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Preface

We are immensely grateful for the opportunity to give a mini-course at the Haus-
dorff school for advanced studies in mathematics, during the program on Noncom-
mutative Geometry and Operator Algebras, organized by the Hausdorff Center for
Mathematics from May 2nd to May 5th 2023, at the University of Bonn. Our course
intended to introduce the theory of quantum metric spaces, with a focus on the
notion of convergence for quantum metric structures. We are very hopeful that
our lectures helped kindle interest in this relatively new subject, about which much
remain to be explored.

We chose to focus on core topics of the subject, in order to provide the basic ideas
found in the literature on quantum metric spaces, while also touching on very recent
developments, particularly, the spectral propinquity. Our hope is that the chosen
topics will both prove helpful getting into the subject, while giving some ideas on its
current research direction. Of course, our choices are very much informed by our
own perspective on the field, and the necessity of selecting only a few topics in the
field in order to create a reasonable mini-course implies that many interesting and
deep results in the literature will not be addressed. This includes, for instance, work
on quantum group and related structures, or much of our work on the covariant
propinquity. Nonetheless, we are hopeful that this course will make the work we
could not address here accessible.

The following set of notes was written in support of our minicourse. As the
minicourse, these notes do not main at being exhaustive, but instead, to provide a
decent overview of the basic ideas of noncommutative metric geometry. One of our
goal is also to streamline some of the terminology and reorder certain concepts, as a
decade has past with various developments, giving us an evolving perspective. We
are very interested in answering any question which these notes may raise, and we
are happy to discuss any further inquiry in noncommutative metric geometry. We
more than welcome comments and suggestions about these notes, as well as the
likely corrections for the typos which inevitably sneaked in these notes in spite of
our best efforts.

Once more, we are deeply thankful for this great opportunity, and we hope our
minicourse proved interesting.

v





Introduction

The founding allegory of noncommutative geometry is that certain algebras can
be understood as noncommutative analogues of various algebras of functions over
spaces endowed with geometric data, as if these noncommutative algebras give us
a glimpse of a quantum space which can only be described via their observables,
whose lack of commutativity encodes the uncertainty principle: not all can be seen
at once. We thus must learn to study the geometry of such quantum objects by
extending various constructions from the classical world to algebras of functions,
in an often nontrivial way, so that the constructions remain meaningful when we
drop commutativty, and opens new examples out of reach from the classical picture.
This approach has proven beneficial in the study of singular spaces obtained from
geometric settings — from orbit spaces to fractals, from the space of foliations
to spaces of tilings — and also to the study of noncommutative algebras, with,
for instance, the export from the topological world of such tools as K-theory, K-
homology, and other now common tools of C*-algebra theory. Our purpose in
these notes is to develop the theory of noncommutative analogues of the algebras
of Lipschitz functions ovre compact metric spaces. Our focus is the study of the
geometry of the hyperspace of all quantum compact metric spaces, and derive
properties of quantum compact metric spaces from their belonging to the closure of
certain classes of spaces.

The geometry defined on the hyperspace of all quantum compact metric spaces
enables us to formalize certain common heuristics in mathematical physics. Mathe-
matical physics raises many questions about behaviors of various models as certain
parameters, be it a deformation parameter or the dimension of a matrix model, are
taken to some limit. For instance, a quantized version Aℏ of some commutative
algebra C (M), where M is a compact manifold, given as some C*-algebra, may be ex-
pected to converge in some sense to C (M) as ℏ is taken to 0. Another such heuristic
is given by the convergence, as the dimension n tends to infinity, of the C*-algebra
An generated by two unitaries:

Sn =


0 1 0 0

0
0 0 1
1 0 0

 and Cn =


1

exp
( 2iπ

n

)
exp

(
2i (n−1)π

n

)
, (0.0.1)

where CnSn = exp( 2iπ
n )SnCn , to the C*-algebra C (T2) of continuous functions over

the 2-torus, i.e. the universal C*-algebra generated by 2 commuting unitaries. Similar
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viii INTRODUCTION

matrix models called fuzzy spheres are expected to converge to the C*-algebra C (S2)
of continuous functions over the 2-sphere. More generally, the construction of new
physical models as limits of simpler models, specified over finite space times or
lattices inside the continuum limit, is a natural approach.

The study of various notions of limits of C*-algebras is deeply rooted in the
field of operator algebra theory. Inductive limits provide a categorical perspective
which is particularly well suited to homological considerations — in particular K -
theory and its decendent — while continuous fields of C*-algebras have proven an
efficient way to describe certain C*-algebras, such as certain C*-crossed-products,
and to formalize the idea of quantization. Our approach, motivated by its potential
physical relevance, but also by developments in Riemannian geometry, is to try and
endow a space of certain noncommutative algebras with an actual metric, up to an
appropriate notion of isomorphism, so that the entire machinery of analysis can
be brought to bare on problems involving limits and approximation questions with
C*-algebras. As we shall see, some important properties are indeed continuous for
some of our metrics, such as spectra of spectral triples, thus illustrating some of the
potential for this new approach.

Our story thus begins with the search for noncommutative analogue of a com-
pact metric space. Indeed, almost since their inception, metric spaces have provided
a natural framework to study how far two subspaces may be, via the Hausdorff dis-
tance [21]. The intrinsic version of the Hausdorff distance, due to Edwards [15], was
introduced in order to topologize the space of all “space-times” as a step toward
formalizing an approach to quantum gravitation suggested by Wheeler [59]. This
intrinsic version, now known as the Gromov-Hausdorff distance, was extended to
the class of proper metric spaces by Gromov [19, 20] in the context of geometric
group theory, and has found many applications in Riemannian geometry since.
Thus, a template exists for defining a metric on the space of noncommutative metric
spaces, if we indeed find an adequate notion of quantum compact metric space.

Connes’ original idea of a quantum compact metric space was part of the mo-
tivation stated in [11] for the introduction of spectral triples. Spectral triples have
emerged as the preferred means to define a noncommutative Riemannian manifold,
and thus they will occupy a central place in our work. They are given as triples
(A,H , /D) of a C*-algebra A, a Hilbert space H on which A acts, and a self-adjoint
operator /D on some dense subspace of H which boundedly commutes with a dense
*-subalgebra of A and has a compact resolvent. While spectral triples are probably
best understood as unbounded analogues of Fredholm modules, i.e. as abstraction
of differential elliptic operators for which a form of index theory may be devised,
they also notably allow for the definition of an extended pseudo-metric on the state
space of their underlying algebras, known as the Connes’ metric. If (A,H , /D) is a
spectral triple, Connes’ metric between any two states ϕ,ψ of A is defined by:

mk /D (ϕ,ψ) := sup
{|ϕ(a)−ψ(a)| : a dom( /D) ⊆ dom( /D), |||[ /D , a]|||H ⩽ 1

}
,

where |||·|||H is the operator norm. Thus, a general view of what quantum compact
metric spaces started to emerge. The question of what topology Connes’ metric
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induces on the state space remained largely unaddressed at first. Whatever it may be,
it is always stronger than the weak* topology, as convergence for the Connes metric
implies by definition uniform convergence on some total subset of the underlying
C*-algebra. It also always induces a Hausdorff topology. As a result, since the state
space of a unital C*-algebra is weak* compact, the smallest topology that the Connes
metric may induce, is also the only possible compact topology this metric may
induce, and it is the weak* topology.

There are several natural reasons to want to work with spectral triples whose
Connes’ metric induces the weak* topology. As we just noted, it is the only way
to make the state space compact for this metric. In turn, this means that we can
now work with compact metric spaces, which is very well suited for the develop-
ment of a Hausdorff-type metric. Moreover, it is the natural topology to employ for
applications, as it is the natural topology in probability theory for convergence in
distribution, and it is the topology one gets if one defines neighborhood of states by
asking states to be close when their measurements on finitely many observables is
within some open sets of scalars. Furthermore, it is a canonical topology to choose
from a functional analytic point of view, both because of its compactness — the
very reason to work with the weak* topology is to regain compactness in infinite
dimension — and because it is indeed the topology one would obtain in the classical
picture. More specifically, if M is a connected compact Riemannian spin manifold,
the prototype of a spectral triple is given by (C (M),Γ2(SM), /D), where SM is the
spinor bundle of M , Γ2 the Hilbert space of square-integrable sections of SM , and
/D is the Dirac operator of M . In this case, for any f ∈C 1(M), the operator [ /D , f ] acts

as the Clifford multiplication by the gradient of f . Connes’ distance between two
states ϕ,ψ of C (M) becomes:

mk /D (ϕ,ψ) := sup
{|ϕ( f )−ψ( f )| : f ∈C (M), f is 1−Lipschitz

}
.

Therefore, Connes’ metric becomes a special case of the Monge-Kantorovich metric
in this classical picture. In particular, it induces the path metric on M induced by the
Riemannian metric of M , and it induces the weak* topology on the space of regular
probability measures on M , i.e. on the state space of C (M).

More generally, if (M ,d) is a compact metric space, then the metric d induces
a natural seminorm defined on a dense subalgebra of C (M), called the Lipschitz
seminorm, which to every f ∈C (M), associated the Lipschitz constant:

Ld ( f ) := sup

{ | f (x)− f (y)|
d(x, y

: x, y ∈ M , x ̸= y

}
,

allowing for the value ∞. The fact the domain of this seminorm, i.e. the subspace
of C (M) where it is finite, is dense, is an immediate consequence of the Stone-
Weierstraßtheorem, owing to the facts that this domain is an algebra — thanks to the
Leibniz inequality satisfied by Ld — and it contains the functions x ∈ M 7→ d(x, y) for
all y ∈ M , which separate the points of M , as well as the constants. Moreover, the set
of Lipschitz functions of Lipschitz constant at most 1 is closed under pointwise — let
alone, uniform — convergence in C (M). A deep result is that, if we fix x ∈ M , since
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the set { f ∈C (M) : Ld ( f )⩽ 1, f (x)⩽ 0} is an equicontinuous family of functions over
the compact space (M ,d), with valued in the closed ball inC of center 0 and radius
the diameter of (M ,d), then the Arzéla-Ascoli theorem implies that this set is totally
bounded in C (M). As it is closed as well, and as C (M) is complete, we conclude
that { f ∈ C (M) : Ld ( f ) ⩽ 1, f (x) ⩽ 0} is compact, for any choice of x ∈ M . In turn,
we can use the compactness of { f ∈ C (M) : Ld ( f ) ⩽ 1, f (x) ⩽ 0} to prove that the
Monge-Kantorovich metric defined between any two states ϕ,ψ ∈C (M) by:

mkL(ϕ,ψ) := sup
{|ϕ( f )−ψ( f )| : f ∈C (M),Ld ( f )⩽ 1

}
induces the weak* topology on the state space of C (M). As we shall see later in these
notes, this property is in fact equivalent to the compactness of { f ∈C (M) : Ld ( f )⩽
1, f (x)⩽ 0}. Moreover, since x ∈ M 7→ d(x, y) is 1-Lipschitz for any y ∈ M , we see that,
after identifying points of M with the characters of C (M) given by evaluation maps,
mkLd

(x, y) = d(x, y). Thus, the restriction of mkLd
to the space of characters of C (M),

i.e. to the Gelfand spectrum of C (M), topologized by the weak* topology, which is of
course homeomorphic to M , is a metric isometric to d . So the Lipschitz seminorm
encodes the metric on M , and it has several notable topological properties which
would make sense even over a noncommutative algebra. We note in passing that
we could as well as worked with the self-adjoint subalgebra of C (M), i.e. with real
valued continuous functions, for this discussion.

Adopting this perspective, Rieffel [52, 53, 54] proposed to define a quantum
compact metric space as a pair (A,L), where L is a seminorm which shares the above
listed properties of a Lipschitz seminorms, and A is a space of the same “type” as
the space of real-valued continuous functions over compact metric spaces — in
practice, Rieffel worked with A being order unit spaces (not even assumed to be
complete), that is, up to isometric positive linear isomorphisms, with subspaces
of the space of self-adjoint elements of a unital C*-algebra. In time, the develop-
ment of analogues of the Gromov-Hausdorff distance to quantum compact metric
spaces has revealed that it is helpful to strengthen the initial definition of Rieffel.
For example, additional Leibniz-type inequalities were required by Rieffel in [55, 56]
when working toward a convergence of modules. In particular, this required one
to work with C*-algebras, but created difficulties with the triangle inequality for
the quantum Gromov-Hausdorff distance. Other reasons to modify the quantum
Gromov-Hausdorff distance — and adjust accordingly the notion of quantum com-
pact metric spaces — include devising a distance for which distance zero implies
*-isomorphism of the underlying C*-algebras; such constructions include Kerr’s
distance [29] where a quantum compact metric space is taken as a pair of an op-
erator system and an analogue of the Lipschitz seminorm, or the nuclear distance
of Li [49], for instance. Other constructions from Wu [60, 61] used the notion of
matricial Lipschitz seminorms. However, several of these modifications to Rieffel’s
original construction encountered various difficulties: Kerr’s distance, for instance,
is complete under some assumptions which are not compatible with it satisfying
the triangle inequality. In general, there is a cost in working outside of the category
of C*-algebras when defining quantum compact metric spaces, as it makes it more
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difficult to discuss such notions as modules, actions by an appropriate notion of
automorphisms, or spectral triples.

The propinquity, is an analogue of the Gromov-Hausdorff propinquity well
adapted to working with C*-algebras endowed with Lipschitz-like seminorms which
satisfy a form of the Leibniz identity. The propinquity is defined on the class of quan-
tum compact metric spaces given as pairs of a unital C*-algebra and a Lipschitz-like
seminorm. It is a complete metric, up to full quantum isometry — in particular, dis-
tance zero implies that the underlying C*-algebras are *-isomorphic. Its restriction
to the class of classical compact metric spaces induces the same topology as the
Gromov-Hausdorff distance. It is indeed possible to prove that fuzzy tori converge
to (quantum) tori [34], fuzzy spheres to actual spheres [57], AF algebras form various
continuous families [2], various deformations of quantum tori form continuous
families [35], noncommutative solenoids are limits of quantum tori [48, 7], and
more. We proved an analogue of the Gromov compactness theorem for the propin-
quity [39], thus exhibiting compact classes, for instance, of AF algebras, and also
providing the proof that indeed, the topology induced by the propinquity in the
classical setting is the topology of the Gromov-Hausdorff distance.

Moreover, the definition of the propinquity in [36] is flexible enough to allow
for its generalization to structures associated to quantum compact metric spaces.
In [41, 46], a Gromov-Hausdorff like distance was defined between metrical C*-
correspondence to formalize the idea of convergence of quantum vector bundles,
with application, for instance, to the Heisenberg modules over quantum tori [44,
42], using the connections studied by Connes [10] and Rieffel [12]. The metrical
propinquity thus defined is indeed complete, zero exactly between fully quantum
isometric metrical C*-correspondences, and restricts to give the same topology as
the propinquity when we look at a C*-algebra A as aC-A-C*-correspondence.

Another modification of the propinquity is the covariant propinquity [43, 40],
later extended to metrical C*-correspondences [47]. This metric is now defined
between actions of proper monoids on quantum compact metric spaces and met-
rical C*-correspondences, where the actions are by Lipschitz morphisms, and the
monoids are allowed to be different. One motivation for such a construction is the
good behavior of group actions under convergence for the propinquity [3]. The
covariant propinquity provides a metric framework for the study of quantum dy-
namics. It also can be used to obtain certain results on the closure of classes of
quantum compact metric spaces, and study the properties of isometry groups for
quantum compact metric spaces and spectral triples [25].

Among the main examples of quantum compact metric spaces are those given
by certain spectral triples: when the Connes’ distance of a spectral triple induces the
weak* topology on the state space of the underlying C*-algebra, it is called metric.
Examples include quantum tori [52], C*-crossed-products [22, 30], Podles spheres
[1], fractals [9, 32], AF algebras [5], Bunce-Deddens algebras and noncommutative
solenoids [7], and more. The spectral propinquity is in fact, a special case of the
covariant propinquity of metrical C*-correspondences, which give a metric, up to
unitary equivalence, on the class of metric spectral triples. The spectral propinquity
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has some strong properties, such as continuity of the spectrum and of the bounded
continuous functional calculus [33]. It can be used to formalize the heuristics that
certain matrix models converge to models over quantum tori [45], or that the spectral
triples on fractals from [9] is indeed a limit of spectral triples on graphs [31].

