langle \cdot | \cdot \rangle_J^M := \int_M \langle \cdot | \cdot \rangle_J^M \, d\text{vol}_g$. The completion of $\Gamma_c^\infty(S)$ with respect to this inner product is denoted $L^2(S)$.

- The operator $J_M^c : = \gamma(e_0)$ on $L^2(S)$ is self-adjoint and unitary, and is related to the spacelike reflection r via $J_M^c \gamma(v)J_M^c = -\gamma(rv)$. Then $L^2(S)$ is a Krein space with the indefinite inner product $\langle \cdot | \cdot \rangle : = \langle J_M^c \cdot | \cdot \rangle_{J_M^c}$ and with fundamental symmetry J_M^c. This indefinite inner product $\langle \cdot | \cdot \rangle$ is independent of the choice of decomposition $TM = E_t \oplus E_s$.
The Dirac operator

- Define the Lorentzian Dirac operator

\[\mathcal{D} := \sum_{j=0}^{n-1} \kappa(j) \gamma(e_j) \nabla^S_{e_j}, \]

where \(\nabla^S \) is the lift of the Levi-Civita connection corresponding to \(g \), and \(\kappa(0) = -1 \) and \(\kappa(j) = 1 \) for \(j = 1, \ldots, n - 1 \).

- **Theorem [Baum81]**: Suppose there exists a decomposition \(TM = E_t \oplus E_s \) such that \(g_r \) is complete. Then \(i\mathcal{D} \) is essentially Krein-self-adjoint.

- We are going to consider the data

\[(C^\infty_c(M), L^2(S), i\mathcal{D}, \mathcal{J}_M = \gamma(e_0)) \]
The Dirac operator

Define the Lorentzian Dirac operator

\[\mathcal{D} := \sum_{j=0}^{n-1} \kappa(j) \gamma(e_j) \nabla^S_{e_j}, \]

where \(\nabla^S \) is the lift of the Levi-Civita connection corresponding to \(g \), and \(\kappa(0) = -1 \) and \(\kappa(j) = 1 \) for \(j = 1, \ldots, n - 1 \).

Theorem [Baum81]: Suppose there exists a decomposition \(TM = E_t \oplus E_s \) such that \(g_r \) is complete. Then \(i\mathcal{D} \) is essentially \(Krein-self-adjoint \).

We are going to consider the data

\[(C^\infty_c(M), L^2(S), i\mathcal{D}, I_M = \gamma(e_0)) \]
The Dirac operator

Define the Lorentzian Dirac operator

\[\mathcal{D} := \sum_{j=0}^{n-1} \kappa(j) \gamma(e_j) \nabla^S e_j, \]

where \(\nabla^S \) is the lift of the Levi-Civita connection corresponding to \(g \), and \(\kappa(0) = -1 \) and \(\kappa(j) = 1 \) for \(j = 1, \ldots, n - 1 \).

Theorem [Baum81]: Suppose there exists a decomposition \(TM = E_t \oplus E_s \) such that \(g_r \) is complete. Then \(i\mathcal{D} \) is essentially Krein-self-adjoint.

We are going to consider the data

\[(C_c^\infty(M), L^2(S), i\mathcal{D}, \mathcal{J}_M = \gamma(e_0)) \]
Spectral triples

Definition: An even spectral triple \((\mathcal{A}, \mathcal{H}, \mathcal{D})\) consists of

- a \(\mathbb{Z}_2\)-graded Hilbert space \(\mathcal{H}\);
- an even \(*\)-algebra representation \(\pi : \mathcal{A} \to B^0(\mathcal{H})\);
- a closed, odd operator \(\mathcal{D} : \text{Dom} \mathcal{D} \to \mathcal{H}\) such that:
 1. the linear subspace \(\mathcal{E} := \text{Dom} \mathcal{D}\) is dense in \(\mathcal{H}\);
 2. the operator \(\mathcal{D}\) is essentially self-adjoint on \(\mathcal{E}\);
 3. the commutator \([\mathcal{D}, \pi(a)]\) is bounded on \(\mathcal{E}\) for each \(a \in \mathcal{A}\);
 4. the map \(\pi(a) \circ \iota : \mathcal{E} \hookrightarrow \mathcal{H} \rightarrow \mathcal{H}\) is compact for each \(a \in \mathcal{A}\).

Remark: condition 4 is equivalent to compactness of \(\pi(a)(\mathcal{D} \pm i)^{-1}\).
Spectral triples

Definition: An even spectral triple \((\mathcal{A}, \mathcal{H}, D)\) consists of

- a \(\mathbb{Z}_2\)-graded Hilbert space \(\mathcal{H}\);
- an even \(*\)-algebra representation \(\pi: \mathcal{A} \to B^0(\mathcal{H})\);
- a closed, odd operator \(D: \text{Dom} \ D \to \mathcal{H}\) such that:
 1. the linear subspace \(\mathcal{E} := \text{Dom} \ D\) is dense in \(\mathcal{H}\);
 2. the operator \(D\) is essentially self-adjoint on \(\mathcal{E}\);
 3. the commutator \([D, \pi(a)]\) is bounded on \(\mathcal{E}\) for each \(a \in \mathcal{A}\);
 4. the map \(\pi(a) \circ i: \mathcal{E} \hookrightarrow \mathcal{H} \to \mathcal{H}\) is compact for each \(a \in \mathcal{A}\).

Remark: condition 4 is equivalent to compactness of \(\pi(a)(D \pm i)^{-1}\).
Krein spectral triples

Definition: An even Krein spectral triple \((\mathcal{A}, \mathcal{H}, \mathcal{D}, \mathcal{J})\) consists of

- a \(\mathbb{Z}_2\)-graded Krein space \(\mathcal{H}\);
- an even \(*\)-algebra representation \(\pi: \mathcal{A} \to B^0(\mathcal{H})\);
- a fundamental symmetry \(\mathcal{J}\) which commutes with the algebra \(\mathcal{A}\) and which is either even or odd;
- a closed, odd operator \(\mathcal{D}: \text{Dom}\ \mathcal{D} \to \mathcal{H}\) such that:
 1. the linear subspace \(\mathcal{E} := \text{Dom}\ \mathcal{D} \cap \mathcal{J} \cdot \text{Dom}\ \mathcal{D}\) is dense in \(\mathcal{H}\);
 2. the operator \(\mathcal{D}\) is essentially Krein-self-adjoint on \(\mathcal{E}\);
 3. the commutator \([\mathcal{D}, \pi(a)]\) is bounded on \(\mathcal{E}\) for each \(a \in \mathcal{A}\);
 4. the map \(\pi(a) \circ \iota: \mathcal{E} \hookrightarrow \mathcal{H} \rightarrow \mathcal{H}\) is compact for each \(a \in \mathcal{A}\).

Note: \(\mathcal{E}\) is equipped with the norm \(\|\psi\|_\mathcal{E} := \|\psi\| + \|\mathcal{J}\mathcal{D}\psi\| + \|\mathcal{D}\mathcal{J}\psi\|\).