The functional analytic framework we developed for the Gromov-Hausdorff
propinquity thus opens the possibility to apply new methods inspired from metric
geometry in noncommutative geometry. These notes present a synthesis of the main
results about the propinquity, in the hope that the reader can approach the literature
on the subject and carry out research in this new, as of yet largely unexplored,
domain.



Chapter One

The Category of Compact Quantum Metric
Spaces

1.1 COMPACT QUANTUM METRIC SPACES

A quantum compact metric space is a noncommutative generalization of the algebra
of Lipschitz functions over a compact metric space.

Definition 1.1.1. A K -compact quantum metric space (A,L), where K ∈ [1,∞), is an
ordered pair consisting of a unital C*-algebra A, and a seminorm L, defined on a
Jordan-Lie subalgebra dom(L) of the space sa (A) of self-adjoint elements of A, such
that

1. the Monge-Kantorovich metric, defined on the state space S (A) of A, by
setting, for any two states ϕ,ψ of A:

mkL(ϕ,ψ) = sup
{∣∣ϕ(a)−ψ(a)

∣∣ : a ∈ dom(L),L(a)⩽ 1
}

, (1.1.1)

metrizes the weak* topology on the state space S (A) of A,

2. L(1A) = 0,

3. the unit ball {a ∈ dom(L) : L(a)⩽ 1} of L is closed for ∥·∥A in sa (A),

4. for all a,b ∈ dom(L), the following inequality holds:

max

{
L

(
ab +ba

2

)
,L

(
ab −ba

2i

)}
⩽K (∥a∥AL(b)+L(a)∥b∥A+L(a)L(b)) .

(1.1.2)

When (A,L) is a quantum compact metric space, the seminorm L is called a Lipschitz
seminorm on A, or an L-seminorm on A for short. Elements of dom(A) are then
called Lipschitz elements of (A,L).

Convention 1.1.2. When L is a seminorm defined on some subspace dom(L) ⊆ E
of a vector space E , we set L(x) =∞ whenever x ∈ E \ dom(L) (where ∞⩾ x for all
x ∈R). With this convention, the domain dom(L) of L is the set {x ∈ E : L(x) <∞}.
We will work with this convention from now on; for calculations, we set 0 ·∞= 0 and
∞+x = x +∞=∞ for all x ∈ [0,∞].

In particular, if {x ∈ E : L(x) ⩽ 1} is closed, then since L is a seminorm, {x ∈ E :
L(x) ⩽ t } is closed for all t ∈ R, and thus L, as a [0,∞]-valued function, is lower
semi-continuous on E .

1



2 CHAPTER 1. THE CATEGORY OF COMPACT QUANTUM METRIC SPACES

Remark 1.1.3. The assumption on the Lipschitz seminorm L of a quantum compact
metric space (A,L) implies that it is lower semicontinuous over sa (A), and therefore,
in particular, for all a ∈ sa (A), if (an)n∈N is a sequence converging to a in sa (A),
then:

L(a)⩽ liminf
n→∞ L(an).

Notation 1.1.4. Given a C*-algebraA, we write ℜa := 1
2 (a +a∗) and ℑa := 1

2i (a −a∗),
so ℜa,ℑa ∈ sa (A) and a =ℜa + iℑa. For any a,b ∈ sa (A), the Jordan product and
Lie product of a and b are then just ℜ(ab) and ℑ(ab), respectively.

Notation 1.1.5. (A,L) is a quantum compact metric space when there exists K ⩾ 1
such that (A,L) is a K -quantum compact metric space.

Definition 1.1.6. A (C ,D)-quantum compact metric space (A,L) is a quantum
compact metric space such that, for all a,b ∈ dom(L),

max{L(ℜ(ab)),L(ℑ(ab))}⩽C (L(a)∥b∥A+L(a)∥b∥A)+DL(a)L(b).

A Leibniz quantum compact metric space is a (1,0)-quantum compact metric
space.

The classical model of a quantum compact metric space is given as follows.

Example 1.1.7 (Fundamental Example). Let (X ,d) be a compact metric space. For
each f : X →R, we define the Lipschitz constant L( f ) of f as

L( f ) = sup

{ | f (x)− f (y)|
d(x, y)

: x, y ∈ X , x ̸= y

}
,

allowing for the value ∞.
The pair (C (X ),L) is an example of a quantum compact metric space, see for in-

stance [14]. We will recover this fact when we establish Theorem (1.1.19). The metric
mkL was introduced by Kantorovich [27] as part of their study of Monge’s trans-
portation problem. The formulation which we use here is due to Kantorovich and
Rubinstein [28]. This metric has many different names, and in particular, is some-
times called the Wassertein metric; Wassertein re-introduced this metric within the
realm of probability in [58], and was named the Wasserstein distance by Dobrushin
in [13].

This metric has many applications, precisely owing to the fact that it metrizes the
weak* topology (when working with compact metric spaces). Moreover, we note that
if x, y ∈ X , identifying points with characters of C (X ), then mkL(x, y) = d(x, y) by
construction (noting that t ∈ X 7→ d(x, t ) is 1-Lipschitz). Therefore, we may recover
the distance d on X from the Lipschitz seminorm L.

Definition (1.1.1) thus is our attempt to capture the properties which make the
Lipschitz seminorm L interesting among all densely-defined seminorms on C (X ),
while allowing for enough generality to find interesting noncommutative examples.

Finite dimensional C*-algebras also provide many examples of quantum com-
pact metric spaces.
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Example 1.1.8. Let A be a finite dimensional C*-algebra. For all a ∈ sa (A), set

L(a) = inf
t∈R

∥a − t1∥A .

The pair (A,L) is a quantum compact metric space. Indeed, mkL simply induces
the norm topology on S (A), which equals the weak* topology since A is finite
dimensional.

Our first result about quantum compact metric space shows that the Monge-
Kantorovich metric allows us to recover the Lipschitz seminorm, so something of
the duality between metric and Lipschitz seminorm remain in the noncommutative
realm, albeit not quite in its original form. This theorem is, however, instrumental
to understand morphisms between quantum compact metric spaces.

Theorem 1.1.9 ([54]). If (A,L) is a quantum compact metric space, then for all
a ∈ sa (A):

L(a) = sup

{ |ϕ(a)−ψ(a)|
mkL(ϕ,ψ)

:ϕ,ψ ∈S (A),ϕ ̸=ψ
}

, (1.1.3)

allowing for the value ∞.

Proof. Let us write S(a) := sup
{ |ϕ(a)−ψ(a)|

mkL(ϕ,ψ) :ϕ,ψ ∈S (A),ϕ ̸=ψ
}

for all a ∈ sa (A),

allowing for ∞.
By Definition (1.1.1), we immediately observe that for allϕ,ψ ∈S (A) withϕ ̸=ψ,

|ϕ(a)−ψ(a)|⩽ L(a)mkL(ϕ,ψ)

(note that this is trivial when L(a) =∞), and thus S(a)⩽ L(a).
Let now a ∈ sa (A) with S(a) = 1. Therefore, for all ϕ,ψ ∈S (A), we have |ϕ(a)−

ψ(a)|⩽mkL(ϕ,ψ).

Let now E := {
µ ∈A′ :µ(1) = 0

}
; E is the dual of sa (A)⧸R1. Let L′ : µ ∈ E 7→

sup
{|µ(a)| : a ∈ dom(L),L(a)⩽ 1

}
.

Let E2 =
{
µ ∈ E :

∥∥µ∥∥
A′ ⩽ 2

}
. Note that, for any two states ϕ,ψ ∈S (A), we have

ϕ−ψ ∈ E2. Conversely, if µ ∈ E2, then, by the Hahn-Jordan decomposition theorem,
µ= θ−σ for two positive linear functionals θ and σ over sa (A). such that ∥θ∥E +
∥σ∥E = ∥∥µ∥∥

E = 2. Since µ(1) = 0, we have θ(1) = σ(1). Let t = θ(1). If t = 0, let
ϕ be any state of A, and set ψ := ϕ. Otherwise, set ϕ := 1

t θ and ψ := 1
t σ. Either

way, µ= tϕ− tψ with ϕ,ψ ∈S (A) and t ∈ [0,1]. Thus µ=ϕ− ((1− t)ϕ+ tψ), with
ϕ, (1− t )ϕ+ tψ ∈S (A). All in all, we see that E2 =

{
ϕ−ψ :ϕ,ψ ∈S (A)

}
.

Therefore, if µ ∈ E2, then |µ(a)| = |ϕ(a)−ψ(a)| ⩽ mkL(ϕ,ψ) = L′(µ) for some
ϕ,ψ ∈S (A). In summary, if a ∈ sa (A) and S(a)⩽ 1, then |µ(a)|⩽ L′(µ) for all µ ∈ E2.
Therefore by homogeneity, for all λ ∈ E , we have |λ(a)|⩽ L′(λ) for all a ∈ sa (A) with
S(a) ⩽ 1. In particular, if a ∈ sa (A) with S(a) ⩽ 1, then for all λ ∈ E with L′(λ) ⩽ 1,
we have |λ(a)|⩽ 1. So a is in the prepolar of {λ ∈ E : L′(λ)⩽ 1}. On the other hand,
{λ ∈ E : L′(λ) ⩽ 1} is by definition the polar of {b ∈ dom(L) : L(b) ⩽ 1}. So, by the
bipolar theorem, we conclude that if a ∈ sa (A) and S(a)⩽ 1, then a belongs to the
bipolar of {b ∈ dom(L) : L(b) ⩽ 1}. Since {b ∈ dom(L) : L(b) ⩽ 1} is, by assumption,
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balanced, convex and closed, it is equal to its bipolar. So if a ∈ sa (A) with S(a)⩽ 1,
then a ∈ dom(L),L(a) ⩽ 1, as needed. So L(a) ⩽ 1. Therefore, L⩽ S. We conclude
that L= S as needed.

Remark 1.1.10. We may not replace the state space in Expression (1.1.3) of Theorem
(1.1.9) with its subset of extreme points in general, although it is indeed true in the
classical case of Example (1.1.7). Unfortunately in general, one may not recover mkL
from its restriction to the set of extreme states. See, for instance, [53], for a detailed
overview.

We now establish some basic properties of quantum compact metric spaces,
progressing toward a characterization which will help us establish new examples.
We begin with the natural observation that the domain of a Lipschitz seminorm
needs to be dense in the space of self-adjoint operators.

Proposition 1.1.11. If (A,L) is a quantum compact metric space, then dom(L) is
dense in sa (A).

Proof. Assume that cl(dom(L))⊊ sa (A). By Hahn-Banach theorem, applied to the
real vector space sa (A), there exists a continuous linear functional µ ∈ sa (A)′ on
sa (A) such that µ ̸= 0, yet µ(cl (dom(L))) = 0. Up to re-scaling µ by 2

|||µ||| , we assume

that
∣∣∣∣∣∣µ∣∣∣∣∣∣ = 2. By Hahn-Jordan decomposition, there exists two positive continuous

linear functionals ϕ,ψ ∈ sa (A)′ on sa (A) such that µ=ϕ−ψ, with
∣∣∣∣∣∣ϕ∣∣∣∣∣∣+ ∣∣∣∣∣∣ψ∣∣∣∣∣∣ =∣∣∣∣∣∣µ∣∣∣∣∣∣ = 2. Now, since 1 ∈ dom(L), we conclude that 0 =µ(1) =ϕ(1)−ψ(1). Since ϕ

and ψ are positive functionals,
∣∣∣∣∣∣ϕ∣∣∣∣∣∣ =ϕ(1) =ψ(1) = ∣∣∣∣∣∣ψ∣∣∣∣∣∣. All in all, we conclude

that
∣∣∣∣∣∣ϕ∣∣∣∣∣∣ = ∣∣∣∣∣∣ψ∣∣∣∣∣∣ = 1, i.e. ϕ,ψ ∈ S (A). Since µ ̸= 0, we also note that ϕ ̸=ψ. Yet,

by definition of mkL, we have mkL(ϕ,ψ) = sup{|µ(a)| : a ∈ dom(L),L(a)⩽ 1} = 0. So
mkL is not a metric on S (A). By contraposition, if (A,L) is a quantum compact
metric space, then cl(dom(L)) = sa (A).

Remark 1.1.12. Let A be a unital C*-algebra. If L is a seminorm defined on some
dense subspace dom(L) of sa (A), then mkL is an extended metric in general, as can
be checked — in particular, it induces a Hausdorff topology, thanks to the density
of the domain of L. It is easy to check that this topology is stronger than the weak*
topology (see the proof of Theorem (1.1.18) below for details). So, we could replace
the requirement that mkL induces the weak* topology with the requirement that
mkL induces a compact topology.

If (A,L) is a quantum compact metric space, then S (A) is weak* compact, as
an easy corollary of the Alaoglu-Bourbaki theorem [6], since A is unital. Hence, the
metric space (S (A),mkL) is compact, and thus, in particularly, it has finite diameter.

Notation 1.1.13. The diameter qdiam(A,L) of a quantum compact metric space
(A,L) is the diameter of (S (A),mkL), i.e.

qdiam(A,L) = sup
{
mkL(ϕ,ψ) :ϕ,ψ ∈S (A)

}
.

Since mkL is continuous over S (A)×S (A), which is compact, we can in fact write

qdiam(A,L) = max
{
mkL(ϕ,ψ) :ϕ,ψ ∈S (A)

}
.
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We first establish a simple but very helpful lemma relating the L-seminorm to
the norm. We recall from [26, Theorem 4.3.4] that in a C*-algebra, if a ∈ sa (A), then

∥a∥A = max
{|ϕ(a)| :ϕ ∈S (A)

}
.

Lemma 1.1.14. If (A,L) is a quantum compact metric space, if a ∈ dom(L), and if
µ ∈S (A), then ∥∥a −µ(a)1A

∥∥
A ⩽ L(a)qdiam(A,L).

Proof. Let µ ∈S (A) and a ∈ dom(L). Let ε> 0. Since a = a∗, we thus have∥∥a −µ(a)1A
∥∥
A = max

{|ϕ(a −µ(a))| :ϕ ∈S (A)
}

= (L(a)+ε)max


∣∣∣∣ϕ(

a

L(a)+ε
)
−µ

(
a

L(a)+ε
)∣∣∣∣

L( a
L(a)+ε )⩽1

:ϕ ∈S (A)


⩽ (L(a)+ε)max{mkL(ϕ,µ) :ϕ ∈S (A)}⩽ (L(a)+ε)qdiam(A,L).

Since ε> 0 is arbitrary, we conclude that
∥∥a −µ(a)1A

∥∥
A ⩽ L(a)qdiam(A,L), as

claimed.

It follows immediately from Lemma (1.1.14) that a Lipschitz seminorm is zero
exactly on the scalars.

Proposition 1.1.15. If (A,L) is a quantum compact metric space, then

{a ∈ dom(L) : L(a) = 0} =R1A.

Proof. Let a ∈ dom(L) such that L(a) = 0. Fix µ ∈ S (A). By Lemma (1.1.14), we
conclude that ∥∥a −µ(a)1A

∥∥
A ⩽ qdiam(A,L)L(a) = 0,

so a =µ(a)1A ∈R1A, as claimed.

We can rephrase the definition of the Monge-Kantorovich metric, with sights on
our characterization of quantum compact metric spaces.

Lemma 1.1.16. Let E be a vector space, and let L be a seminorm on E. If x ∈ E such
that L(x) = 0, then

∀a ∈ E ∀t ∈R L(a + t x) = L(a).

Proof. For all t ∈R and a ∈ dom(L), we compute:

L(a) = L(a + t x − t x)

⩽ L(a + t x)+|t |L(x)
=0

= L(a + t x)

⩽ L(a)+|t |L(x)
=0

= L(a).

This completes our proof.
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Corollary 1.1.17. Let A be a unital C*-algebra. Let L be a seminorm defined on a
subspace dom(L) of sa (A) such that L(1A) = 0. If µ ∈S (A), then, for allϕ,ψ ∈S (A),

sup
{|ϕ(a)−ψ(a)| : a ∈ dom(L),L(a)⩽ 1

}
= sup

{|ϕ(a)−ψ(a)| : a ∈ dom(L),L(a)⩽ 1,µ(a) = 0
}

.