We say an even Krein spectral triple \((\mathcal{A}, \mathcal{H}, \mathcal{D}, \mathcal{J})\) is of Lorentz-type when \(\mathcal{J}\) is odd.
Krein spectral triples

Definition: An even *Krein* spectral triple \((A, \mathcal{H}, D, J)\) consists of

- a \(\mathbb{Z}_2\)-graded *Krein* space \(\mathcal{H}\);
- an even \(*\)-algebra representation \(\pi: A \to B^0(\mathcal{H})\);
- a fundamental symmetry \(J\) which commutes with the algebra \(A\) and
 which is either even or odd;
- a closed, odd operator \(D: \text{Dom} D \to \mathcal{H}\) such that:
 1. the linear subspace \(\mathcal{E} := \text{Dom} D \cap J \cdot \text{Dom} D\) is dense in \(\mathcal{H}\);
 2. the operator \(D\) is essentially *Krein*-self-adjoint on \(\mathcal{E}\);
 3. the commutator \([D, \pi(a)]\) is bounded on \(\mathcal{E}\) for each \(a \in A\);
 4. the map \(\pi(a) \circ \iota: \mathcal{E} \hookrightarrow \mathcal{H} \to \mathcal{H}\) is compact for each \(a \in A\).

Note: \(\mathcal{E}\) is equipped with the norm \(\|\psi\|_{\mathcal{E}} := \|\psi\| + \|JD\psi\| + \|DJ\psi\|\).

We say an even Krein spectral triple \((A, \mathcal{H}, D, J)\) is of Lorentz-type when \(J\) is odd.
Krein spectral triples

Definition: An even *Krein* spectral triple \((\mathcal{A}, \mathcal{H}, D, J)\) consists of

- a \(\mathbb{Z}_2\)-graded *Krein* space \(\mathcal{H}\);
- an even \(*\)-algebra representation \(\pi : \mathcal{A} \to B^0(\mathcal{H})\);
- a fundamental symmetry \(J\) which commutes with the algebra \(\mathcal{A}\) and which is either even or odd;
- a closed, odd operator \(D : \text{Dom} D \to \mathcal{H}\) such that:
 1. the linear subspace \(\mathcal{E} := \text{Dom} D \cap J \cdot \text{Dom} D\) is dense in \(\mathcal{H}\);
 2. the operator \(D\) is essentially *Krein*-self-adjoint on \(\mathcal{E}\);
 3. the commutator \([D, \pi(a)]\) is bounded on \(\mathcal{E}\) for each \(a \in \mathcal{A}\);
 4. the map \(\pi(a) \circ i : \mathcal{E} \hookrightarrow \mathcal{H} \to \mathcal{H}\) is compact for each \(a \in \mathcal{A}\).

Note: \(\mathcal{E}\) is equipped with the norm \(\|\psi\|_\mathcal{E} := \|\psi\| + \|JD\psi\| + \|DJ\psi\|\).

We say an even Krein spectral triple \((\mathcal{A}, \mathcal{H}, D, J)\) is of *Lorentz-type* when \(J\) is *odd*.
Almost-commutative manifolds

- Let \((M, g)\) be an even-dimensional time- and space-oriented Lorentzian spin manifold. Suppose there exists a spacelike reflection \(r\) such that \(g_r\) is complete. Then

\[
(C_c^\infty(M), L^2(S), i\mathcal{D}, J_M = \gamma(e_0))
\]

is a Lorentz-type spectral triple.

- A finite space \(F\) is an even Krein spectral triple \((\mathcal{A}_F, \mathcal{H}_F, \mathcal{D}_F, \mathcal{J}_F)\) such that \(\dim \mathcal{H}_F < \infty\) and \(\mathcal{J}_F\) is even.

- **Definition:** An almost-commutative Lorentzian manifold \(F \times M\) is the product of a finite space \(F\) with the manifold \(M\), given by

\[
(\mathcal{A}, \mathcal{H}, \mathcal{D}, \mathcal{J}) := \left(C_c^\infty(M, \mathcal{A}_F), \mathcal{H}_F \hat{\otimes} L^2(S), 1 \hat{\otimes} i\mathcal{D} + i\mathcal{D}_F \hat{\otimes} 1, \mathcal{J}_F \hat{\otimes} \mathcal{J}_M\right).
\]
Almost-commutative manifolds

- Let \((M, g)\) be an even-dimensional time- and space-oriented Lorentzian spin manifold. Suppose there exists a spacelike reflection \(r\) such that \(g_r\) is complete. Then

\[
(C_c^\infty(M), L^2(S), i\mathcal{D}, \mathcal{J}_M = \gamma(e_0))
\]

is a Lorentz-type spectral triple.

- A finite space \(F\) is an even Krein spectral triple \((\mathcal{A}_F, \mathcal{H}_F, \mathcal{D}_F, \mathcal{J}_F)\) such that \(\dim \mathcal{H}_F < \infty\) and \(\mathcal{J}_F\) is even.

- **Definition:** An almost-commutative Lorentzian manifold \(F \times M\) is the product of a finite space \(F\) with the manifold \(M\), given by

\[
(\mathcal{A}, \mathcal{H}, \mathcal{D}, \mathcal{J}) := \left(C_c^\infty(M, \mathcal{A}_F), \mathcal{H}_F \hat{\otimes} L^2(S), 1 \hat{\otimes} i\mathcal{D} + i\mathcal{D}_F \hat{\otimes} 1, \mathcal{J}_F \hat{\otimes} \mathcal{J}_M\right).
\]
Almost-commutative manifolds

- Let \((M, g)\) be an even-dimensional time- and space-oriented Lorentzian spin manifold. Suppose there exists a spacelike reflection \(r\) such that \(g_r\) is complete. Then

\[
(C_c^\infty(M), L^2(\mathcal{S}), i\slashed{D}, \mathcal{J}_M = \gamma(e_0))
\]

is a Lorentz-type spectral triple.

- A finite space \(F\) is an even Krein spectral triple \((\mathcal{A}_F, \mathcal{H}_F, \mathcal{D}_F, \mathcal{J}_F)\) such that \(\dim \mathcal{H}_F < \infty\) and \(\mathcal{J}_F\) is even.

- **Definition:** An almost-commutative Lorentzian manifold \(F \times M\) is the product of a finite space \(F\) with the manifold \(M\), given by

\[
(\mathcal{A}, \mathcal{H}, \mathcal{D}, \mathcal{J}) := \left(C_c^\infty(M, \mathcal{A}_F), \mathcal{H}_F \hat{\otimes} L^2(\mathcal{S}), 1 \hat{\otimes} i\slashed{D} + i\mathcal{D}_F \hat{\otimes} 1, \mathcal{J}_F \hat{\otimes} \mathcal{J}_M \right).
\]
The Krein action

Let \((A, \mathcal{H}, \mathcal{D}, J)\) be a Lorentz-type spectral triple. Then we have:

- \(\langle \psi | D \phi \rangle = \langle \phi | D \psi \rangle\) for any \(\psi, \phi \in \text{Dom } D\);
- \(\langle \psi_0 | D \psi_1 \rangle = 0\) for any \(\psi_0 \in \mathcal{H}^0 \cap \text{Dom } D\) and \(\psi_1 \in \mathcal{H}^1 \cap \text{Dom } D\).