Proof. Of course,

sup
{|ϕ(a)−ψ(a)| : a ∈ dom(L),L(a)⩽ 1,µ(a) = 0

}
⩽ sup

{|ϕ(a)−ψ(a)| : a ∈ dom(L),L(a)⩽ 1
}

.

Now, let ε> 0. There exists b ∈ dom(L) such that L(b)⩽ 1 and

|ϕ(b)−ψ(b)|⩾ sup
{|ϕ(b)−ψ(b)| : a ∈ dom(L),L(a)⩽ 1

}−ε.

By Lemma (1.1.16), we conclude that L(b −µ(b)1A) = L(b)⩽ 1. Of course, µ(b −
µ(b)1A) = 0. Moreover, since ψ(1A) =ϕ(1A) = 1, we also note that∣∣ϕ(b −µ(b))−ψ(b −µ(b))

∣∣= |ϕ(b)−ψ(b)|.

Therefore, we conclude that

sup
{|ϕ(a)−ψ(a)| : a ∈ dom(L),L(a)⩽ 1,µ(a) = 0

}
⩾ |ϕ(b −µ(b)1A)−ψ(b −µ(b)1A)| = |ϕ(b)−ψ(b)|
⩾ sup

{|ϕ(a)−ψ(a)| : a ∈ dom(L),L(a)⩽ 1
}−ε.

As ε> 0 is arbitrary, our proof is complete.

We now establish the core characterization of which seminorms, densely defined
on the space of self-adjoint elements of a unital C*-algebra, can be used to metrize
the weak* topology on the state space, via Expression (1.1.1).

Theorem 1.1.18. Let A be a unital C*-algebra, and let L be a seminorm defined on
a dense subspace dom(L) of sa (A) such that L(1) = 0. For all states ϕ,ψ ∈S (A), we
define

mkL(ϕ,ψ) = sup
{∣∣ϕ(a)−ψ(a)

∣∣ : a ∈ dom(L),L(a)⩽ 1
}

. (1.1.4)

The following assertions are equivalent:

1. The metric mkL induces the weak* topology on S (A).

2. For all state µ ∈ S (A) of A, the set
{

a ∈ dom(L) : L(a)⩽ 1,µ(a) = 0
}

is totally
bounded in sa (A).

3. There exists a stateµ ∈S (A) ofA such that the set
{

a ∈ dom(L) : L(a)⩽ 1,µ(a) = 0
}

is totally bounded in sa (A).
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Proof. Assume that mkL metrizes the weak* topology, restricted to S (A). If a ∈
sa (A), we define the followingR-valued, continuous, affine function over S (A):

â :ϕ ∈S (A) 7→ϕ(a).

For any self-adjoint element a ∈ sa (A) of A, since ∥a∥A = supϕ∈S (A)

∣∣ϕ(a)
∣∣ by

[26, Theorem 4.3.4], we conclude that the function a ∈ sa (A) 7→ â ∈ C (S (A)) is a
linear isometry from sa (A).

If a ∈ dom(L) ⊆ sa (A), then, by definition of the metric mkL in Expression (1.1.4),
for all ϕ ∈S (A), ∣∣â(ϕ)− â(ψ)

∣∣= |ϕ(a)−ψ(a)|⩽ L(a)mkL(ϕ,ψ).

Therefore, the set {â : a ∈ dom(L),L(a)⩽ 1} is equicontinuous over the metric space
(S (A),mkL).

Moreover, if µ ∈ S (A), and if a ∈ dom(L) with L(a) ⩽ 1, and µ(a) = 0, we con-
clude, by Lemma (1.1.14), that

∥a∥A = ∥∥a −µ(a)1A
∥∥
A ⩽ qdiam(A,L)

so {
â : a ∈ dom(L),L(a)⩽ 1,µ(a) = 0

}
is equicontinuous, valued in [−qdiam(A,L),qdiam(A,L)], over the compact space
(S (A),mkL), and thus, by the Arzéla-Ascoli theorem, we conclude that this set is
totally bounded in C (S (A)). Since a ∈ sa (A) 7→ â is an isometry, we conclude that
{a ∈ dom(L) : L(a)⩽ 1,µ(a) = 0} is totally bounded as well.

Of course, Assertion (2) implies Assertion (3).

Last, we assume Assertion (3). Thus, there exists µ ∈S (A) such that

B := {a ∈ dom(L) :µ(a) = 0,L(a)⩽ 1}

is totally bounded. Let (ϕ j ) j∈J be a net in S (A), weak* converging to ϕ.
Let ε> 0. Since B is totally bounded, there exists a finite ε

3 -dense subset F ⊆ B
of B . Specifically, for all a ∈ B , there exists a′ ∈ F such that

∥∥a −a′∥∥
A < ε

3 . By
definition of weak* convergence, for each a ∈ F , there exists ja such that, if j ≻ ja ,
then

∣∣ϕ j (a)−ϕ(a)
∣∣< ε

3 . Since J is a directed set, and F is finite, there exists jF ∈ J
such that, for all a ∈ F , we have jF ≻ ja . Therefore, for all j ≻ jF , we conclude that
|ϕ j (a)−ϕ(a)| < ε

3 . Therefore, for all a ∈ B , if j ≻ jF , then there exists a′ ∈ F such that∥∥a −a′∥∥
A < ε

3 , and then∣∣ϕ j (a)−ϕ(a)
∣∣⩽ ∣∣ϕ j (a)−ϕ j (a′)

∣∣+ ∣∣ϕ j (a′)−ϕ(a′)
∣∣+ ∣∣ϕ(a′)−ϕ(a)

∣∣
< ∥∥a −a′∥∥

A+ ε

3
+∥∥a′−a

∥∥
A

< ε

3
+ ε

3
+ ε

3
.
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Thus, if j ≻ jF , then, using Corollary (1.1.17):

mkL(ϕ j ,ϕ) = sup
{|ϕ j (a)−ϕ(a)| : a ∈ dom(L),L(a)⩽ 1

}
= sup

{|ϕ j (a −µ(a)1A)−ϕ(a −µ(a)1A)| : a ∈ dom(L),L(a)⩽ 1
}

= sup
{|ϕ j (a)−ϕ(a)| : a ∈ B

}
< ε.

Therefore, the weak* topology is stronger than the topology induced by mkL.
Now, the topology induced by mkL is, of course, Hausdorff, since mkL is a dis-

tance on S (A). Therefore, it agrees with the compact weak* topology.

Theorem 1.1.19. Let (A,L) be an ordered pair with A a unital C*-algebra and L is a
seminorm defined on a Jordan-Lie subalgebra dom(L) of sa (A) such that, for some
K ⩾ 1:

∀a,b ∈ dom(L) max

{
L

(
ab +ba

2

)
,L

(
ab −ba

2i

)}
⩽K (∥a∥AL(b)+L(a)∥b∥A+L(a)L(b)) ,

and L(1) = 0.
The following assertions are equivalent.

1. (A,L) is a K -quantum compact metric space.

2. The space dom(L) is dense, {a ∈ dom(L) : L(a) = 0} =R1A, and there exists a
state µ ∈S (A) such that{

a ∈ dom(L) : L(a)⩽ 1,µ(a) = 0
}

is compact in A.

3. The space dom(L) is dense, {a ∈ dom(L) : L(a) = 0} =R1A, and for all state
µ ∈S (A), the set {

a ∈ dom(L) : L(a)⩽ 1,µ(a) = 0
}

is compact in A.

Proof. If (A,L) is a quantum compact metric space, then dom(L) is dense by Propo-
sition (1.1.11), and {a ∈ dom(L) : L(a) = 0} is reduced toR1, by Proposition (1.1.15).

This theorem then follows from Theorem (1.1.18), and the fact that, in Definition
(1.1.1), we require the unit ball of L to be closed. Since A is complete, a subset of A
is compact if, and only if, it is totally bounded and closed in A.

We can use Theorem (1.1.19) to establish new examples, starting with the follow-
ing simple illustration.
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Example 1.1.20. Let (X ,d) be a compact metric space, and let M be a finite dimen-
sional C*-algebra. Let

A= {
f ∈C (X ,M) : f (x0) ∈C 1M

}
.

For all f ∈A, we set

L( f ) = sup

{∥∥ f (x)− f (y)
∥∥
M

d(x, y)
: x, y ∈ X , x ̸= y

}
.

Of course L(1A) = 0. By construction, if L( f ) = 0, then f : X →M is constant.
Since f (x0) ∈ R1M, we conclude that f ∈ R1A. By Arzéla-Ascoli theorem, { f ∈
sa (A) : L( f )⩽ 1,µ( f )⩽ 1} is totally bounded.

We also note that L( f g )⩽ L( f )
∥∥g

∥∥
A+∥∥ f

∥∥
AL(g ).

Embedd M in the algebra Md of d ×d matrices, for d large enough. Let∥∥(a j k )1⩽ j ,k⩽d
∥∥ = max{|a j k | : 1⩽ j ,k ⩽ d}

for all (a j k )1⩽ j ,k⩽d ∈Md . As A is finite dimensional, ∥·∥ is equivalent to ∥·∥M. Let∥∥ f
∥∥ = supx∈X

∥∥ f (x)
∥∥. Let f ∈ sa (A). For each f j k , there exists g j k Lipschitz such

that
∥∥ f j k − g j k

∥∥ < ε. Thus, the Lipschitz functions are dense.
So (A,L) is a quantum compact metric space.

Quantum compact metric spaces can be seen as a generalization of Lipschitz
algebras, i.e. algebras of Lipschitz functions over compact metric spaces. Now,
Lipschitz algebras are Banach algebras for a natural norm, and a similar result holds
for their noncommutative analogues.

Lemma 1.1.21. Let A be a Banach space and let L be a seminorm defined on a
dense subspace dom(L) of A. Let ∥a∥dom(L) := ∥a∥A +L(a) for all a ∈ dom(L). If
{a ∈A : L(a)⩽ 1} is closed, then (dom(L),∥·∥dom(L)) is a Banach space.

Proof. Let (an)n∈N be a Cauchy sequence in (dom(L),∥·∥L). Since ∥·∥A ⩽ ∥·∥dom(L),
we conclude that (an)n∈N is a Cauchy sequence in sa (A). Since (sa (A),∥·∥A) is
complete, there exists a ∈ sa (A) such that limn→∞ ∥an −a∥A = 0.

For all p, q ∈ N, we have |L(ap ) − L(aq )| ⩽ L(ap − aq ) ⩽
∥∥ap −aq

∥∥
dom(L), so

(L(an))n∈N is a Cauchy sequence, and thus in particular, a bounded sequence, in
dom(L). Let M > 0 such that, for all n ∈N, we have L(an)⩽ M . Since {b ∈ dom(L) :
L(b)⩽ M } is closed, by assumption, in (A,∥·∥A), we conclude that a ∈ {b ∈ dom(L) :
L(b)⩽ M }, i.e. L(a)⩽ M .

Now, let ε> 0. Since (an)n∈N is a Cauchy sequence in (dom(L),∥·∥dom(L)), there

exists N ∈N such that, for all p, q ∈N, if p ⩾ N and q ⩾ N , then
∥∥ap −aq

∥∥
dom(L) < ε.

In particular, L(ap −aq ) < ε. Now, by assumption, {b ∈ dom(L) : L(b)⩽ ε} is closed
in (sa (A),∥·∥A). Fix q ⩾ N . Since (ap −aq )q∈N converges to a −aq in (sa (A),∥·∥A),
we conclude that L(a −aq )⩽ ε. Thus, for all q ⩾ N , we have shown L(a −aq ) < ε, i.e.
limn→∞L(an −a) = 0.

Consequently, limn→∞ ∥a −an∥dom(L) = 0, i.e. (an)n∈N converges to a ∈ dom(L).
Therefore, (dom(L),∥·∥dom(L)) is a Banach space.
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Theorem 1.1.22. If (A,L) is a quantum compact metric space, and if, for all a ∈
dom(L), we define

∥a∥dom(L) = ∥a∥A+L(a),

then (dom(L),∥·∥dom(L)) is a Banach Jordan-Lie algebra.
The canonical injection a ∈ dom(L) 7→ a ∈A is a compact linear map (i.e., it maps

the closed unit ball of its domain to a compact subset of sa (A)).

Proof. By Lemma (1.1.21), the space (dom(L),∥·∥L) is a Banach space.

Let now C = K (1,1,1,1); we recall from Remark (1.1.26) that for all a,b ∈ dom(L):

max{L(ℜ(ab)),L(ℑ(ab))}⩽C (L(a)∥b∥A+L(b)∥a∥A+L(a)L(b)).

We therefore compute, for all a,b ∈ dom(L):

∥ℜ(ab)∥dom(L) = ∥ℜ(ab)∥A+L(ℜ(ab))

⩽ ∥a∥A ∥b∥A+C (L(a)∥b∥A+∥a∥AL(b)+L(a)L(b))

⩽C (∥a∥A ∥b∥A+L(a)∥b∥A+∥a∥AL(b)+L(a)L(b))

⩽C (∥a∥A+L(a)) (∥b∥A+L(b))

⩽C ∥a∥dom(L) ∥b∥dom(L) .

Consequently, the bilinear map (a,b) ∈ dom(L)2 7→ ℜab is continuous. A similar
argument shows that the Lie product a,b ∈ dom(L) 7→ ℑ(ab) is also continuous. This
concludes our proof that (dom(L),∥·∥L) is a Banach Jordan-Lie algebra.

It remains to prove that S := {a ∈ dom(L) : ∥a∥L ⩽ 1} is compact in sa (A). Let
µ ∈ S (A). Let (an)n∈N be a sequence in S. The sequence (µ(an))n∈N is valued in
[−1,1], and thus it has a convergent subsequence (µ(a f (n))n∈N) with limit denoted
by l . Now, µ(a f (n) −µ(a f (n))) = 0 and L(a f (n) −µ(a f (n))) = L(a f (n)) ⩽ 1 for all n ∈
N; since (A,L) is a quantum compact metric space, by Theorem (1.1.19), the set
{a ∈ dom(L) : L(a) ⩽ 1,µ(a) = 0} is compact in sa (A). Therefore, there exists a
convergent subsequence (a f (g (n))−µ(a f (g (n))))n∈N of (a f (n)−µ(a f (n)))n∈N with limit
in b ∈ dom(L) such that µ(b) = 0 and L(b) ⩽ 1. Therefore, (a f (g (n)))n∈N converges
to b + l . By lower semicontinuity of L and continuity of the norm, we conclude
∥b + l∥L⩽ 1, concluding our proof.

Remark 1.1.23. Let A be a unital C*-algebra, and let L be a seminorm defined
on a dense subspace of sa (A) with L(1) = 0 and {a ∈ dom(L) : ∥a∥A+L(a) ⩽ 1} a
compact set. If qdiam(A,L) <∞, then mkL metrizes the weak* topology of S (A),
thus providing another avenue to characterize quantum compact metric spaces.
Indeed, let µ ∈ S (A). Using the same argument as for Lemma (1.1.14), we have∥∥a −µ(a)

∥∥
A ⩽ qdiam(A,L)L(a). So

{a ∈ dom(L) : L(a)⩽ 1,µ(a) = 0} ⊆ {a ∈ dom(L) : ∥a∥A+L(a)⩽ qdiam(A,L)+1}.

The set {a ∈ dom(L) : ∥a∥A+L(a) ⩽ qdiam(A,L)+1} is compact (since scaling is
continuous) and thus {a ∈ dom(L) : L(a)⩽ 1,µ(a) = 0} is totally bounded. We then
apply Theorem (1.1.18).
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A recurrent theme is the importance of the domain of the Lipschitz seminorms
of quantum compact metric spaces, and a first taste of this is given by the following
characterization of finite dimensional quantum compact metric spaces.

Theorem 1.1.24. LetA be a Banach space, and let L be a seminorm defined on a dense
subspace dom(L) of A such that K := {a ∈ dom(L) : L(a) = 0} is finite dimensional,

and the image of {a ∈ dom(L) : L(a)⩽ 1} in A⧸K is compact in A.
The space A is finite dimensional if, and only if, dom(L) =A.