We define the Krein action \(S_K : \mathcal{H}^0 \cap \text{Dom } D \to \mathbb{C}\) to be the functional

\[S_K[\psi] := \langle \psi | D \psi \rangle.\]

We note that \(S_K[\psi]\) is real-valued and (in general) non-zero.

Remark: this action is classical. In particular, there are no Grassmann variables.
The Krein action

- Let \((\mathcal{A}, \mathcal{H}, \mathcal{D}, \mathcal{J})\) be a Lorentz-type spectral triple. Then we have:
 - \(\langle \psi | \mathcal{D} \phi \rangle = \langle \phi | \mathcal{D} \psi \rangle\) for any \(\psi, \phi \in \text{Dom } \mathcal{D}\);
 - \(\langle \psi_0 | \mathcal{D} \psi_1 \rangle = 0\) for any \(\psi_0 \in \mathcal{H}^0 \cap \text{Dom } \mathcal{D}\) and \(\psi_1 \in \mathcal{H}^1 \cap \text{Dom } \mathcal{D}\).

- We define the Krein action \(S_K : \mathcal{H}^0 \cap \text{Dom } \mathcal{D} \to \mathbb{C}\) to be the functional
 \[S_K[\psi] := \langle \psi | \mathcal{D} \psi \rangle.\]

 We note that \(S_K[\psi]\) is real-valued and (in general) non-zero.

- Remark: this action is classical. In particular, there are no Grassmann variables.
The Krein action

- Let $(\mathcal{A}, \mathcal{H}, \mathcal{D}, \mathcal{J})$ be a Lorentz-type spectral triple. Then we have:
 - $\langle \psi | \mathcal{D} \phi \rangle = \langle \phi | \mathcal{D} \psi \rangle$ for any $\psi, \phi \in \text{Dom} \, \mathcal{D}$;
 - $\langle \psi_0 | \mathcal{D} \psi_1 \rangle = 0$ for any $\psi_0 \in \mathcal{H}^0 \cap \text{Dom} \, \mathcal{D}$ and $\psi_1 \in \mathcal{H}^1 \cap \text{Dom} \, \mathcal{D}$.

- We define the **Krein action** $S_K : \mathcal{H}^0 \cap \text{Dom} \, \mathcal{D} \to \mathbb{C}$ to be the functional
 $$S_K[\psi] := \langle \psi | \mathcal{D} \psi \rangle.$$

 We note that $S_K[\psi]$ is real-valued and (in general) non-zero.

- **Remark:** this action is *classical*. In particular, there are no Grassmann variables.
1 Introduction

2 Krein spectral triples

3 Gauge theory

4 The electroweak theory

5 Conclusion
The perturbation semi-group

- Let \mathcal{A} be a unital $*$-algebra. Let $A = \sum_j a_j \otimes b_j^{\text{op}} \in \mathcal{A} \otimes \mathcal{A}^{\text{op}}$.

 Define $\overline{A} := \sum b_j^* \otimes a_j^{*\text{op}}$.

 - A is real if $\overline{A} = A$.
 - A is normalised if $\sum a_j b_j = 1 \in \mathcal{A}$.

- **Definition [CCvS13]:** The *perturbation semi-group* $\text{Pert}(\mathcal{A})$ consists of the real normalised elements in $\mathcal{A} \otimes \mathcal{A}^{\text{op}}$.

- For a Krein spectral triple $(\mathcal{B}, \mathcal{H}, \mathcal{D}, \mathcal{J})$ we consider the *generalised one-forms* given by $\Omega^1_D(\mathcal{B}) := \left\{ \sum_j a_j [\mathcal{D}, b_j] \, \middle| \, a_j, b_j \in \mathcal{B} \right\}$.

- For $\mathcal{B} = \mathcal{A} \otimes \mathcal{A}^{\text{op}}$, define the map $\eta_D : \mathcal{A} \otimes \mathcal{A}^{\text{op}} \to \Omega^1_D(\mathcal{A} \otimes \mathcal{A}^{\text{op}})$ by

 $$\eta_D \left(\sum_j a_j \otimes b_j^{\text{op}} \right) := \sum_{j,k} (a_j(a_k^*)^{\text{op}})[\mathcal{D}, b_j(b_k^*)^{\text{op}}].$$

 Fact: if $A \in \text{Pert}(\mathcal{A})$ is real, then $\eta_D(A)$ is Krein-self-adjoint.
The perturbation semi-group

- Let \mathcal{A} be a unital \ast-algebra. Let $A = \sum_j a_j \otimes b_j^{\text{op}} \in \mathcal{A} \otimes \mathcal{A}^{\text{op}}$. Define $\overline{A} := \sum b_j^* \otimes a_j^{*\text{op}}$.
 - A is real if $\overline{A} = A$.
 - A is normalised if $\sum a_j b_j = 1 \in \mathcal{A}$.

Definition [CCvS13]: The *perturbation semi-group* $\text{Pert}(\mathcal{A})$ consists of the real normalised elements in $\mathcal{A} \otimes \mathcal{A}^{\text{op}}$.

- For a Krein spectral triple $(\mathcal{B}, \mathcal{H}, \mathcal{D}, \mathcal{J})$ we consider the *generalised one-forms* given by $\Omega^1_D(\mathcal{B}) := \left\{ \sum_j a_j[D, b_j] \mid a_j, b_j \in \mathcal{B} \right\}$.

- For $\mathcal{B} = \mathcal{A} \otimes \mathcal{A}^{\text{op}}$, define the map $\eta_D : \mathcal{A} \otimes \mathcal{A}^{\text{op}} \to \Omega^1_D(\mathcal{A} \otimes \mathcal{A}^{\text{op}})$ by
 $$\eta_D \left(\sum_j a_j \otimes b_j^{\text{op}} \right) := \sum_{j,k} (a_j(a_k^{*\text{op}})^{\text{op}})[D, b_j(b_k^{*\text{op}})^{\text{op}}].$$

Fact: if $A \in \text{Pert}(\mathcal{A})$ is real, then $\eta_D(A)$ is Krein-self-adjoint.
The perturbation semi-group

- Let \mathcal{A} be a unital \ast-algebra. Let $A = \sum_j a_j \otimes b_j^{\text{op}} \in \mathcal{A} \otimes \mathcal{A}^{\text{op}}$. Define $\overline{A} := \sum b^*_j \otimes a^*_j$.
 - A is real if $\overline{A} = A$.
 - A is normalised if $\sum a_j b_j = 1 \in \mathcal{A}$.

- **Definition [CCvS13]**: The *perturbation semi-group* $\text{Pert}(\mathcal{A})$ consists of the real normalised elements in $\mathcal{A} \otimes \mathcal{A}^{\text{op}}$.

- For a Krein spectral triple $(\mathcal{B}, \mathcal{H}, \mathcal{D}, \mathcal{J})$ we consider the *generalised one-forms* given by $\Omega^1_D(\mathcal{B}) := \left\{ \sum_j a_j[D,b_j] \mid a_j, b_j \in \mathcal{B} \right\}$.

- For $\mathcal{B} = \mathcal{A} \otimes \mathcal{A}^{\text{op}}$, define the map $\eta_D: \mathcal{A} \otimes \mathcal{A}^{\text{op}} \to \Omega^1_D(\mathcal{A} \otimes \mathcal{A}^{\text{op}})$ by
 \[
 \eta_D \left(\sum_j a_j \otimes b_j^{\text{op}} \right) := \sum_{j,k} (a_j(a^*_k)^{\text{op}})[D, b_j(b^*_k)^{\text{op}}].
 \]

Fact: if $A \in \text{Pert}(\mathcal{A})$ is real, then $\eta_D(A)$ is Krein-self-adjoint.
The perturbation semi-group

- Let \(\mathcal{A} \) be a unital \(\ast \)-algebra. Let \(A = \sum_j a_j \otimes b_j^{\text{op}} \in \mathcal{A} \odot \mathcal{A}^{\text{op}} \).

 Define \(\overline{A} := \sum_j b_j^* \otimes a_j^{*\text{op}} \).

 - \(A \) is real if \(\overline{A} = A \).
 - \(A \) is normalised if \(\sum a_j b_j = 1 \in \mathcal{A} \).

- **Definition [CCvS13]:** The perturbation semi-group \(\text{Pert}(\mathcal{A}) \) consists of the real normalised elements in \(\mathcal{A} \odot \mathcal{A}^{\text{op}} \).

- For a Krein spectral triple \((\mathcal{B}, \mathcal{H}, \mathcal{D}, \mathcal{J}) \) we consider the generalised one-forms given by \(\Omega^1_{\mathcal{D}}(\mathcal{B}) := \left\{ \sum_j a_j[\mathcal{D}, b_j] \mid a_j, b_j \in \mathcal{B} \right\} \).

- For \(\mathcal{B} = \mathcal{A} \odot \mathcal{A}^{\text{op}} \), define the map \(\eta_{\mathcal{D}} : \mathcal{A} \odot \mathcal{A}^{\text{op}} \to \Omega^1_{\mathcal{D}}(\mathcal{A} \odot \mathcal{A}^{\text{op}}) \) by

 \[
 \eta_{\mathcal{D}} \left(\sum_j a_j \otimes b_j^{\text{op}} \right) := \sum_{j,k} (a_j(a_k^*)^{\text{op}})[\mathcal{D}, b_j(b_k^*)^{\text{op}}].
 \]

 Fact: if \(A \in \text{Pert}(\mathcal{A}) \) is real, then \(\eta_{\mathcal{D}}(A) \) is Krein-self-adjoint.
Fluctuations

- If \((A \odot A^{\text{op}}, \mathcal{H}, \mathcal{D}, \mathcal{J})\) satisfies the order-one condition

\[
[a, [\mathcal{D}, b^{\text{op}}]] = 0 \quad \forall a, b \in A,
\]

then

\[
\eta_{\mathcal{D}} \left(\sum_j a_j \otimes b_j^{\text{op}} \right) = \sum_j a_j [\mathcal{D}, b_j] + \sum_j a_j^{\ast \text{op}} [\mathcal{D}, b_j^{\ast \text{op}}].
\]

- By the fluctuation of \(\mathcal{D}\) by \(A \in \text{Pert}(A)\) we mean the map

\[
\mathcal{D} \mapsto \mathcal{D}_A := \mathcal{D} + \eta_{\mathcal{D}}(A),
\]

and we refer to \(\mathcal{D}_A\) as the fluctuated Dirac operator.

- Proposition [CCvS13]: A fluctuation of a fluctuated Dirac operator is again a fluctuated Dirac operator. To be precise: \((\mathcal{D}_A)_{A'} = \mathcal{D}_{A'A}\) for all perturbations \(A, A' \in \text{Pert}(A)\).
Fluctuations

- If \((A \otimes A^{\text{op}}, \mathcal{H}, \mathcal{D}, \mathcal{J})\) satisfies the order-one condition

\[
[a, \mathcal{D}, b^{\text{op}}] = 0 \quad \forall a, b \in A,
\]

then

\[
\eta_{\mathcal{D}} \left(\sum_j a_j \otimes b_j^{\text{op}} \right) = \sum_j a_j \mathcal{D}, b_j + \sum_j a_j^{\ast \text{op}} \mathcal{D}, b_j^{\ast \text{op}}.
\]

- By the fluctuation of \(\mathcal{D}\) by \(A \in \text{Pert}(\mathcal{A})\) we mean the map

\[
\mathcal{D} \mapsto \mathcal{D}_A := \mathcal{D} + \eta_{\mathcal{D}}(A),
\]

and we refer to \(\mathcal{D}_A\) as the fluctuated Dirac operator.

- Proposition [CCvS13]: A fluctuation of a fluctuated Dirac operator is again a fluctuated Dirac operator. To be precise: \((\mathcal{D}_A)_{A'} = \mathcal{D}_{A'A}\) for all perturbations \(A, A' \in \text{Pert}(\mathcal{A})\).
Fluctuations

- If $(\mathcal{A} \otimes \mathcal{A}^{\text{op}}, \mathcal{H}, \mathcal{D}, \mathcal{J})$ satisfies the order-one condition

$$[a, [\mathcal{D}, b^{\text{op}}]] = 0 \quad \forall a, b \in \mathcal{A},$$

then

$$\eta_{\mathcal{D}} \left(\sum_j a_j \otimes b_j^{\text{op}} \right) = \sum_j a_j [\mathcal{D}, b_j] + \sum_j a_j^{*\text{op}} [\mathcal{D}, b_j^{*\text{op}}].$$

- By the fluctuation of \mathcal{D} by $A \in \text{Pert}(\mathcal{A})$ we mean the map

$$\mathcal{D} \mapsto \mathcal{D}_A := \mathcal{D} + \eta_{\mathcal{D}}(A),$$

and we refer to \mathcal{D}_A as the fluctuated Dirac operator.

- **Proposition [CCvS13]:** A fluctuation of a fluctuated Dirac operator is again a fluctuated Dirac operator. To be precise: $(\mathcal{D}_A)_{A'} = \mathcal{D}_{A'A}$ for all perturbations $A, A' \in \text{Pert}(\mathcal{A})$.
The gauge group

- The unitary group $\mathcal{U}(\mathcal{A})$ acts on $\text{Pert}(\mathcal{A})$ via
 \[
 \Delta(u)A := (u \otimes (u^*)^{\text{op}}) \left(\sum a_j \otimes b_j^{\text{op}} \right) = \sum ua_j \otimes (b_ju^*)^{\text{op}}.
 \]

 We can compose Δ with the \ast-algebra representation $\pi: \mathcal{A} \otimes \mathcal{A}^{\text{op}} \to \mathcal{B}(\mathcal{H})$ to obtain a group representation

 \[
 \rho := \pi \circ \Delta: \mathcal{U}(\mathcal{A}) \to \mathcal{B}(\mathcal{H}).
 \]

 We define the gauge group as

 \[
 \mathcal{G}(\mathcal{A}) := \{ \rho(u) \mid u \in \mathcal{U}(\mathcal{A}) \} \simeq \mathcal{U}(\mathcal{A}) / \text{Ker } \rho.
 \]

- Proposition: The Krein action $S_K[\psi, A] := \langle \psi | D_A \psi \rangle$ of the fluctuated Dirac operator D_A is invariant under the action of the gauge group given by $\psi \mapsto \rho(u) \psi$ and $A \mapsto \Delta(u)A$.
The gauge group