Proof. If A is finite dimensional, then the domain dom(L) of L is also finite dimen-
sional, hence complete, hence closed. Since it is dense in A, we conclude that
dom(L) =A.

Conversely, assume that dom(L) =A. Let B :=A⧸K , endowed with the quotient
norm form A. Let Br be the image by the canonical surjection of {a ∈ dom(L) :
L(a) ⩽ r } in B, for all r > 0. Since dom(L) =A, we observe that B= ⋃

n∈NBn . By
assumption on L, the set Bn is compact, hence closed in B for all n ∈N (since B is
Hausdorff).

Since B is complete, by the Baire Category Theorem, there exists n ∈N such
that Bn has nonempty interior. Let U ⊆Bn be a nonempty open ball. Since Bn is
compact, U is totally bounded. Therefore, the open unit ball of B is totally bounded;
as B is complete, the closed unit ball of B is thus compact. Consequently, B is finite

dimensional. Therefore, A is also finite dimensional as claimed, since A⧸K =B and
K are both finite dimensional.

Corollary 1.1.25. If (A,L) is a quantum compact metric space, then A is finite dimen-
sional if, and only if, dom(L) = sa (A).

Proof. By Theorem (1.1.24), we conclude that sa (A) = dom(L) if, and only if, sa (A)
is finite dimensional, which in turn is equivalent to A being finite dimensional.

Remark 1.1.26. In the literature, a seemingly more general concept of F -(quasi-
)Leibniz inequality was introduced. For any function F : [0,∞)4 → [0,∞) which is
increasing for the product order on [0,∞)4, let us say that (A,L) is a F -quantum
compact metric space when it satisfies all the conditions to be a quantum compact
metric space in Definition (1.1.1), except that we replace Expression (1.1.2) with:

∀a,b ∈ dom(L) max{L(ℜ(ab)),L(ℑ(ab))}⩽ F (∥a∥A ,∥b∥A ,L(a),L(b)).

Let now C := F (1,1,1,1). We then observe that for all a,b ∈ dom(L), neither being 0,

L(ℜ(ab)) = (∥a∥A+L(a)) (∥b∥A+L(b))L

(
ℜ

(
a

∥a∥A+L(a)

b

∥b∥A+L(b)

))
⩽ (∥a∥A+L(a)) (∥b∥A+L(b))F (1,1,1,1)

=C (∥a∥A+L(a))(∥b∥A+L(b))

=C (∥a∥AL(b)+∥b∥AL(a)+L(a)L(b)+∥a∥A ∥b∥A).
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Up to replacing a by a−µ(a) for any stateµ of S (A), we have ∥a∥A ⩽ qdiam(A,L)L(a)
by Lemma (1.1.14), which still applies still Equation (1.1.2) of Definition (1.1.1)
played no role in its proof. So we conclude that for all a,b ∈ dom(L),

L(ℜ(ab))⩽K (L(a)∥b∥A+L(b)∥a∥A+L(a)L(b)),

where K = max{C ,C qdiam(A,L)}. Note that in particular, for all a ∈ dom(L), we
have L(a)⩽KL(a) by choosing b = 1A, so K ⩾ 1 (or, when A=C, K may as well be
assumed to be greater than 1!). Thus, (A,L) is a K -quantum compact metric space
in the sense of Definition (1.1.1).

Owing to their current relative importance in the field, Leibniz quantum compact
metric spaces, which are more restrictive that 1-quantum compact metric spaces,
and more generally, (C ,D)-quantum compact metric spaces, which would be F -
quantum compact metric spaces for the function F : x, y, lx , ly 7→C (xly+ylx )+Dlx ly ,
are given a special name, as they form a subclass of the max{C ,D}-quantum compact
metric spaces. Whether this distinction is actually relevant is not entirely clear. We
will however see that it may be desirable to restrict our attention to subclasses of
quantum compact metric spaces with various additional properties, and this will be
relevant to the construction of the propinquity.

1.2 APPROXIMATELY FINITE DIMENSIONAL C*-ALGEBRAS AS QUANTUM
COMPACT METRIC SPACES

AF algebras provide interesting examples of quantum compact metric spaces. There
are different approaches, and we take the simplest one here. We begin with a few
facts about conditional expectations.

Definition 1.2.1. A conditional expectation E (·|B) : A→B onto B, where A is a
C*-algebra and B is a C*-subalgebra of A, is a linear positive map of norm 1 such
that for all b,c ∈B and a ∈A we have:

E (bac|B) = bE (a|B)c.

Lemma 1.2.2. Let A be a C*-algebra and B⊆A be a C*-subalgebra of A. IfE (·|B) :
A 7→B is a conditional expectation onto B, then the seminorm:

S : a ∈A 7→ ∥a −E (a|B)∥A

is a (2,0)-quasi-Leibniz seminorm.
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Proof. Let a,b ∈A. We have:

S(ab) = ∥ab −E (ab|B)∥A
⩽ ∥ab −aE (b|B)∥A+∥aE (b|B)−E (ab|B)∥A
⩽ ∥a∥A∥b −E (b|B)∥A
+∥aE (b|B)−E (aE (b|B)|B)+E (a(E (b|B)−b)|B)∥A

⩽ ∥a∥A∥b −E (b|B)∥A+∥a −E (a|B))∥A∥E (b|B)∥A
+∥E (a(b −E (b|B))|B)∥A

⩽ ∥a∥A∥b −E (b|B)∥A+∥a −E (a|B)∥A∥E (b|B)∥A
+∥a∥A∥b −E (b|B)∥A

⩽ 2∥a∥A∥b −E (b|B)∥A+∥a −E (a|B))∥A∥b∥A
⩽ 2(∥a∥AS(b)+∥b∥AS(a)) .

This proves our lemma.

AF algebras with a faithful tracial state provide us with useful conditional expec-
tations, for our purpose.

Theorem 1.2.3. If A= cl(
⋃

n∈NAn) is a unital C*-algebra with a faithful tracial state
τ, where (An)n∈N is an increasing sequence of C*-subalgebras of A, with C1 = A0,
then for all n ∈N, there exists a unique conditional expectationEn :A↠An onto An

such that τ◦En = τ.

Proof. Let π be the GNS representation of A on the Hilbert space L2(A,τ) (the
completion of A for a,b ∈A 7→ τ(a∗b)).

To begin with, we note that, from the standard GNS construction, we have the
following:

1. since τ is faithful, the map ξ : a ∈A 7→ a ∈ L2(A,τ) is injective (it could also be
written a ∈A 7→ aω where ω= ξ(1) is the canonical cyclic vector),

2. since ∥ξ(a)∥L2(A,µ) =
p
τ(a∗a)⩽ ∥a∥A for all a ∈A, the map ξ is a continuous

(weak) contraction,

3. by construction, ξ(ab) =π(a)ξ(b) for all a,b ∈A.

Let n ∈N. Since An is finite dimension, ξ(An) is a closed subspace of L2(A,τ).
Let Pn be the orthogonal projection from L2(A,τ) onto ξ(An).

We thus note that for all a ∈A, we have Pn(ξ(a)) ∈ ξ(An), thus, since ξ is injective,
there exists a uniqueEn(a) ∈An with ξ(En(a)) = Pn(ξ(a)).

If a ∈An , then Pnξ((a)) = ξ(a) soEn(a) = a. ThusEn is onto An , and restricts to
the identity on An .

We now prove that Pn commutes with π(a) for all aAn . Let a ∈ An . We note
that if b ∈ An then π(a)ξ(b) = ξ(ab) ∈ ξ(An) since An is a subalgebra of A. Thus
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π(a)ξ(An) ⊆ ξ(An). Since An is closed under the adjoint operation, and π is a *-
representation, we haveπ(a∗)ξ(An) ⊆ ξ(An). Thus, if we let x ∈ ξ(An)⊥ and y ∈ ξ(An),
we then have:

〈π(a)x, y〉=〈x,π(a∗)y〉=0,

i.e. π(a)ξ(An))⊥ ⊆ ξ(An)⊥. Consequently, if x ∈ L2(A,τ), writing x = Pn x +P⊥
n x, we

have:
Pnπ(a)x = Pnπ(a)Pn x +Pnπ(a)P⊥

n x =π(a)Pn x.

In other words, Pn commutes with π(a) for all a ∈An .
As a consequence, for all a ∈An and b ∈A:

ξ(En(ab)) = Pnπ(a)ξ(b) =π(a)Pnξ(b) =π(a)ξ(En(b)) = ξ(aEn(b)).

ThusEn(ab) = aEn(b) for all a ∈An and b ∈A.
We now wish to prove that En is a *-linear map. Let J : ξ(x) 7→ ξ (x∗). The key

observation is that, since τ is a trace:

〈Jξ(x), Jξ(y)〉 = τ(y x∗) = τ(x∗y) = 〈x, y〉

hence J is an conjugate-linear isometry and can be extended to L2(A,τ). It is easy to
check that J is surjective, as it has a dense range and is isometric, in fact J = J∗ = J−1.
This is the only point where we use that τ is a trace.

We now check that Pn and J commute. To begin with, we note that:

(JPn J )(JPn J ) = JPn J

and thus the self-adjoint operator JPn J is a projection. Let a ∈A. Then:

JPn Jξ(a) = JPnξ(a∗) = Jξ(En(a∗)) = ξ(En(a∗)∗) ∈ ξ(An).

Thus JPn J = Pn , so Pn and J commute since J 2 = 1B(L2(A,τ)).
Consequently for all a ∈A:

ξ(En(a∗)) = Pnξ(a∗) = Pn Jξ(a) = JPnξ(a) = Jξ(En(a)) = ξ(En(a)∗),

soEn(a∗) =En(a)∗.
In particular, we note that for all a ∈A and b,c ∈An we have:

En(bac) = bEn(ac) = bEn(c∗a∗)∗ = b(c∗En(a)∗)∗) = bEn(a)c.

To prove that En is a positive map, we begin by checking that it preserves the
state τ. First note that 1A ∈An so ω ∈ ξ(An), and thus Pnω=ω. Thus for all a ∈A:

τ(En(a)) = 〈π(En(a))ω,ω〉
= 〈ξ(En(a)),ω〉=〈Pnξ(a),ω〉
= 〈ξ(a),Pnω〉=〈π(a)ω,Pnω〉
= 〈π(a)ω,ω〉 = τ(a).



1.2. APPROXIMATELY FINITE DIMENSIONAL C*-ALGEBRAS AS QUANTUM
COMPACT METRIC SPACES 15

Thus En preserves the state τ. More generally, using the conditional expectation
property, for all b,c ∈An and a ∈A:

τ(bEn(a)c) = τ(bac).

We now prove that En is positive. First, τ restricts to a faithful state of An and
L2(An ,τ) is given canonically by ξ(An). Let now a ∈ sa (A) with a ⩾ 0. We now have
for all b ∈An that:

〈En(a)ξ(b),ξ(b)〉 = τ(b∗En(a)b) = τ(b∗ab)⩾ 0.

Thus the operatorEn(a) is positive in An . ThusEn is positive.
SinceEn restricts to the identity on An , this map is of norm at least one. Now, let

a ∈ sa (A) and ϕ ∈S (A). Then ϕ◦En is a state of A sinceEn is positive and unital.
Thus

∣∣ϕ◦En(a)
∣∣⩽ ∥a∥A. AsEn(sa (A)) ⊆ sa (A), we have:

∀a ∈ sa (A) ∥En(a)∥A = sup
{|ϕ◦En(a)| :ϕ ∈S (A)

}
⩽ ∥a∥A. (1.2.1)

ThusEn restricted to sa (A) is a linear map of norm 1.
On the other hand, for all a ∈A, we have:

0⩽En
(
(a −En(a))∗ (a −En(a))

)
=En

(
a∗a

)−En
(
En(a)∗a

)−En
(
a∗En(a)

)+En
(
En(a)∗En(a)

)
=En

(
a∗a

)−En(a)∗En(a).

Thus for all a ∈A we have:

∥En(a)∥2
A = ∥∥En(a)∗En(a)

∥∥
A

⩽
∥∥En(a∗a)

∥∥
A

⩽
∥∥a∗a

∥∥
A = ∥a∥2

A by Inequality (1.2.1).

Thus En has norm 1. We conclude that En is a conditional expectation onto An

which preserves τ.
Now, assume T :A→An is a unital conditional expectation such that τ◦En = τ.

As before, we have:

τ(bT (a)c) = τ(bac)

for all a ∈A and b,c ∈An . Thus, for all x, y ∈ L2(An ,τ) and for all a ∈A, we compute:

〈T (a)x, y〉 = τ(y∗T (a)x) = τ(y∗ax) = τ(y∗En(a)x) = 〈En(a)x, y〉

and thus En(a) = T (a) for all a ∈A. So En is the unique conditional expectation
from A onto An which preserves τ.

With this in mind, we can introduce an interesting quantum compact metric
space structure on many AF algebras.
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Theorem 1.2.4. Let A = cl(
⋃

n∈NAn) be a unital C*-algebra, where (An)n∈N is an
increasing sequence of C*-subalgebras of A, withC1 =A0. If A has a tracial state τ,
then there exists a (unique) conditional expectation En : A→An on each An such
that τ◦En =En , for each n ∈N; moreover, if (dn)n∈N is a strictly increasing sequence
on nonnegative real numbers with limn→∞ dn =∞, then, setting for all a ∈ sa (A):

L(a) := sup
{
dn ∥a −En(a)∥: n ∈N}

,

allowing for infinity, then (A,L) is a quantum compact metric space.

Proof. First, we observe that if L(a) = 0, then a ∈R: If L(a) = 0, then ∥a −E0(a)∥A =
0. Now,E0 = τ since τ◦E0 = τ, and A0 =C. So a ∈ sa (A)∩C1 =R1.

Now, for all n ∈N, we have sa (An) ⊆ dom(Ln). In particular, dom(L) is dense in
sa (A). It is immediate since if a ∈An , thenEm(a) = a for all m ⩾ n.

We already know that L satisfies the (2,0)-Leibniz inequality, has dense domain,
and its kernel isR.

Let B = {a ∈ sa (A) : L(a)⩽ 1,τ(a) = 0}. Let ε > 0. There exists N ∈N such that,
for all n ⩾ N , we have dn > 2

ε . If a ∈ B , then EN (a) ∈AN , and τ◦EN (a) = τ(a) = 0.
SoE(B) ⊆C := {b ∈ sa (AN ) : L(b)⩽ 1,τ(b) = 0}. On the other hand, by definition of
L, we also have ∥a −EN (a)∥A ⩽ dn < ε

2 .
Now, let B := kerτ∩sa (AN ). Of course, B is finite dimensional, and moreover,

the restriction of L to B is now a norm (note that it is defined on all of sa (AN ) by
construction). So C is the closed unit ball for some norm in finite dimension, and
thus it is compact. So C is also totally bounded for the C*-norm on AN , since all
norms are equivalent in finite dimension.

Therefore, there exists a finite ε
2 -dense subset of C . Therefore, for all a ∈ B , there

exists c ∈ F such that ∥a − c∥A ⩽ ∥a −EN (a)∥A+∥EN (a)−b∥A < ε. Thus, B is totally
bounded. By Theorem (1.1.19), we conclude (A,L) is a quantum compact metric
space.

1.3 QUANTUM COMPACT METRIC SPACES FROM ERGODIC ACTIONS OF
METRIC COMPACT GROUPS

Definition 1.3.1. A length function ℓ : G →R over a group G is a real-valued function
such that

1. {g ∈G : ℓ(g ) = 0} = {e} where e is the unit of G ,

2. ℓ(g g ′)⩽ ℓ(g )+ℓ(g ′) for all g , g ′ ∈G ,

3. ℓ(g−1) = ℓ(g ) for all g ∈G .

We immediately note that 0 = ℓ(e)⩽ ℓ(g )+ℓ(g−1) = 2ℓ(g ) so a length function is
always valued in [0,∞). If G is a group, and if d is a left invariant metric on G , then
setting ℓ(g ) := d(e, g ) for all g ∈G defines a length function over G . Conversely, if ℓ is



1.3. QUANTUM COMPACT METRIC SPACES FROM ERGODIC ACTIONS OF
METRIC COMPACT GROUPS 17

a length function over G , then setting d : g ,h ∈G 7→ ℓ(h−1g ) defines a left invariant
metric on G .