- The unitary group $U(A)$ acts on $\text{Pert}(A)$ via

$$\Delta(u)A := (u \otimes (u^*)^{\text{op}}) \left(\sum a_j \otimes b_j^{\text{op}} \right) = \sum u a_j \otimes (b_j u^*)^{\text{op}}.$$

We can compose Δ with the \ast-algebra representation $\pi: A \otimes A^{\text{op}} \to \mathcal{B}(\mathcal{H})$ to obtain a group representation

$$\rho := \pi \circ \Delta: U(A) \to \mathcal{B}(\mathcal{H}).$$

We define the gauge group as

$$\mathcal{G}(A) := \{ \rho(u) \mid u \in U(A) \} \simeq U(A) / \text{Ker} \rho.$$

- Proposition: The Krein action $S_K[\psi, A] := \langle \psi | \mathcal{D}_A \psi \rangle$ of the fluctuated Dirac operator \mathcal{D}_A is invariant under the action of the gauge group given by $\psi \mapsto \rho(u) \psi$ and $A \mapsto \Delta(u) A$.
1. Introduction

2. Krein spectral triples

3. Gauge theory

4. The electroweak theory

5. Conclusion
The finite space (1)

- Define $\mathcal{H}_F := \mathbb{C}^4$ with the basis $\{\nu_R, e_R, \nu_L, e_L\}$ and the \mathbb{Z}_2-grading

$$\mathcal{H}_F^0 = \mathcal{H}_L = \text{span}\{\nu_L, e_L\}, \quad \mathcal{H}_F^1 = \mathcal{H}_R = \text{span}\{\nu_R, e_R\}$$

- Define $\mathcal{A}_F := \mathbb{C} \oplus \mathbb{H}$, with the representations

$$\pi : \mathcal{A}_F \to \mathcal{B}(\mathcal{H}_R) \oplus \mathcal{B}(\mathcal{H}_L)$$

and $\pi^\text{op} : \mathcal{A}_F^\text{op} \to \mathcal{B}(\mathcal{H}_R) \oplus \mathcal{B}(\mathcal{H}_L)$ given

for $\lambda \in \mathbb{C}$ and $q = \alpha + \beta j \in \mathbb{H}$ by

$$\pi(\lambda, q) := q\lambda \oplus q := \begin{pmatrix} \lambda & 0 \\ 0 & \overline{\lambda} \end{pmatrix} \oplus \begin{pmatrix} \alpha & \beta \\ -\beta & \overline{\alpha} \end{pmatrix}, \quad \pi^\text{op}((\lambda, q)^\text{op}) := \lambda \oplus \lambda.$$

- The representation $\tilde{\pi} := \pi \otimes \pi^\text{op}$ of $\mathcal{A}_F \otimes \mathcal{A}_F^\text{op}$ on $\mathcal{H}_R \oplus \mathcal{H}_L$ is then given by

$$\tilde{\pi}((\lambda, q) \otimes (\lambda', q')^\text{op}) = \lambda' q \lambda \oplus \lambda' q.$$
The finite space (1)

- Define $\mathcal{H}_F := \mathbb{C}^4$ with the basis $\{\nu_R, e_R, \nu_L, e_L\}$ and the \mathbb{Z}_2-grading

$$\mathcal{H}_F^0 = \mathcal{H}_L = \text{span}\{\nu_L, e_L\}, \quad \mathcal{H}_F^1 = \mathcal{H}_R = \text{span}\{\nu_R, e_R\}$$

- Define $\mathcal{A}_F := \mathbb{C} \oplus \mathcal{H}$, with the representations

$\pi : \mathcal{A}_F \to \mathcal{B}(\mathcal{H}_R) \oplus \mathcal{B}(\mathcal{H}_L)$ and $\pi^{\text{op}} : \mathcal{A}_F^{\text{op}} \to \mathcal{B}(\mathcal{H}_R) \oplus \mathcal{B}(\mathcal{H}_L)$ given for $\lambda \in \mathbb{C}$ and $q = \alpha + \beta j \in \mathcal{H}$ by

$$\pi(\lambda, q) := q\lambda \oplus q := \begin{pmatrix} \lambda & 0 \\ 0 & \overline{\lambda} \end{pmatrix} \oplus \begin{pmatrix} \alpha & \beta \\ -\beta & \overline{\alpha} \end{pmatrix}, \quad \pi^{\text{op}}((\lambda, q)^{\text{op}}) := \lambda \oplus \lambda.$$

- The representation $\tilde{\pi} := \pi \otimes \pi^{\text{op}}$ of $\mathcal{A}_F \otimes \mathcal{A}_F^{\text{op}}$ on $\mathcal{H}_R \oplus \mathcal{H}_L$ is then given by

$$\tilde{\pi}((\lambda, q) \otimes (\lambda', q')^{\text{op}}) = \lambda' q\lambda \oplus \lambda' q.$$
The finite space (1)

- Define $\mathcal{H}_F := \mathbb{C}^4$ with the basis $\{\nu_R, e_R, \nu_L, e_L\}$ and the \mathbb{Z}_2-grading

$$\mathcal{H}_F^0 = \mathcal{H}_L = \text{span}\{\nu_L, e_L\}, \quad \mathcal{H}_F^1 = \mathcal{H}_R = \text{span}\{\nu_R, e_R\}$$

- Define $\mathcal{A}_F := \mathbb{C} \oplus \mathcal{H}$, with the representations

$\pi : \mathcal{A}_F \to \mathcal{B}(\mathcal{H}_R) \oplus \mathcal{B}(\mathcal{H}_L)$ and $\pi^{\text{op}} : \mathcal{A}_F^{\text{op}} \to \mathcal{B}(\mathcal{H}_R) \oplus \mathcal{B}(\mathcal{H}_L)$ given for $\lambda \in \mathbb{C}$ and $q = \alpha + \beta j \in \mathcal{H}$ by

$$\pi(\lambda, q) := q\lambda \oplus q := \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \oplus \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}, \quad \pi^{\text{op}}((\lambda, q)^{\text{op}}) := \lambda \oplus \lambda.$$

- The representation $\tilde{\pi} := \pi \otimes \pi^{\text{op}}$ of $\mathcal{A}_F \otimes \mathcal{A}_F^{\text{op}}$ on $\mathcal{H}_R \oplus \mathcal{H}_L$ is then given by

$$\tilde{\pi}((\lambda, q) \otimes (\lambda', q')^{\text{op}}) = \lambda' q\lambda \oplus \lambda' q.$$
The finite space (2)

- We define the mass matrix on the basis \(\{ \nu_R, e_R, \nu_L, e_L \} \) as

\[
D_F := \begin{pmatrix}
0 & 0 & -im_\nu & 0 \\
0 & 0 & 0 & -im_e \\
-im_\nu & 0 & 0 & 0 \\
im_e & 0 & 0 & 0
\end{pmatrix}.
\]

- We then consider the even finite space \(F_{EW} := (\mathcal{A}_F, \mathcal{H}_F, D_F, J_F = 1) \).