We will prove, in this section, the following theorem, which provides us with
many core examples for the theory of quantum compact metric spaces.

Theorem 1.3.2. Let α be a strongly continuous action of a compact group G on a
unital C*-algebra A. Let ℓ be a continuous length function over G. For all a ∈ sa (A),
we define:

L(a) := sup

{∥∥a −αg (a)
∥∥
A

ℓ(g )
: g ∈G \ {e}

}
, (1.3.1)

allowing for the value ∞.
The ordered pair (A,L) is a quantum compact metric space if, and only if,{

a ∈A : ∀g ∈G αg (a) = a
}=C.

Of course, L defined in Theorem (1.3.2) is a seminorm, defined on some subspace
of sa (A) (at least onR1!). We will spend the rest of this section proving this result
and illustrating it with some specific examples. We begin with the easy observation
that our condition is necessary.

Necessary condition. If a ∈A is chosen so thatαg (a) = a for all g ∈G , thenαg (ℜa) =
1
2

(
αg (a)+αg (a)∗

)= 1
2 (a +a∗) =ℜa. Now, ℜa ∈ sa (A) and by definition, L(ℜa) = 0.

Since (A,L) is a quantum compact metric space, we conclude that ℜa ∈ R. We
similarly conclude that ℑa ∈R, and thus a ∈C, as claimed.

The sufficient condition is more involved. We begin with the easier observations.
Let us fix our notation for the following few results. We let G be a compact group,
endowed with a continuous length function ℓ. We assume given a unital C*-algebra
A, and a strongly continuous action α of G on A, with the property that its fixed
point C*-subalgebra A1 := {a ∈A : ∀g ∈G αg (a) = a} isC. We define L on A as in
Expression (1.3.1) of Theorem (1.3.2).

Lemma 1.3.3. We have {a ∈ sa (A) : L(a) = 0} =R.

Proof. If L(a) = 0 then
∥∥αg (a)−a

∥∥
ℓ(g ) = 0 for all g ∈G \ {e}, and thus αg (a) = a. So

a ∈ sa (A)∩C1 =R.

Lemma 1.3.4. For all a,b ∈ sa (A),

max{L(ℜab),L(ℑab)}⩽ ∥a∥AL(b)+L(a)∥b∥A .

Proof. We extend L to a seminorm on A (allowing for the value ∞) by setting, for all
a ∈A:

L(a) := sup

{∥∥a −αg (a)
∥∥
A

ℓ(g )
: g ∈G \ {e}

}
.
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Let a,b ∈A. Since, for all g ∈G :∥∥ab −αg (ab)
∥∥
A = ∥∥ab −αg (a)αg (b)

∥∥
A

⩽
∥∥∥a(b −αb(b))

∥∥∥
A
+∥∥(a −αg (a))αg (b)

∥∥
A

⩽ ∥a∥A
∥∥b −αg (b)

∥∥
A+∥∥a −αg (a)

∥∥
A

∥∥αg (b)
∥∥
A

= ∥a∥A
∥∥b −αg (b)

∥∥
A+∥∥a −αg (a)

∥∥
A ∥b∥A ,

we conclude that L(ab)⩽ ∥a∥AL(b)+L(a)∥b∥A.
Therefore, since L is a seminorm, for any a,b ∈ sa (A):

L(ℜab)⩽
1

2
(L(ab)+L(ba))

⩽
1

2
(∥a∥AL(b)+L(a)∥b∥A+∥b∥AL(a)+L(b)∥a∥A)

= ∥a∥AL(b)+L(a)∥b∥A .

A similar reasoning applies for ℑab in place of ℜab, thus concluding our proof.

Remark 1.3.5. If L is densely defined on the self-adjoint space sa (A) of a unital
C*-algebra A, and is obtained as the restriction of some seminorm densely defined
on A which satisfies the usual Leibniz inequality, then the proof of Lemma (1.3.4)
applies to prove L satisfies our form of the Leibniz inequality.

Lemma 1.3.6. L is lower semicontinuous over sa (A).

Proof. For each g ∈G \ {e}, the function a ∈A 7→ ∥a−αg (a)∥A
ℓ(g ) is continuous. Thus L,

as the pointwise supremum of continuous functions over sa (A), is lower semicon-
tinuous.

In order to obtain the other properties of L, we will work with the following
generalized convolution operator.

Notation 1.3.7. Let λ be the Haar probability measure on G . For all f ∈ L1(G ,λ), we
define

α f
∣∣∣∣ A 7→ A

a 7−→ ∫
G f (g )αg (a)dλ(g )

We recall that there exists a sequence ( fn)n∈N in C (G) such that, for all h ∈C (G),
we have limn→∞

∫
G fnh dλ= h(0); of course, if A ⊆C (G) is a dense subspace, then

we can ask for fn ∈ A for all n ∈N. With this in mind, we prove the following.

Lemma 1.3.8. dom(L) is dense in sa (A).
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Proof. For any f ∈C (G), we observe:

α f (a)−αg (α f (a)) =
∫

G
f (h)αh(a)dλ(h)−

∫
G

f (h)αg h(a)dλ(h)

=
∫

G
f (g )αh(a)dλ(h)−

∫
G

f (g−1h)αh(a)dλ(h)

=
∫

G
( f (h)− f (g−1h))αh(a)dλ(h),

so: ∥∥α f (a)−αg (α f (a))
∥∥
A

ℓ(g )
=

∫
G

| f (h)− f (g−1h)

ℓ(g )

∥∥∥αh(a)
∥∥∥
A

dλ(h)∥a∥A

⩽
∫

G

| f (h)− f (g−1h)

ℓ(g )
dλ(h)∥a∥A

=
∫

G

| f (h)− f (g−1h)

ℓ(g−1)
dλ(h)∥a∥A .

Let E be the space of all functions f ∈C (G) for which there exists K f > 0 such
that supg∈G

∫
G

∣∣ f (h)− f (g−1h)
∣∣ dλ(h) ⩽ K f ℓ(g ). First, note that all the constant

functions belong to E . Moreover, note that since |ℓ(hk)−ℓ(g−1hk)|⩽ ℓ(g−1) = ℓ(g )
for all g ,h,k ∈G , the functions h ∈G 7→ ℓ(hk) all belong to E ; therefore E separates
the points of G (since ℓ(hk−1) = 0 if, and only if, h = k). Last, let u, v ∈ E . We note
that, for all g ∈G :∫

G
|uv(h)−uv(g−1h)|dλ(h)⩽ ∥u∥C (G)

∫
G
|v(h)− v(g−1h)|dλ(h)

+
∫

G
|u(h)−u(g−1h)|dλ(h) ∥v∥C (G) ,

we also have uv ∈ E . So E is a subalgebra of C (G) which separates the points and
include the unit of C (G), and thus it is dense in C (G).

Therefore, there exists a sequence ( fn)n∈N in E such that, for all u ∈ C (G), we
have limn→∞

∫
G f u dλ= u(e); we also can assume that fn ⩾ 0 and that

∫
fn dλ= 1

for all n ∈N. Therefore, for all n ∈N:∥∥∥a −α fn (a)
∥∥∥
A
=

∥∥∥∥∫
G

fn(h)a − fn(h)αh(a)dλ(h)

∥∥∥∥
A

⩽
∫

G
fn(h)

∥∥∥a −αh(a)
∥∥∥
A

dλ(h)
n→∞−−−−→ ∥∥a −αe (a)

∥∥
A = 0.

Consequently, (α fn (a))n∈N converges to a, and α fn (a) ∈ dom(L) for all n ∈N. So
dom(L) is dense in sa (A).

The operator α f in Notation (1.3.7) enjoys two more relevant properties. First, it
has a nice property related to our Lip-norm which is sort of mean-value theorem.

Lemma 1.3.9. If f ∈ L1(G ,λ), then for all a ∈A,∥∥∥a −α f (a)
∥∥∥
A
⩽ L(a)

∥∥ f
∥∥

L1(G ,λ) .
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Proof. We compute:∥∥∥α f (a)−a
∥∥∥
A
=

∥∥∥∥∫
G

f (g )
(
αg (a)−a

)
dλ(g )

∥∥∥∥
A

since
∫

G
f dλ= 1,

⩽
∫

G
| f (g )|∥∥αg (a)−a

∥∥
A dλ(g )

⩽ L(a)
∫

G
| f (g )|dλ(g ),

as claimed.

Second, we have the following application of Harmonic analysis.
We note that α f ◦αh =α f ∗g .
If G is a compact group, and if π is an irreducible unitary representation of G ,

then π is finite dimensional. The character ξ of π is the function over G given by
g ∈G 7→ tr(π(a)), where tr is the normalized trace. We will write Ĝ for the set of all
characters of G . Now, ξ∗ξ′ = 0 if ξ,ξ′ ∈ Ĝ ,ξ ̸= ξ′, and ξ∗ξ= ξ, so αξ is an idempotent
on A.

Definition 1.3.10. The spectral subspace of a character ξ ∈ Ĝ of G , for the action α,
is the range of αξ.

Theorem 1.3.11. Let ℓ be a continuous function over a compact group G. Let α be a
strongly continuous action of G on a unital C*-algebra A. For all a ∈ sa (A), we define:

L(a) = sup

{∥∥αg (a)−a
∥∥
A

ℓ(g )
: g ∈G , g ̸= e

}
,

allowing for ∞.
The ordered pair (A,L) is a quantum compact metric space if, and only if:{

a ∈A : ∀g ∈G αg (a) = a
}=C1A.

Proof. We already proved the necessary condition. Conversely, assume that the
fixed point C*-algebra of α isC1A. Denoting Aχ as the range of αξ for any character
ξ of G . We thus have: A= cl

(⊕χAχ

)
. By [24], since the fixed point algebra of α isC,

Aχ is finite dimensional for all ξ.
Moreover, if f is a linear combination of characters χ1,. . . ,χn , of G , then the

operatorα f is valued in ⊕n
j=1Aχ j . As seen for instance in [54], there exists a sequence

( fn)n∈N of nonnegative valued linear combinations of characters of G , with norm 1
in L1(G ,λ), and such that limn→∞

∫
G fn(g )ℓ(g )dλ(g ) = ℓ(e) = 0.

Fix µ ∈ S (A). Let ε > 0. There exists N ∈N such that for all n ⩾ N , we have∫
G fn(g )ℓ(g )dλ(g ) < ε

2 . By Lemma (1.3.9), we conclude that, if a ∈ dom(L), L(a)⩽ 1,

then
∥∥a −α fn (a)

∥∥
A < ε

2 . On the other hand, the range of α fn is finite dimensional.

Thus {a ∈ dom(L)∩α fn (A) : L(a)⩽ 1,µ(a) = 0} is totally bounded since it is the ball
of some norm in the finite dimensional space {a ∈ sa (An)}∩kerµ.

Hence {a ∈ dom(L) : L(a) ⩽ 1,µ(a) = 0} is totally bounded. Since L is lower
semicontinuous on sa (A) and A is complete, we conclude that {a ∈ dom(L) : L(a)⩽
1,µ(a) = 0} is compact. By Theorem (1.1.19), our theorem is proven.
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1.4 LIPSCHITZ MORPHISMS AND QUANTUM ISOMETRIES

Quantum compact metric spaces form a category, when using the following notion
of Lipschitz morphisms.

Definition 1.4.1. A k-Lipschitz morphism π : (A,LA) → (B,LB), for k ⩾ 0, is a unital
*-morphism π from A to B such that

∀b ∈ sa (B) LB(π(a))⩽ kLA(a).

Notation 1.4.2. If π : (A,LA) → (B,LB) is a Lipschitz moprhism between two quan-
tum compact metric spaces (A,LA) and (B,LB), then we set:

dil (π) := inf{k > 0 : ∀a ∈ dom(LA) LB ◦π(a)⩽ kLA(a)} .

Theorem 1.4.3. Let (A,L) and (B,T) be two quantum compact metric spaces. Let
π :A→B be a unital *-morphism. The following assertions are equivalent.

1. π is a Lipschitz morphism,

2. π∗ :ϕ ∈S (B) 7→ϕ◦π ∈S (A) is a Lipschitz map from (S (B),mkS) to (S (A),mkL),

3. π(dom(L)) ⊆ dom(S).

Moreover, dil (π) = dil (π∗).

Proof. Assume that π is a k-Lipschitz morphism with k > 0. Let ϕ,ψ ∈S (B). Let
a ∈ dom(L) with L(a)⩽ 1; therefore, S(π(a))⩽ kL(a)⩽ k. Therefore,

|π∗(ϕ)(a)−π∗(ψ)(a)| = |ϕ(π(a))−ψ(π(a))|
= k

∣∣∣ϕ(
π

( a

k

))
−ψ

(
π

( a

k

))∣∣∣
= kmkS(ϕ,ψ).

Therefore, mkL(π∗(ϕ),π∗(ψ))⩽ kmkS(ϕ,ψ), as claimed.

Now, assume that π∗ is k-Lipschitz, with k > 0. If a ∈ dom(L), with L(a) ⩽ 1,
then, using Theorem (1.1.9):

S(π(a)) = sup

{ |ϕ(π(a))−ψ(π(a))|
mkS(ϕ,ψ)

:ϕ,ψ ∈S (B),ϕ ̸=ψ
}

= sup

{ |π∗(ϕ)(a)−π∗(ψ)(a)|
mkS(ϕ,ψ)

:ϕ,ψ ∈S (B),ϕ ̸=ψ
}

⩽ sup

{
kmkS(ϕ,ψ)

mkS(ϕ,ψ)
:ϕ,ψ ∈S (B),ϕ ̸=ψ

}
= k.

Therefore, S(a) ⩽ kL(a) for all a ∈ dom(L). If a ∉ dom(L), then L(a) =∞ and our
inequality is trivial. So π is k-Lipschitz.
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We have seen that (1) and (2) are equivalent, and indeed dil (π) = dil (π∗) under
this assumptions. In turn, this also shows that if either dil (π) =∞ or dil (π∗) =∞,
then so is the other. Moreover, we also note that (1) implies (3) trivially.

We conclude by proving that (3) implies (1). Thus, we assume that π(dom(L)) ⊆
dom(S). For all a ∈ sa (A), we set T(a) = S(π(a)). Note that T(a) < ∞ for all a ∈
dom(L) since π(a) ∈ dom(S). Since π is continuous, and S is lower semicontinuous
on sa (B), we conclude that T is also lower semi-continuous on sa (A). Of course,
T(1A) = 0 since π is unital.

For all a ∈ dom(L), we now set

∥a∥L := ∥a∥A+L(a) and ∥a∥T := ∥a∥A+T(a).

By Lemma (1.1.21), both (dom(L),∥·∥L) and (dom(L),∥·∥T) are Banach spaces.
Let ∥·∥∗ := ∥·∥L+∥·∥T.

If (xn)n∈N in dom(L) converges for the norm ∥·∥∗, then (xn)n∈N is Cauchy for
∥·∥∗ and therefore, (xn)n∈N is Cauchy for both ∥·∥L and ∥·∥T. By completeness
of (dom(L),∥·∥L) and (dom(L),∥·∥T), the sequence (xn)n∈N converges to some x ∈
dom(L) for ∥·∥L, and to some y ∈ dom(L) for ∥·∥T. By construction, since ∥·∥A ⩽
min{∥·∥L ,∥·∥T}, we then conclude that (xn)n∈N converges for ∥·∥A as well, and thus
x = y . Therefore, (xn)n∈N converges to x for both ∥·∥L and ∥·∥T, and therefore, for
∥·∥∗. So (dom(L),∥·∥∗) is a Banach space as well.

Since ∥·∥L⩽ ∥·∥∗, the open mapping theorem now implies that there exists k > 0
such that ∥·∥∗ ⩽ k ∥·∥L, and thus ∥·∥T⩽ k ∥·∥L.

Let now a ∈ dom(L), and let µ ∈S (B). We then compute:

S(π(a)) = S(π(a)−µ(π(a))) = S(π(a −µ(a)))

=T(a −µ(a)) = ∥∥a −µ(a)
∥∥
T−∥∥a −µ(a)

∥∥
A

⩽ k
∥∥a −µ(a)

∥∥
L−

∥∥a −µ(a)
∥∥
A

= kL(a −µ(a))+ (k −1)
∥∥a −µ(a)

∥∥
A

⩽ kL(a)+ (k −1)qdiam(A,L)L(a)

= (k + (k −1)qdiam(A,L))L(a).

Therefore, π is Lipschitz (with dil (π)⩽ k + (k −1)qdiam(A,L)).
Our theorem is thus proven.

Proposition 1.4.4. If, for any pair (A,LA) and (B,LB) of quantum compact metric
spaces, we define Hom((A,LA), (B,LB)) the set of all Lipschitz morphisms from
(A,LA) to (B,LB), then Hom(·, ·) endows the class of quantum compact metric spaces
with a category structure, whose morphisms are the Lipschitz morphisms.

Proof. This is immediate.

It is immediate to check that an isomorphism between two quantum compact
metric spaces (A,L) and (B,S) in our category of Lipschitz morphisms is given by a
*-isomorphism π : A→B such that, π(dom(L)) = dom(S), and for some constant
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C ⩾ 1, we have 1
C L⩽ S◦π⩽CL on dom(L). We will however work with a stronger

notion of isomorphism in this note.

Quantum isometries are essential examples of Lipschitz morphisms. To motivate
the following definition, due to Rieffel [54], we begin by recalling from [50] that if
(X ,d) is a metric space, if Z ⊆ X is not empty, and if f : Z →R is a Lipschitz function
over Z , then there exists a Lipschitz function g : X →R such that the restriction of
g to Z is f , and dil

(
g
)= dil

(
f
)
. Now, let (Y ,m) be some other metric space, and let

f : X → Y be an isometry. If h ∈ sa (C (Y )) is Lipschitz, then h ◦ f is Lipschitz with
the same Lipschitz constant; but thanks to the extension result we just recalled, if
h ∈ sa (C (X )) is Lipschitz, then we can define h′ : f (X ) →R such that h′( f (x)) = h(x)
for all x ∈ X (since f in injective, this is well-defined); of course h′ is Lipschitz
with dil

(
h′) = dil (h) since f is an isometry; we can then extend h′ to a function

h′′ : Y →Rwith dil
(
h′′)= dil (h). Now, it is obvious that any function k : Y →R such

that k ◦ f = h, we have dil (k) ⩾ dil (h) (allowing for dil (k) =∞). In summary, we
note that dil (h) = min{dil (k) : k ∈ sa (C (Y )),k ◦ f = h}. This observation motivates
the following definition.

Definition 1.4.5. A quantum isometry π : (A,L) → (B,S) is a surjective Lipschitz
morphism π :A→B such that

∀b ∈ dom(S) S(b) = inf{L(a) :π(a) = b} .

Note that by Definition (1.4.5), a quantum isometry is automatically a 1-Lipschitz
morphism.

Proposition 1.4.6. If π : (A,L) → (B,S) is a quantum isometry between two quantum
compact metric spaces (A,L) and (B,S), then π∗ : ϕ ∈ S (B) 7→ ϕ◦π ∈ S (A) is an
isometry from (S (B),mkS) into (S (A),mkL), and for all b ∈ dom(S), there exists
a ∈ dom(L) such that S(b) = L(a).

Proof. We first note that:

{b ∈ dom(S) : S(b)⩽ 1} =π ({a ∈ dom(L) : L(a)⩽ 1}) .

Indeed, since π is 1-Lipschitz, we have π ({a ∈ dom(L) : L(a)⩽ 1}) ⊆ {b ∈ dom(S) :
S(b) ⩽ 1}. Let now b ∈ dom(S). By Definition (1.4.5), for all n ∈ N, there exists
an ∈ dom(L) such that π(an) = b and L(an) ⩽ S(b)+ 1

n+1 . Let µ ∈ S (B), and note
that µ ◦π ∈ S (A). So µ ◦π(an) = µ(b). Since (A,L) is a quantum compact metric
space, the set C := {c ∈ dom(L) : L(c)⩽ S+1,µ◦π(c) = 0} is compact in sa (A), so the
sequence (an −µ(b))n∈N has a convergent subsequence with limit in C ; so (an)n∈N
has a convergent subsequence with limit denoted by a. By continuity, π(a) = b,
and by lower semi-continuity, L(a) ⩽ S(b). Again since π is a quantum isometry,
S(b)⩽ L(a) since π(a) = b. So S(b) = L(a). In turn, this implies {b ∈ dom(S) : S(b)⩽
1} ⊆π ({a ∈ dom(L) : L(a)⩽ 1}).
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Let ϕ,ψ ∈S (B). We then compute:

mkL(π∗(ϕ),π∗(ψ)) = sup
{|ϕ(π(a))−ψ(π(a))| : a ∈ dom(L),L(a)⩽ 1

}
= sup

{|ϕ(b)−ψ(b)| : b ∈ dom(S),S⩽ 1
}

=mkS(ϕ,ψ).

So π∗ is an isometry from (S (B),mkS) to (S (A),mkL).

Proposition 1.4.7. Let (X ,dX ) and (Y ,dY ) be two compact metric spaces. A function
f : X → Y is an isometry if, and only if, f ∗ : h ∈C (Y ) 7→ h ◦ f ∈C (X ), is a quantum
isometry from (C (X ),LdX ) to (C (Y ),LdY ).

Proof. We have shown, prior to Definition (1.4.5), that if f : X → Y is an isometry,
then f ∗ is a quantum isometry. Assume now that f : X → Y is a map such that f ∗ is
a quantum isometry. Then f ∗∗ :ϕ ∈S (C (X )) →S (C (Y )) is an isometry. For any
x ∈ X , write ex : f ∈ C (X ) 7→ f (x), and similarly if y ∈ Y . Let x, y ∈ X — identified
with the evaluation maps at x and y , which are states. Then

dY ( f (x), f (y)) =mkLdY
(e f (x),e f (y)) =mkLdY

( f ∗∗(ex ), f ∗∗(ey ))

=mkLdX
(ex ,ey ) = dX (x, y).

This concludes our computation.

The previous proposition does not generalize to the noncommutative setting.
First, isometries between state spaces endowed with their respective Monge-Kanto-
rovich metric may not be affine, let alone dual maps to *-morphisms. Second, we
note that we encounter a difficulty in trying to establish that even if an isometry
is the dual of a *-morphism, things do not quite work in general. Let (A,L) and
(B,S) be two quantum compact metric spaces, and π :A→B be a unital surjective
*-morphism, such that π∗ : S (B) → S (A) is an isometry from (S (B),mkS) into
(S (A),mkL). Let b ∈ dom(S), and a ∈ π−1({b}). Using Theorem (1.1.9), we then
have:

S(b) = sup

{ |ϕ(b)−ψ(b)|
mkS(ϕ,ψ)

:ϕ,ψ ∈S (B),ϕ ̸=ψ
}

= sup

{ |ϕ(π(a))−ψ(π(a))|
mkS(ϕ,ψ)

:ϕ,ψ ∈S (B),ϕ ̸=ψ
}

= sup

{ |π∗(ϕ)(a)−π∗(ψ)(a)|
mkS(ϕ,ψ)

:ϕ,ψ ∈S (B),ϕ ̸=ψ
}

= sup

{ |π∗(ϕ)(a)−π∗(ψ)(a)|
mkL(π∗(ϕ),π∗(ψ))

:ϕ,ψ ∈S (B),ϕ ̸=ψ
}

⩽ sup

{ |µ(a)−ν(a)|
mkL(µ,ν)

:µ,ν ∈S (A),µ ̸= ν
}
= L(a).

So inf{L(a) : π(a) = b} ⩾ S(b). However, it is not clear how to obtain equality here.
Indeed, we can define a function â : ϕ ∈ π∗(S (B)) 7→ ϕ(b), and this function is
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Lipschitz with Lipschitz constant S(b), but in order to obtain an element of dom(L),
we would need to find an affine extension of â to S (A), with the same Lipschitz
constant; however McShane’s theorem does not provide such an affine extension in
general. So, this seems to be the limit of what we can obtain in the noncommutative
context. Quantum isometries are a stronger notion than isometries between state
spaces, even if we assume them to be dual of *-morphisms.

We can now check that quantum isometries give us a subcategory of the category
of quantum compact metric spaces.

Theorem 1.4.8. If (A,LA), (B,LB) and (D,LD) be three quantum compact metric
spaces, and if π : (A,LA) → (B,LB) and ϖ : (B,LB) → (D,LD) are quantum isome-
tries, then ϖ◦π is a quantum isometry from (A,LA) to (D,LD).

Proof. Of course,ϖ◦π is a Lipschitz morphism. Now, let d ∈ dom(LD). Ifϕ(π(a)) = d
for some a ∈ dom(LA), then we note that LB(π(a))⩾ LD(d) since ϖ is a quantum
isometry, and then LA(a) ⩾ LB(π(a)) since π is a quantum isometry, so LA(a) ⩾
LD(d).

By Proposition (1.4.6), there exists b ∈ dom(LB) such thatϖ(b) = d , and LB(b) =
LD(d). Similarly, there exists a ∈ dom(LA) such that π(a) = b and LA(a) = LB(b).
So LD(d) = L(a) with ϖ◦π(a) = d .

Altogether, we have shown that LD(d) = min{LA(a) : a ∈ dom(L),π(a) = d}. This
concludes our proof.

The proper notion of isomorphism between quantum compact metric spaces,
for our purpose, is given by isomorphisms in the subcategory of quantum compact
metric spaces with quantum isometries as arrows. We are led to the following
definition.

Definition 1.4.9. Let (A,L) and (B,S) be two quantum compact metric spaces. A
full quantum isometry π : (A,L) → (B,S) from (A,L) to (B,S) is a *-isomorphism
π :A→B such that π(dom(L)) = dom(S), and S◦π= L on sa (A).

Proposition 1.4.10. Let (A,L) and (B,S) be two quantum compact metric spaces. A
*-morphism π : A→B is a full quantum isometry from (A,L) to (B,S) if, and only
if, π is a *-isomorphism and a quantum isometry such that π−1 is also a quantum
isometry.

Proof. If π is a full quantum isometry, then it is a *-isomorphism. Moreover, let
b ∈ dom(S). By definition, S(b) = L(π−1(a)) = inf{L(a) : π(a) = b} since π−1({b}) =
{π−1(b)}. So π is a quantum isometry. The same reasoning applies to π−1, once we
note that S= L◦π−1.

Conversely, assume π is a *-isomorphism such that π and π−1 are quantum
isometries. It follows that π(dom(L)) ⊆ dom(S), and π−1(dom(S)) ⊆ dom(L), so

π(dom(L)) ⊆ dom(S) =π(π−1(dom(S))) ⊆π(dom(L))
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so π(dom(L)) = dom(S). Moreover, let a ∈ dom(L). Then S(π(a)) = inf{L(c) :π(c) =
a} = L(a) since π is a quantum isometry, and it is a bijection. This concludes our
proof.

For our purpose, two quantum compact metric spaces are “the same” when
there exists a full quantum isometry between them.

1.5 THE LIPSCHITZ DISTANCE

The Lipschitz distance between compact metric spaces [20] provides a distance
between homeomorphic compact metric spaces based upon bi-Lipschitz isomor-
phisms, and thus it is natural to define it in this paper in light of our study of Lipschitz
morphisms.

This section provides the noncommutative generalization of the Lipschitz metric,
which in essence is a metric on Lip-norms with common domains. The quantum
Lipschitz distance is complete and dominates the quantum propinquity when work-
ing on appropriate classes of quasi-Leibniz quantum compact metric spaces. The
Lipschitz distance also provides natural examples of totally bounded classes for the
quantum propinquity, and thus compact classes for the dual propinquity [36].

Notation 1.5.1. Let (A,LA) and (B,LB) be two quantum compact metric spaces
and let ϕ :A→B a unital *-morphism. We denote by dil(ϕ) the Lipschitz seminorm
of the dual map ϕ :µ ∈ (S (B),mkLB ) 7→µ◦ϕ ∈ (S (A),mkLA ), i.e.:

dil(ϕ) = sup

{
mkLB (µ◦ϕ,ν◦ϕ)

mkLA (µ,ν)
:µ,ν ∈S (B),µ ̸= ν

}
,

with the understanding that this quantity may be infinite. We refer to this quantity
as the dilation factor, or just dilation of the given Lipschitz morphism.

Remark 1.5.2. If (A,LA) and (B,LB) are two quantum compact metric spaces with
lower semicontinuous Lip-norms, and if ϕ : A → B a unital *-morphism, then
dil(ϕ) = inf

{
C > 0 : LB ◦ϕ⩽CLA

}
with the usual convention that inf;=∞.

Definition 1.5.3. The Lipschitz distance between two quantum compact metric
spaces (A,LA) and (B,LB) is:

LipD((A,LA), (B,LB)) =
inf

{
max

{∣∣ln(dil(ϕ))
∣∣ ,

∣∣ln(dil(ϕ−1))
∣∣} :ϕ :A→B is a *-isomorphism

}
,

with the conventions that inf;=∞ and ln(∞) =∞.

Proposition 1.5.4. If (A,LA) and (B,LB) are two quantum compact metric spaces.
Then:

LipD((A,LA), (B,LB)) =

inf

{
max

{∣∣ln(dil(ϕ))
∣∣ ,

∣∣ln(dil(ϕ−1))
∣∣}∣∣∣∣ ϕ :A→B is a *-isomorphism

ϕ(dom(LA)) = dom(LB)

}
,
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with the convention that inf;=∞.

Proof. This follows from our characterization of Lipschitz morphisms.

The Lipschitz distance between Jordan-Lie quantum compact metric spaces is
actually achieved, as established in the following lemma. This observation will prove
useful in establishing that the Lipschitz distance in indeed a distance up to quantum
isometry.

Lemma 1.5.5. If (A,LA) and (B,LB) are two quantum compact metric spaces such
that LipD((A,LA), (B,LB)) <∞ then there exists a *-isomorphism ϕ : A→B such
that:

max
{| ln(dil(ϕ))|, | ln(dil(ϕ−1))|}= LipD((A,LA), (B,LB)).

Proof. Suppose that LipD((A,LA), (B,LB)) = C for some C ⩾ 0. There exists a se-
quence of *-isomorphism (ϕn)n∈N such that for all n ∈Nwe have:

C−1 exp

(
− 1

n +1

)
LB ◦ϕn ⩽ LA ⩽C exp

(
1

n +1

)
LB ◦ϕn .

Let a ∈ sa (A) with LA(a) < ∞. Since ∥ϕn(a)∥B = ∥a∥A and LB ◦ϕn(a) ⩽
2CLA(a) for all n ∈N, we conclude that (ϕn(a))n∈N admits a convergent subse-
quence since LB is a Lip-norm. Let ϕ∞(a) be its limit; as LB is lower semicontinu-
ous, we conclude that LA(ϕ∞(a))⩽ 2CLA(a).

Since {a ∈ sa (A) : LA(a) ⩽ n,∥a∥ ⩽ n} is compact for the norm ∥ · ∥A, hence
separable for all n ∈N, so is:

dom(LA) = {a ∈ sa (A) : LA(a) <∞} = ⋃
n∈N

{a ∈ sa (A) : LA(a)⩽ n,∥a∥A ⩽ n} .

Let F be a countable dense subset of {a ∈ sa (A) : LA(a) <∞}. A diagonal argu-
ment proves that there exists a subsequence (ϕ f (n))n∈N such that for all a ∈ F we
have (ϕ f (n)(a))n∈N converges uniformly to ϕ∞(a) (see [38, Theorem 5.13]).

Moreover, if a ∈ sa (A) with LA(a) < ∞, then for all ε > 0, there exists aε ∈ F
with ∥a − aε∥ < ε

3 . Let N ∈N be such that for all p, q ⩾ N , we have ∥ϕ f (p)(aε)−
ϕ f (q)(aε)∥B ⩽ ε

3 . Thus for all p, q ⩾ N , we have:

|ϕ f (p)(a)−ϕ f (q)(a)|⩽ |ϕ f (p)(a −aε)|+ |ϕ f (p)(aε)−ϕ f (q)(aε)|+ |ϕ f (q)(a −aε)|
⩽
ε

3
+ ε

3
+ ε

3
= ε.