- The gauge group of \(F_{EW} \) equals

\[
\mathcal{G}(F_{EW}) = (U(1) \times SU(2)) / \mathbb{Z}_2.
\]
The finite space (2)

- We define the mass matrix on the basis \(\{ \nu_R, e_R, \nu_L, e_L \} \) as

\[
\mathcal{D}_F := \begin{pmatrix}
0 & 0 & -im_\nu & 0 \\
0 & 0 & 0 & -im_e \\
im_\nu & 0 & 0 & 0 \\
0 & im_e & 0 & 0 \\
\end{pmatrix}.
\]

- We then consider the even finite space \(F_{EW} := (A_F, \mathcal{H}_F, \mathcal{D}_F, J_F = 1) \).

- The gauge group of \(F_{EW} \) equals

\[
\mathcal{G}(F_{EW}) = (U(1) \times SU(2)) / \mathbb{Z}_2.
\]
The finite space (2)

- We define the mass matrix on the basis \{ν_R, e_R, ν_L, e_L\} as

\[
D_F := \begin{pmatrix}
0 & 0 & -i m_ν & 0 \\
0 & 0 & 0 & -i m_e \\
i m_ν & 0 & 0 & 0 \\
0 & i m_e & 0 & 0
\end{pmatrix}.
\]

- We then consider the even finite space \(F_{EW} := (A_F, H_F, D_F, J_F = 1)\).

- The gauge group of \(F_{EW}\) equals

\[
G(F_{EW}) = (U(1) \times SU(2))/\mathbb{Z}_2.
\]
Fluctuations

- We consider the almost-commutative manifold

\[F_{EW} \times M := \left(C_c^\infty (M, \mathcal{A}_F \odot \mathcal{A}_F^{op}), \mathcal{H}_F \otimes L^2(\mathfrak{s}), 1 \otimes iD + i\mathcal{D}_F \otimes 1, 1 \otimes \mathcal{J}_M \right). \]

- **Proposition:** The fluctuation of \(D := 1 \otimes iD + i\mathcal{D}_F \otimes 1 \) by \(A \in \text{Pert}(C_c^\infty (M, \mathcal{A}_F)) \) is

\[D_A = D + \eta_D(A) = 1 \otimes iD + A_\mu \otimes i\gamma^\mu + (i\mathcal{D}_F + \phi) \otimes 1, \]

where the gauge field \(A_\mu \) and the Higgs field \(\phi \) are given by

\[
A_\mu = \begin{pmatrix}
0 & 0 \\
0 & -2\Lambda_\mu \\
Q_\mu - \Lambda_\mu
\end{pmatrix}, \quad \phi = \begin{pmatrix}
0 & 0 & m_v\overline{\phi_1} & m_v\overline{\phi_2} \\
0 & 0 & -m_e\phi_2 & m_e\phi_1 \\
-m_v\phi_1 & m_e\overline{\phi_2} & 0 & 0 \\
-m_v\overline{\phi_2} & -m_e\phi_1 & 0 & 0
\end{pmatrix},
\]

for the gauge fields \((\Lambda_\mu, Q_\mu) \in C_c^\infty (M, i\mathbb{R} \oplus \mathfrak{su}(2))\) and the Higgs field \((\phi_1, \phi_2) \in C_c^\infty (M, \mathbb{C}^2)\).
Fluctuations

- We consider the almost-commutative manifold

\[F_{EW} \times M := \left(C_c^\infty(M, \mathcal{A}_F \otimes \mathcal{A}_F^{\text{op}}), \mathcal{H}_F \otimes L^2(S), 1 \otimes iD + iD_F \otimes 1, 1 \otimes \mathcal{J}_M \right). \]

- **Proposition:** The fluctuation of \(D := 1 \otimes iD + iD_F \otimes 1 \) by \(A \in \text{Pert}(C_c^\infty(M, \mathcal{A}_F)) \) is

\[D_A = D + \eta_D(A) = 1 \otimes iD + A_\mu \otimes i\gamma^\mu + (iD_F + \phi) \otimes 1, \]

where the **gauge field** \(A_\mu \) and the **Higgs field** \(\phi \) are given by

\[A_\mu = \begin{pmatrix} 0 & 0 \\ 0 & -2\Lambda_\mu \\ Q_\mu - \Lambda_\mu \end{pmatrix}, \quad \phi = \begin{pmatrix} 0 & 0 & m_v\phi_1 & m_v\phi_2 \\ 0 & 0 & -m_e\phi_2 & m_e\phi_1 \\ -m_v\phi_1 & m_e\phi_2 & 0 & 0 \\ -m_v\phi_2 & -m_e\phi_1 & 0 & 0 \end{pmatrix}, \]

for the gauge fields \((\Lambda_\mu, Q_\mu) \in C_c^\infty(M, i\mathbb{R} \oplus \mathfrak{su}(2))\) and the Higgs field \((\phi_1, \phi_2) \in C_c^\infty(M, \mathbb{C}^2)\).
The Krein action

Consider \(\xi = \nu_R \hat{\otimes} \psi^v_R + e_R \hat{\otimes} \psi^e_R + \nu_L \hat{\otimes} \psi^v_L + e_L \hat{\otimes} \psi^e_L \in \mathcal{H}^0 \), and define

\[
\Psi_L := \begin{pmatrix} \psi^v_L \\ \psi^e_L \end{pmatrix} \in L^2(S)^0 \otimes \mathbb{C}^2, \quad \Psi_R := \begin{pmatrix} \psi^v_R \\ \psi^e_R \end{pmatrix} \in L^2(S)^1 \otimes \mathbb{C}^2,
\]

\[
\Psi := \Psi_L + \Psi_R \in L^2(S) \otimes \mathbb{C}^2.
\]

Proposition: The Krein action for \(F_{EW} \times M \) is given by

\[
S_{EW}[\Psi, A] = \langle \Psi \mid i \slashed{D} \Psi \rangle + \langle \psi^e_R \mid -2i \gamma^\mu \Lambda_\mu \psi^e_R \rangle + \langle \Psi_L \mid i \gamma^\mu (Q_\mu - \Lambda_\mu) \Psi_L \rangle + \langle \Psi_R \mid \Phi \Psi_L \rangle + \langle \Psi_L \mid \Phi^* \Psi_R \rangle,
\]

where the Higgs field \((\phi_1, \phi_2)\) acts via

\[
\Phi := \begin{pmatrix} -m_v(\phi_1 + 1) & -m_v \phi_2 \\ m_e \phi_2 & -m_e(\phi_1 + 1) \end{pmatrix}.
\]
The Krein action

Consider \(\xi = \nu_R \otimes \psi_R^v + e_R \otimes \psi_R^e + \nu_L \otimes \psi_L^v + e_L \otimes \psi_L^e \in \mathcal{H}^0 \), and define

\[
\Psi_L := \begin{pmatrix} \psi_L^v \\ \psi_L^e \end{pmatrix} \in L^2(S)^0 \otimes \mathbb{C}^2, \quad \Psi_R := \begin{pmatrix} \psi_R^v \\ \psi_R^e \end{pmatrix} \in L^2(S)^1 \otimes \mathbb{C}^2,
\]

\[
\Psi := \Psi_L + \Psi_R \in L^2(S) \otimes \mathbb{C}^2.
\]