Thus (ϕ f (n)(a))n∈N converges as well, since it is a Cauchy sequence in A which is
complete. Its limit is denoted once more by ϕ∞(a).

Note that since for all n ∈ N and for all a ∈ dom(LA), we have ∥ϕn(a)∥B =
∥a∥A, we also have ∥ϕ∞(a)∥B = ∥a∥A. We thus have defined an isometric map
ϕ∞ : dom(LA) → sa (B). Moreover, as a pointwise limit of Jordan-Lie morphisms,
ϕ∞ is also a Jordan-Lie morphisms on dom(L).

Now LB is lower semi-continuous and, for all n ∈ N we have LB ◦ϕn(a) ⩽
C exp( 1

n+1 )LA(a). Thus LB ◦ϕ∞(a)⩽CLA(a). Thus dil(ϕ∞)⩽C .
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Thus ϕ∞ extends by continuity to a Jordan-Lie morphism from sa (A) to sa (B).
Our argument is now concluded in the same manner as [38, Claim 5.18, Theorem
5.13] and proves thatϕ∞ extends to a unital *-morphism fromA toBwith dil(ϕ∞)⩽
C .

The same method may be applied to construct some subsequence of
(
ϕ−1

n

)
n∈N

converging pointwise on dom(LB) to some *-morphism ψ∞ on B with LA ◦ψ∞ ⩽
CLA. Up to extracting further subsequences, we shall henceforth assume that both
(ϕ f (n))n∈N and (ϕ−1

f (n))n∈N converge pointwise to, respectively ϕ∞ on dom(LA) and

ψ∞ on dom(LB). It is then immediate to check that ϕ∞ ◦ψ∞ is the identity of
dom(LB) and ψ∞ ◦ϕ∞ is the identity on dom(LA). Then by construction, ψ∞ ◦ϕ∞
is the identity on A and ϕ∞ ◦ψ∞ is the identity on B. Thus ϕ∞ is a *-isomorphism
from A to B.

In particular, we also obtain that LA ◦ϕ−1∞ ⩽ CLB and thus dil(ϕ−1) ⩽ C . As
we may not have both dil(ϕ) < C and dil(ϕ−1) < C , since C is the infimum of the
dilations of such *-isomorphisms, the lemma is proven.

We now establish that the Lipschitz distance is indeed, a distance up to quantum
isometry, and that it dominates the quantum propinquity.

Theorem 1.5.6. The Lipschitz distance is an extended metric up to quantum isometry
on the class of quantum compact metric spaces. Explicitly, for all quantum compact
metric spaces (A,LA), (B,LB) and (D,LD), we have:

1. LipD((A,LA), (B,LB)) ∈ [0,∞], and is finite if and only if there exists a *-
isomorphism ϕ :A→B such that ϕ(dom(LA)) = dom(LB),

2. LipD((A,LA), (D,LD))⩽ LipD((A,LA), (B,LB))+LipD((B,LB), (D,LB)),

3. LipD((A,LA), (B,LB)) = LipD((B,LB), (A,LA)),

4. LipD((A,LA), (B,LB)) = 0 if and only if (A,LA) and (B,LB) are fully quantum
isometric.

Proof. The function LipD is valued in [0,∞] by definition, and finite if and only if
there exists a bi-Lipschitz isomorphism between its two arguments. It is symmetric
in its two arguments by construction. The triangle inequality follows from simple
computations as well.

If there exists an isometric isometry between two compact quantum metric
spaces, then their Lipschitz distance is null. Only the converse of this observation
requires our assumption that the domain of Lip-norms be Jordan-Lie algebras. We
simply apply Lemma (1.5.5).



Chapter Two

The Gromov-Hausdorff propinquity

2.1 HAUSDORFF DISTANCE

We begin with a notion of how far a point and a nonempty subset of a metric space
can be from each other.

Definition 2.1.1. The distance from x ∈ E to A ⊆ E , with (E ,d) a metric space and
A ̸= ;, is

d(x, A) := inf
{
d(x, y) : y ∈ A

}
.

Theorem 2.1.2. Let (E ,d) be a metric space.

1. ∀A ⊆ E A ̸= ; =⇒ 0⩽ d(x, A),

2. ∀x, y ∈ E d(x, {y}) = d(x, y),

3. ∀A,B ⊆ E A ⊆ B and A ̸= ; =⇒ ∀x ∈ E d(x,B)⩽ d(x, A),

4. ∀x ∈ E ∀A ⊆ E d(x, A) = 0 ⇐⇒ x ∈ cl(A),

5. ∀x ∈ E ∀A ⊆ E d(x, A) = d(x,cl (A)),

6. ∀A ⊆ E A ̸= ; =⇒ ∀x, y ∈ E
∣∣d(x, A)−d(y, A)

∣∣⩽ d(x, y).

Proof. By definition of a distance, 0 is a lower bound of {d(x, y) : y ∈ A} for all A ⊆ E
with A ̸= ; and x ∈ E . So 0⩽ d(x, A).

Assertion (2) is obvious.

Let now A,B ⊆ E with A ⊆ B . Let x ∈ E . Since A ⊆ B , we conclude:{
d(x, y) : y ∈ A

}⊆ {
d(x, y) : y ∈ B

}
and thus:

d(x, A) = inf
{
d(x, y) : y ∈ A

}
⩾

{
d(x, y) : y ∈ B

}= d(x,B).

If d(x, A) = 0 for some x ∈ X then for all ε > 0, there exists y ∈ A such that
d(x, y) < ε, and thus X (x,ε)∩ A ̸= ;. As ε> 0 is arbitrary, x ∈ cl(A).

Since A ⊆ cl(A), we have d(x,cl (A)) ⩽ d(x, A) for all x ∈ E by Theorem (2.1.2).
On the other hand, let x ∈ E and ε> 0. If y ∈ cl(A), then there exists yε ∈ A such that

29
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d(y, yε) < ε, and thus d(x, yε)⩽ d(x, y)+d(y, yε) < d(x, y)+ε. So d(x, A)⩽ d(x, y)+ε
for all y ∈ cl(A), i.e. d(x, A)⩽ d(x,cl (A))+ε. As ε> 0 is arbitrary, d(x, A)⩽ d(x,cl (A)).
So d(x, A) = d(x,cl (A)) for all x ∈ E .

Last, let A ⊆ E and let x, y ∈ E . Let now z ∈ A. Since:

d(x, A)⩽ d(x, z)⩽ d(x, y)+d(y, z)

we conclude that since z ∈ A is arbitrary, d(x, A)−d(x, y)⩽ d(y, A). Therefore:

d(x, A)−d(y, A)⩽ d(x, y).

Similarly, d(y, A)−d(x, A)⩽ d(x, y), and thus:∣∣d(x, A)−d(y, A)
∣∣⩽ d(x, y),

which completes our proof.

Lemma 2.1.3. Let (E ,d) be a metric space. If A,B ⊆ E are two nonempty bounded
subsets of (E ,d), then so is A∪B, and

∀x ∈ A d(x,B)⩽ diam(A∪B ,d) <∞.

Proof. Fix x0 ∈ A and y0 ∈ B . If x ∈ A and y ∈ B , then:

d(x, y)⩽ d(x, x0)+d(x0, y0)+d(y0, y)⩽ diam(A,d)+d(x0, y0)+diam(B ,d).

Of course, if x, y ∈ A, then d(x, y) ⩽ diam(A,d), and if x, y ∈ B , then d(x, y) ⩽
diam(B ,d). Thus A∪B is bounded, with diameter at most d(x0, y0)+diam(A,d)+
diam(B ,d).

In particular, if x ∈ A, then for all y ∈ B , since x, y ∈ A ∪B , we conclude that
d(x, y)⩽ diam(A∪B ,d); therefore d(x,B)⩽ diam(A∪B ,d).

This concludes our proof.

In view of Lemma (2.1.3), the following quantity is thus well–defined.

Definition 2.1.4. Let (E ,d) be a metric space. The Hausdorff pseudo-distance
Haus [d ](A,B) between two bounded nonempty subsets A,B ⊆ E of E is defined
by:

Haus [d ](A,B) = max

{
sup
x∈B

d(x, A),sup
x∈A

d(x,B)

}
.

The Hausdorff pseudo-distance extends the distance between points.

Lemma 2.1.5. If (E ,d) be a metric space, then

∀x, y ∈ E d(x, y) =Haus [d ]({x}, {y}).

Proof. This follows immediately from Definition (2.1.4) and Theorem (2.1.2).



2.1. HAUSDORFF DISTANCE 31

The closure operator maps bounded subsets to bounded subsets. A key observa-
tion is that the extended Hausdorff pseudo-distance does not distinguish between a
subset A of a metric space and its closure cl(A). Now, the Hausdorff pseudo-metric
satisfies all the properties of a metric, except that it may be null between two differ-
ent sets — though, as seen in the following theorem, the Hausdorff distance is zero
between two sets exactly when they have the same closure.

Theorem 2.1.6. Let (E ,d) be a metric space. The following assertions hold for any
bounded nonempty subsets A,B ,C ⊆ E of (E ,d):

• Haus [d ](A,B) =Haus [d ](B , A).

• Haus [d ](A,C )⩽Haus [d ](A,B)+Haus [d ](B ,C ).

• Haus [d ](A,B) =Haus [d ](A,cl (B)) =Haus [d ](cl (A),cl (B)).

• Haus [d ](A,B) = 0 if and only if cl(A) = cl(B),

• 1
2 |diam(A,d)−diam(B ,d)|⩽Haus [d ](A,B)⩽ diam(A∪B ,d).

Proof. By construction, Haus [d ](A,B) =Haus [d ](B , A).
Let x ∈ A. If ε > 0, there exists y ∈ Y such that d(x,B) ⩽ d(x, y)+ ε

2 . There
exists z ∈C such that d(y, z)⩽ d(y,C )+ ε

2 . Thus d(x, z)⩽ d(x, y)+d(y, z)⩽ d(x,B)+
d(y,C )+ε. Consequently:

d(x,C )⩽ d(x,B)+d(y,C )⩽Haus [d ](A,B)+Haus [d ](B ,C )+ε.

Thus supx∈A d(x,C )⩽Haus [d ](A,B)+Haus [d ](B ,C )+ε. By symmetry, we also have
supz∈C d(z, A)⩽Haus [d ](A,B)+Haus [d ](B ,C )+ε and thus, as claimed:

Haus [d ](A,C )⩽Haus [d ](A,B)+Haus [d ](B ,C )+ε.

As ε> 0 is arbitrary, we conclude

Haus [d ](A,C )⩽Haus [d ](A,B)+Haus [d ](B ,C ),

as desired.
Let now A,B ⊆ X . By Theorem (2.1.2), we have d(·, A) = d(·,cl (A)), so supx∈B d(x, A) =

supx∈B d(x,cl (A)). On the other hand, let x ∈ cl(A). For all ε> 0, there exists xε ∈ A
such that d(x, xε) < ε. Thus, for all y ∈ B , we have d(x, y) ⩽ d(x, xε)+d(xε, y) <
ε+Haus [d ](A,B). So supx∈cl(A) d(x,B) ⩽ Haus [d ](A,B)+ ε. As ε > 0 is arbitrary,
we conclude that supx∈cl(A) d(x,B) ⩽ Haus [d ](A,B). Therefore, Haus [d ](A,B) =
Haus [d ](cl (A),B).

We then compute:

Haus [d ](A,B) =Haus [d ](cl (A),B) =Haus [d ](B ,cl (A))

=Haus [d ](cl (B),cl (A)) =Haus [d ](cl (A),cl (B)).

In particular, Haus [d ](A,B) = 0 if and only if Haus [d ]cl (A),cl (B)) = 0.
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If Haus [d ](cl (A),cl (B)) = 0 then, for all x ∈ cl(A), we have d(x,cl (B)) = 0, so
x ∈ cl(cl (B)) = cl(B) and thus cl(A) ⊆ cl(B), and by symmetry, cl (B) ⊆ cl(A) so
cl(A) = cl(B). Of course, if cl (A) = cl(B) then Haus [d ](cl (A),cl (B)) = 0.

By Lemma (2.1.3), we have shown that Haus [d ](A,B)⩽ diam(A∪B ,d). On the
other hand, by Theorem (2.1.2), we also have, for all x, x ′ ∈ A and y, y ′ ∈ B , that:

d(x, x ′)⩽ d(x, y)+d(y, y ′)+d(y ′, x ′)⩽ 2Haus [d ](A,B)+diam(B ,d),

and therefore diam(A,d)−diam(B ,d) ⩽ 2Haus [d ](A,B). Switching the role of A
and B , we obtain the desired inequalities.

We therefore conclude that the Hausdorff pseudo-distance is indeed a distance
on the set of all bounded subset of a metric space (E ,d), which are equal to their
closures.

Corollary 2.1.7. If (E ,d) is a metric space, the restriction of Haus [d ] to the set

Hyper(E ,d) = {A ⊆ E : A ̸= ;,cl (A) = A and A is bounded }

of bounded closed nonempty subsets of (E ,d) is a distance, called the Hausdorff
distance. The space Hyper(E ,d) is called the hyperspace of (E ,d).

Proof. This follows immediately from Theorem (2.1.6).

Notation 2.1.8. If (E ,d) is a metric space, and if A ⊆ E with A ̸= ;, then diam(A,d) :=
sup

{
d(x, y) : x, y ∈ A

}
.

Theorem 2.1.9. If (E ,d) is a metric space, then the function diam(·,d) is continuous
on (Hyper(E ,d),Haus [d ]).

Proof. Fix A ∈ Hyper(E ,d). Let ε > 0. If B ∈ Hyper(E ,d) and Haus [d ](A,B) < ε
2 ,

then for all x, y ∈ A (resp. B), there exists z, t ∈ B (resp. A) such that d(x, z) < ε
2 and

d(y, t) < ε
2 . Thus d(x, y) ⩽ d(z, t)+ε⩽ diam(B ,d)+ε (resp. diam(A,d)+ε). Thus

|diam(A,d)−diam(B ,d)| < ε. This concludes our proof.

We now check that various metric properties are shared between a space and its
hyperspace.

Theorem 2.1.10. Let (E ,d) be a metric space. (E ,d) is complete if, and only if

(Hyper(E ,d),Haus [d ])

is complete.

Proof. Assume (E ,d) is complete. Let (An)n∈N be a Cauchy sequence in (Hyper(E ,d),Haus [d ]).
Up to extracting a subsequence, we assume that Haus [d ](An ,An+1) < 1

2n . Let now

A :=
{

lim
n→∞xn : (xn)n∈N converges ,∀n ∈N xn ∈ An

}
.
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First, A is not empty. Pick x0 ∈ A0. Assume that, for some n ∈ N, we have con-
structed xk ∈ Ak with d(xk , xk+1) < 1

2k for all k ∈ {0, . . . ,n}. SinceHaus [d ](An , An+1) <
f r ac12n , there exists xn+1 ∈ An+1 such that d(xn , xn+1) < 1

2n . Hence (xn)n∈N is
Cauchy, and therefore, since (E ,d) is complete, it converges. So A ̸= ;.

Now, let ε > 0. Let N ∈N such that for all n ⩾ N , we have 1
2n−1 < ε. Let x ∈ A.

There exists a sequence (xn)n∈N such that xn ∈ An for all n ∈N, and limn→∞ xn = x.
Thus there exists M ∈N such that, for all n ⩾ M , we have d(x, xn) < ε

2 . If M ⩽ N ,
then for all n ⩾ N , we have d(xn , x) < ε. If N < M , then for all n ⩾ N , there exists
y ∈ An such that d(y, xM ) < 1

2n < ε
2 , and thus d(x, y)⩽ d(x, xM )+d(xM , y) < ε. Either

way, for all x ∈ A and for all n ⩾ N , there exists y ∈ An such that d(x, y) < ε.
On the other hand, fix n ⩾ N . Let x ∈ An . Proceeding as above, we construct

a sequence (xk )k⩾n with xn = x, d(xk , xk+1) < 1
2k for all k ⩾ n, and xk ∈ Ak for all

k ∈N. Thus (xk )k∈N is Cauchy — hence convergence, since (E ,d) is complete. Let
l = limk→∞ xk , so l ∈ A. We have

d(l , x) = lim
k→∞

d(xk , x)⩽ limsup
k→∞

k∑
j=n+1

d(x j , x j−1) = 1

2n−1 < ε.