Proposition: The Krein action for \(F_{EW} \times M \) is given by

\[
S_{EW}[\Psi, A] = \langle \Psi | iD\Psi \rangle + \langle \psi_R^e | -2i \gamma^\mu \Lambda_\mu \psi_R^e \rangle + \langle \Psi_L | i \gamma^\mu (Q_\mu - \Lambda_\mu) \Psi_L \rangle
\]

\[
+ \langle \Psi_R | \Phi \Psi_L \rangle + \langle \Psi_L | \Phi^* \Psi_R \rangle,
\]

where the Higgs field \((\phi_1, \phi_2)\) acts via

\[
\Phi := \begin{pmatrix} -m_v (\phi_1 + 1) & -m_v \phi_2 \\ m_e \phi_2 & -m_e (\phi_1 + 1) \end{pmatrix}.
\]
Majorana masses

- On $\mathcal{H}_F := \mathcal{H}_F \oplus \mathcal{H}_F$, we consider the operators

$$
\hat{D}_F := \begin{pmatrix} D_F & -D_M^* \\ D_M & D_F \end{pmatrix}, \quad \hat{J}_F := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},
$$

$$
\hat{\Gamma}_F := \begin{pmatrix} \Gamma_F & 0 \\ 0 & -\Gamma_F \end{pmatrix}, \quad \hat{J}_F := \begin{pmatrix} 0 & \text{c.c.} \\ \text{c.c.} & 0 \end{pmatrix},
$$

where $D_M \nu_R := im_R \overline{\nu_R}$ and $D_M \nu_R = D_M \nu_L = D_M e_L = 0$.

- Define $\hat{\pi}: A_F \to B(\mathcal{H}_F \oplus \mathcal{H}_F)$ and $\hat{\pi}^{\text{op}}: A_F^{\text{op}} \to B(\mathcal{H}_F \oplus \mathcal{H}_F)$ by

$$
\hat{\pi}(a) := \pi(a) \oplus \pi^{\text{op}}(a^t), \quad \hat{\pi}^{\text{op}}(a) := \hat{J}_F \hat{\pi}(a^*) \hat{J}_F.
$$

- We obtain a new finite space $\hat{F}_{EW} := (A_F \otimes A_F^{\text{op}}, \mathcal{H}_F, \hat{D}_F, \hat{J}_F)$ with grading operator $\hat{\Gamma}_F$ and additionally with a real structure \hat{J}_F.

Koen van den Dungen: The fermionic action Page 21 of 24
Majorana masses

- On $\mathcal{H}_F := \mathcal{H}_F \oplus \mathcal{H}_{\overline{F}}$, we consider the operators

 $\hat{\mathcal{D}}_F := \begin{pmatrix} \mathcal{D}_F & -\mathcal{D}_M^* \\ \mathcal{D}_M & \mathcal{D}_F \end{pmatrix}, \quad \hat{\mathcal{J}}_F := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$

 $\hat{\Gamma}_F := \begin{pmatrix} \Gamma_F & 0 \\ 0 & -\Gamma_F \end{pmatrix}, \quad \hat{J}_F := \begin{pmatrix} 0 & \text{c.c.} \\ \text{c.c.} & 0 \end{pmatrix},$

 where $\mathcal{D}_M \nu_R := im_R \overline{\nu}_R$ and $\mathcal{D}_M e_R = \mathcal{D}_M \nu_L = \mathcal{D}_M e_L = 0$.

- Define $\hat{\pi}: \mathcal{A}_F \to \mathcal{B}(\mathcal{H}_F \oplus \mathcal{H}_{\overline{F}})$ and $\hat{\pi}^{\text{op}}: \mathcal{A}_F^{\text{op}} \to \mathcal{B}(\mathcal{H}_F \oplus \mathcal{H}_{\overline{F}})$ by

 $\hat{\pi}(a) := \pi(a) \oplus \pi^{\text{op}}(a^t), \quad \hat{\pi}^{\text{op}}(a) := \hat{J}_F \hat{\pi}(a^*) \hat{J}_F.$

- We obtain a new finite space $\hat{\mathcal{A}}_{EW} := (\mathcal{A}_F \otimes \mathcal{A}_F^{\text{op}}, \mathcal{H}_F, \hat{\mathcal{D}}_F, \hat{\mathcal{J}}_F)$ with grading operator $\hat{\Gamma}_F$ and additionally with a real structure \hat{J}_F.
Majorana masses

- On $\hat{\mathcal{H}}_F := \mathcal{H}_F \oplus \mathcal{H}_F$, we consider the operators

 \[
 \hat{\mathcal{D}}_F := \begin{pmatrix} \mathcal{D}_F & -\mathcal{D}_M^* \\ \mathcal{D}_M & \mathcal{D}_F \end{pmatrix}, \quad \hat{\mathcal{J}}_F := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},
 \]

 \[
 \hat{\Gamma}_F := \begin{pmatrix} \Gamma_F & 0 \\ 0 & -\Gamma_F \end{pmatrix}, \quad \hat{J}_F := \begin{pmatrix} 0 & \text{c.c.} \\ \text{c.c.} & 0 \end{pmatrix},
 \]

 where $\mathcal{D}_M\nu_R := \text{im} R\nu_R$ and $\mathcal{D}_M e_R = \mathcal{D}_M\nu_L = \mathcal{D}_Me_L = 0$.

- Define $\hat{\pi} : \mathcal{A}_F \to \mathcal{B}(\mathcal{H}_F \oplus \mathcal{H}_F)$ and $\hat{\pi}^{\text{op}} : \mathcal{A}^{\text{op}}_F \to \mathcal{B}(\mathcal{H}_F \oplus \mathcal{H}_F)$ by

 \[
 \hat{\pi}(a) := \pi(a) \oplus \pi^{\text{op}}(a^t), \quad \hat{\pi}^{\text{op}}(a) := \hat{J}_F \hat{\pi}(a^*) \hat{J}_F.
 \]

- We obtain a new finite space $\hat{\mathcal{E}}_{EW} := (\mathcal{A}_F \circ \mathcal{A}^{\text{op}}_F, \mathcal{H}_F, \hat{\mathcal{D}}_F, \hat{\mathcal{J}}_F)$ with grading operator $\hat{\Gamma}_F$ and additionally with a real structure \hat{J}_F.

The Krein action + Majorana masses

- Consider $\hat{F}_{EW} \times M$ with the real structure $J := \hat{J}_F \otimes J_M$.

- Following [Bar07], consider $\eta \in H^0$ such that $J\eta = \eta$. Then $\eta = \bar{\zeta} + J\zeta$, with $\zeta \in (H_F \otimes L^2(\mathcal{S}))^0$ as before. We have

$$\langle \eta | D_A \eta \rangle = \langle \bar{\zeta} | D_A \bar{\zeta} \rangle + \langle J\zeta | D_A \bar{\zeta} \rangle + \langle \bar{\zeta} | D_A J\zeta \rangle + \langle J\zeta | D_A J\bar{\zeta} \rangle.$$

- One finds that $\langle J\zeta | D_A J\bar{\zeta} \rangle = \langle \bar{\zeta} | D_A \bar{\zeta} \rangle = S_{EW}[\Psi, A]$.

- The new contributions are

$$\langle J\zeta | D_A \bar{\zeta} \rangle = -m_R \langle J M \psi^\nu_R | \psi^\nu_R \rangle, \quad \langle \bar{\zeta} | D_A J\zeta \rangle = -m_R \langle \psi^\nu_R | J M \psi^\nu_R \rangle.$$

- Summarising, we obtain the new action S_{EW+M} given by

$$S_{EW+M}[\Psi, A] = 2S_{EW}[\Psi, A] - m_R \langle \psi^\nu_R | J M \psi^\nu_R \rangle - m_R \langle J M \psi^\nu_R | \psi^\nu_R \rangle.$$
The Krein action + Majorana masses

- Consider $\hat{F}_{EW} \times \mathcal{M}$ with the real structure $J := \hat{J}_F \otimes J_M$.
- Following [Bar07], consider $\eta \in \mathcal{H}^0$ such that $J\eta = \eta$. Then $\eta = \xi + J\xi$, with $\xi \in (\mathcal{H}_F \otimes L^2(S))^0$ as before. We have

$$\langle \eta | D_A \eta \rangle = \langle \xi | D_A \xi \rangle + \langle J\xi | D_A \xi \rangle + \langle \xi | D_A J\xi \rangle + \langle J\xi | D_A J\xi \rangle.$$

- One finds that $\langle J\xi | D_A J\xi \rangle = \langle \xi | D_A \xi \rangle = S_{EW}[\Psi, A]$.
- The new contributions are

$$\langle J\xi | D_A \xi \rangle = -m_R \langle J_M \psi^\nu_R | \psi^\nu_R \rangle, \quad \langle \xi | D_A J\xi \rangle = -m_R \langle \psi^\nu_R | J_M \psi^\nu_R \rangle.$$

- Summarising, we obtain the new action S_{EW+M} given by

$$S_{EW+M}[\Psi, A] = 2S_{EW}[\Psi, A] - m_R \langle \psi^\nu_R | J_M \psi^\nu_R \rangle - m_R \langle J_M \psi^\nu_R | \psi^\nu_R \rangle,$$
The Krein action + Majorana masses

- Consider $\hat{F}_{EW} \times M$ with the real structure $J := \hat{J}_F \otimes J_M$.
- Following [Bar07], consider $\eta \in \mathcal{H}^0$ such that $J \eta = \eta$. Then $\eta = \xi + J \xi$, with $\xi \in (\mathcal{H}_F \otimes L^2(\mathbb{S}))^0$ as before. We have

$$\langle \eta | D_A \eta \rangle = \langle \xi | D_A \xi \rangle + \langle J \xi | D_A \xi \rangle + \langle \xi | D_A J \xi \rangle + \langle J \xi | D_A J \xi \rangle.$$

- One finds that $\langle J \xi | D_A J \xi \rangle = \langle \xi | D_A \xi \rangle = S_{EW}[\Psi, A]$.
- The new contributions are

$$\langle J \xi | D_A \xi \rangle = -m_R \langle J_M \psi^\nu_R | \psi^\nu_R \rangle, \quad \langle \xi | D_A J \xi \rangle = -m_R \langle \psi^\nu_R | J_M \psi^\nu_R \rangle.$$

- Summarising, we obtain the new action S_{EW+M} given by

$$S_{EW+M}[\Psi, A] = 2S_{EW}[\Psi, A] - m_R \langle \psi^\nu_R | J_M \psi^\nu_R \rangle - m_R \langle J_M \psi^\nu_R | \psi^\nu_R \rangle,$$
The Krein action $+$ Majorana masses

- Consider $\hat{F}_{EW} \times M$ with the real structure $J := \hat{J}_F \otimes J_M$.

- Following [Bar07], consider $\eta \in \mathcal{H}^0$ such that $J\eta = \eta$. Then $\eta = \zeta + J\zeta$, with $\zeta \in (\mathcal{H}_F \otimes L^2(S))^0$ as before. We have

$$\langle \eta | D_A \eta \rangle = \langle \zeta | D_A \zeta \rangle + \langle J\zeta | D_A \zeta \rangle + \langle \zeta | D_A J\zeta \rangle + \langle J\zeta | D_A J\zeta \rangle.$$

- One finds that $\langle J\zeta | D_A J\zeta \rangle = \langle \zeta | D_A \zeta \rangle = S_{EW}[\Psi, A]$.

- The new contributions are

$$\langle J\zeta | D_A \zeta \rangle = -m_R \langle J_M \psi_R^\nu | \psi_R^\nu \rangle, \quad \langle \zeta | D_A J\zeta \rangle = -m_R \langle \psi_R^\nu | J_M \psi_R^\nu \rangle.$$

- Summarising, we obtain the new action S_{EW+M} given by

$$S_{EW+M}[\Psi, A] = 2S_{EW}[\Psi, A] - m_R \langle \psi_R^\nu | J_M \psi_R^\nu \rangle - m_R \langle J_M \psi_R^\nu | \psi_R^\nu \rangle.$$
The Krein action + Majorana masses

- Consider $\hat{F}_{EW} \times \mathcal{M}$ with the real structure $J := \hat{F} \otimes J_M$.
- Following [Bar07], consider $\eta \in \mathcal{H}^0$ such that $J\eta = \eta$. Then $\eta = \zeta + J\zeta$, with $\zeta \in (\mathcal{H}_F \otimes L^2(\mathcal{S}))^0$ as before. We have

$$\langle \eta | \mathcal{D}_A \eta \rangle = \langle \zeta | \mathcal{D}_A \zeta \rangle + \langle J\zeta | \mathcal{D}_A \zeta \rangle + \langle \zeta | \mathcal{D}_A J\zeta \rangle + \langle J\zeta | \mathcal{D}_A J\zeta \rangle.$$

- One finds that $\langle J\zeta | \mathcal{D}_A J\zeta \rangle = \langle \zeta | \mathcal{D}_A \zeta \rangle = S_{EW}[\Psi, A]$.
- The new contributions are

$$\langle J\zeta | \mathcal{D}_A \zeta \rangle = -m_R \langle J_M \psi^\nu_R | \psi^\nu_R \rangle, \quad \langle \zeta | \mathcal{D}_A J\zeta \rangle = -m_R \langle \psi^\nu_R | J_M \psi^\nu_R \rangle.$$

- Summarising, we obtain the new action S_{EW+M} given by

$$S_{EW+M}[\Psi, A] = 2S_{EW}[\Psi, A] - m_R \langle \psi^\nu_R | J_M \psi^\nu_R \rangle - m_R \langle J_M \psi^\nu_R | \psi^\nu_R \rangle,$$
The fermionic action in Lorentzian signature (the Krein action) matches exactly with the physical Lagrangian.

- The action is purely classical; there are no anti-commuting variables.

- Majorana masses can be described by giving the finite space a Krein structure as well.
Conclusion

- The fermionic action in Lorentzian signature (the Krein action) matches exactly with the physical Lagrangian.

- The action is purely classical; there are no anti-commuting variables.

- Majorana masses can be described by giving the finite space a Krein structure as well.
The fermionic action in Lorentzian signature (the Krein action) matches \textit{exactly} with the physical Lagrangian.

- The action is purely classical; there are no anti-commuting variables.

- Majorana masses can be described by giving the finite space a Krein structure as well.
References