So, for all n ⩾ N , we have shown that Haus [d ](A, An) < ε, and thus (An)n∈N con-
verges to A for Haus [d ].

Let now assume that (Hyper(E ,d),Haus [d ]) is complete. Let (xn)n∈N be a Cauchy
sequence in (E ,d). Then ({xn})n∈N is Cauchy, hence convergent, for Haus [d ]. Now,
since diam({xn},d) = 0 for all n ∈N, we also conclude the limit of ({xn})n∈N is also a
singleton {y}. It is now easy to check that y is the limit of (xn)n∈N.

Theorem 2.1.11. Let (E ,d) be a metric space. (E ,d) is totally bounded space if, and
only if, (Hyper(E ,d),Haus [d ]) is totally bounded.

Proof. Assume that (E ,d) is totally bounded. Let ε > 0. Let G be a finite ε
2 -dense

subset of (E ,d). Let F be the set obtained as all possible unions of the closed balls
centered at points in G , so G is finite. Let now A ⊆ E be not empty, bounded and
closed. For each x ∈ A, let t (x) ∈ F be chosen so that d(x, t (x)) < ε

2 . By construction,
the set B := ⋃

x∈A E [t(x), ε2 ] is an element of G . If x ∈ A, then there exists t(x) ∈ B
such that d(x, t (x)) < ε

2 < ε. Let now y ∈ B . By construction, there exists x ∈ A such
that y ∈ E [t (x), ε2 ]. So d(y, x)⩽ d(y, t (x))+d(t (x), x) < ε.

Hence,Haus [d ](A,B) < ε. As G is finite, (Hyper(E ,d),Haus [d ]) is totally bounded.

The map x ∈ E 7→ {x} is an isometric embedding, so if (Hyper(E ,d),Haus [d ]) is
totally bounded, so is (E ,d).

Corollary 2.1.12. Let (E ,d) be a metric space. (E ,d) is a compact metric space if, and
only if (Hyper(E ,d),Haus [d ]) is a compact metric space.

Proof. (E ,d) is compact if, and only if it is totally bounded and complete, if and only
if (Hyper(E ,d),Haus [d ]) is totally bounded and complete.
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Last, we check that the Hausdorff distance on Hyper(E ,d) induces a topology
which actually only depend on the topology, rather than the metric, of (E ,d), when
(E ,d) is compact.

Theorem 2.1.13. Let X be a compact space with topology τ and let F = {U c : U ∈
τ,U ̸= X } be the set of all nonempty closed subsets of X . The Vietoris topology is the
smallest topology on F generated by the topological basis

O(U ,V1, . . . ,Vn) = {
F ∈F : F ⊆U and ∀ j ∈ {1, . . . ,n} F ∩V j ̸= ;}

for all n ∈N and U ,V1, . . . ,Vn ∈ τ.
If d is a metric on X which induced τ, then the topology induced by Haus [d] on

Hyper(X ,d) is the Vietoris topology.
Consequently, if d1 and d2 are two metrics which induce the same topology on X

then Haus [d1] and Haus [d2] induce the same topology on F .

Proof. Let F ∈F and r > 0. Since F is compact, there exists x1, . . . , xn ∈ F for some
n ∈N such that F ⊆⋃n

j=1 X
(
x j , r

2

)
where the open ball in (X ,d) of center any y ∈ X

and radius r is denoted by X (y,r ). For all j ∈ {1, . . . ,n}, we set V j = X
(
x j , r

2

)
.

Let U = ⋃n
j=1 V j . Note that by construction, F ∈ O (U ,V1, . . . ,Vn). Now let G ∈

O (U ,V1, . . . ,Vn). If x ∈G , then x ∈U and thus x ∈V j for some j ∈ {1, . . . ,n}, implying
that d(x,F ) < r

2 . If x ∈ F , then x ∈ V j for some j ∈ {1, . . . ,n}. Since G ∩V j ̸= ;,
there exists y ∈ G ∩V j and by definition of V j , we conclude d(x, y) < r . Hence
Haus [d](F,G) < r . Thus O (U ,V1, . . . ,Vn) ⊆F (F,r ).

Let now U ,V1, . . . ,Vn ∈ τ be given with F ∈O (U ,V1, . . . ,Vn). Since X \U is closed
and disjoint from F , we conclude that there exists ε0 > 0 such that, for all x ∈ F and
y ∈ X \U , we have d(x, y)⩾ ε0.

Now, for each j ∈ {1, . . . ,n}, there exists x j ∈ F ∩V j and there exists ε j > 0 such
that X (x j ,ε j ) ⊆V j . Let ε= min{ε j : j ∈ {0, . . . ,n}}.

Let G ∈ F (F,ε). Let x ∈ G . There exists y ∈ F such that d(x, y) < ε. Thus x ∈U
since d(x, y) < ε0. Thus G ⊆U .

Let j ∈ {1, . . . ,n}. There exists y ∈ G such that d(x j , y) < ε ⩽ ε j , and thus by
construction, y ∈ X (x j ,ε j ) ⊆ V j and thus G ∩V j ̸= ;. We thus have shown that
G ∈O (U ,V1, . . . ,Vn). Thus F (F,ε) ⊆O (U ,V1, . . . ,Vn).

This proves our lemma.

The Hausdorff distance is defined with reference to a fixed, based metric space.
If we want to talk about convergence of different metric spaces, which are not
subspaces of a fixed metric space — an issue which will become all the more relevant
in the noncommutative geometry setting — we then turn to an idea due to Edwards
[15] (for compact metric spaces) and Gromov [20, 19] (for locally compact metric
spaces). We focus our attention to the compact case.
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Definition 2.1.14. If (X ,dX ) and (Y ,dY ) are two compact metric spaces, then we
define the Gromov-Hausdorff distance between (X ,dX ) and (Y ,dY ) as:

GH((X ,dX ), (Y ,dY )) := inf
{
Haus [dZ ](iX (X ), iY (Y )) : (Z ,dX ) compact metric space ,

iX : X → Z and iY : Y → Z isometries
}

.

We will construct a noncommutative analogue of this metric.

2.2 TUNNELS AND BRIDGES

Tunnels generalize the idea of an isometric embedding of two quantum compact
metric spaces into a third one to our noncommutative metric geometric setting.
They form the basis for the construction of the propinquity.

Definition 2.2.1. Let (A1,L1) and (A2,L2) be two K -quantum compact metric spaces.
A K -tunnel τ = (D,LD,π1,π2) from (A1,L1) to (A2,L2) is a given by a K -quantum
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compact metric space (D,LD), and two quantum isometries π1 : (D,LD)↠ (A1,L1)
and π2 : (D,LD)↠ (A2,L2).

The domain dom(τ) of τ is (A1,L1), and the co-domain codom(τ) of τ is (A2,L2).
The inverse of τ is τ−1 := (D,LD,π2,π1).

Notation 2.2.2. If τ = (D,LD,π1,π2) is a tunnel from (A1,L1) to (A2,L2), we will
sometimes write:

τ : (A1,L1)
π1←− (D,LD)

π2−→ (A2,L2).

With this notation,

τ−1 : (A2,L2)
π2←− (D,LD)

π1−→ (A1,L1).

We can associate a number to any tunnel, which will measure how far apart its
domain and co-domain are from its perspective.

Definition 2.2.3. The extent χ (τ) of a tunnel τ : (A1,L1)
π1←− (D,LD)

π2−→ (A2,L2) be-
tween two quantum compact metric spaces (A1,L1) and (A2,L2) is defined as the
nonnegative number:

max
j∈{1,2}

Haus
[
mkLD

](
S (D),

{
ϕ◦π j :ϕ ∈S (A j )

})
,

where Haus
[
mkLD

]
is the Hausdorff distance by the Monge-Kantorovich metric

mkLD on the class of the weak* closed subsets of the state space S (D) of D.

Of course, for any tunnel, χ
(
τ−1

)=χ (τ).

Our first task is to show that tunnels always exist between any two quantum
compact metric spaces. To this end, we introduce the concept of a bridge: a bridge
is in a sense dual to a tunnel. There are several notions of bridges, and we choose to
focus on a special kind which, as we shall see later, can be used to directly compute
an upper bound for the extent of a tunnel.

Definition 2.2.4. Let A and B be two quantum compact metric spaces. A bridge
γ := (D,ω,πA,πB) from A to B is given by a unital C*-algebra D, two unital *-
morphisms πA :A→D and πB :B→D, and a self-adjoint element ω ∈ sa (D) such
that there exists a state ϕ ∈S (D) with ϕ(ω·) =ϕ(·ω) =ϕ.

The element ω is called the pivot of the bridge γ. The bridge seminorm bnγ (·, ·)
associated with γ is defined by bnγ (a,b) = ∥πA(a)ω−ωπB(b)∥D, for all a ∈A and
b ∈B.

Remark 2.2.5. In [38], bridges were introduced where the *-morphisms were re-
quired to also be injective. This is not necessary here, or even in [38], as the height,
defined below, will avoid degenerate situations by being “large” for bridges with
non-injective *-morphisms.

A first quantity associated with bridges, called the reach, enables us to define a
tunnel from a bridge.
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Definition 2.2.6. Let (A,LA) and (B,LB) be two quantum compact metric spaces.
The reach reach

(
γ
∣∣LA,LB

)
of a bridge γ= (D,ω,πA,πB) from (A,LA) to (B,LB) is

reach
(
γ
∣∣LA,LB

)
:=Haus [D]

(
{aω : a ∈ dom(LA),LA(a)⩽ 1},

{ωb : b ∈ dom(LB),LB(b)⩽ 1}
)
.

Of course, if we associate a tunnel to a bridge, it is natural to ask what the extent
of that tunnel would be, based on the bridge used to construct it. To this end, we
introduce the following quantity.

Definition 2.2.7. Let (A,LA) and (B,LB) be two quantum compact metric spaces.
The height reach

(
γ
∣∣LA,LB

)
of a bridge γ= (D,ω,πA,πB) from (A,LA) to (B,LB) is

height
(
γ
∣∣LA,LB

)
:= max{Haus

[
mkLA

]
(S (A)), {ϕ ◦ πA : ϕ ∈ S (D|ω}),

where S (D|ω) := {ϕ ∈S (A) :ϕ(ω·) =ϕ(·ω) =ϕ}.

Theorem 2.2.8. Let (A,LA) and (B,LB) be two K -quantum compact metric spaces.
If γ = (D,ω,πA,πB) is a bridge from A to B, then by setting T := A⊕B, letting
ε⩾ reach

(
γ
∣∣LA,LB

)
and, for all (s,b) ∈ sa (T):

T(a,b) := max

{
LA(a),LB(b),

1

ε
bnγ (a,b)

}
,

and ρA(a,b) := a, ρB(a,b) := b, the quadruple (T,T,ρA,ρB) is a K -tunnel from
(A,LA) to (B,LB), whose extent is at most

λ
(
γ
∣∣LA,LB

)
:= reach

(
γ
∣∣LA,LB

)+height
(
γ
∣∣LA,LB

)
.

Proof. The function Tε is easily checked to be a seminorm, and, as the maximum of
two lower semi-continuous functions (L1 and L2) and one continuous function over
sa (A) ( 1

εbnγ (·)), it is lower semi-continuous over sa (F).
We also note that dom(Tε) = dom(LA)⊕dom(LB), which is dense in sa (F) since

dom(LA) is dense in sa (A) and dom(LB) is dense in sa (B).
Now, let (a,b) ∈ sa (F). If Tε(a,b) = 0, then LA(a) = 0 so a ∈R1A, and LB(b) = 0

so b ∈R1B; moreover πA(a) =πB(b). Therefore, (a,b) ∈R(1A,1B) =R1F.
We now establish the Leibniz property.
If a1, a2 ∈ sa (A) and b1,b2 ∈ sa (B), then:

1

ε
bnγ (a1a2,b1b2) = 1

ε
∥πA(a1a2)ω−ωπB(b1b2)∥D

⩽
1

ε
∥πA(a1)πA(a2)ω−πA(a1)ωπB(b2)∥D

+ 1

ε
∥πA(a1)ωπB(b2)−ωπB(b2)πB(b2)∥D

⩽
∥a1∥A
ε

∥πA(a2)ω−ωπB(b2)∥D+ ∥b2∥B
ε

∥πA(a1)ω−ωπB(a1)∥D

⩽ ∥(a1,b1)∥F
bnγ (a2,b2)

ε
+∥(a2,b2)∥F

bnγ (a1,b1)

ε
,

(2.2.1)



38 CHAPTER 2. THE GROMOV-HAUSDORFF PROPINQUITY

since ∥a,b∥F = max{∥a∥A ,∥b∥B} for all (a,b) ∈F. As bnγ (·) is a seminorm on A⊕B,
it follows from Inequality (2.2.1) that

bnγ (ℜ(a1a2,b1b2))⩽ ∥(a1,b1)∥Fbnγ (()a2,b2)+∥(a2,b2)∥Fbnγ (()a1,b1)

⩽ ε
(∥(d1,d2)∥FTε(e1,e2)+Tε(d1,d2)∥(e1,e2)∥F

)
.

Since (A,LA) is a K -quantum compact metric space, we also have:

LA(ℜ(a1a2))⩽K (∥a1∥ALA(a2)+LA(a1)∥a2∥A+LA(a1)LA(a2))

⩽K (∥(a1,b1)∥FTε(a2,b2)+Tε(a1,b1)∥(a2,b2)∥F+Tε(a1,b1)Tε(a2,b2)),

and similarly with LB(ℜ(b1b2)), so overall, since K ⩾ 1,we obtain:

Tε(ℜ(a1a2,b1b2))⩽K (∥(a1,b1)∥FTε(a2,b2)+Tε(a1,b1)∥(a2,b2)∥F+Tε(a1,b1)Tε(a2,b2)).

A similar computation applies with ℜ replaced by ℑ.

Let µ ∈S (A), extended to F by setting µ(a,b) :=µ(a) for all (a,b) ∈F. Let (a,b) ∈
sa (F) with Tε(a,b) ⩽ 1 and µ(a,b) = 0. By Lemma (1.1.14), since LA(a) ⩽ 1 and
µ(a) = 0, we have ∥a∥A ⩽ qdiam(A,LA). Moreover ∥b∥B ⩽ ε+∥b∥B by definition
of Tε. So

{
(a,b) ∈ sa (F) :Tε(a,b)⩽ 1,µ(a,b) = 0

}⊆
{x ∈ dom(LA) : LA(x)⩽ 1,µ(x) = 0}×{y ∈ dom(LB) : L(y)⩽ 1,

∥∥y
∥∥
B ⩽ qdiam(A,LA)+ε}.

Since (A,LA) is a quantum compact metric space, by Theorem (1.1.19), the set
{x ∈ dom(LA) : LA(x)⩽ 1,µ(x) = 0} is compact. By Theorem (1.1.22), since (B,LB)
is a quantum compact metric space, the set {y ∈ dom(L2) : L(y) + ∥∥y

∥∥
B ⩽ 1 +

qdiam(A,LA)+ε} is also compact. So
{
(a,b) ∈ sa (F) :Tε(a,b)⩽ 1,µ(a,b) = 0

}
is to-

tally bounded; as it is closed and F is complete, it is in fact compact.

By Theorem (1.1.19), we conclude that (F,Tε) is a K -quantum compact metric
space.

Let now a ∈ dom(LA) with LA(a) = 1. By definition of the bridge reach of γ,
there exists b ∈ dom(LB) with LB(b) ⩽ 1 and bnγ (a,b) ⩽ ε. By construction, we
then see that Tε(a,b) = 1 = LA(a)). Therefore, pA is a quantum isometry (note that
if LA(a) = 0, then a = t1A for some t and then we can choose b = t1B). A similar
computation proves that pB is also a quantum isometry. So (F,Tε, pA, pB) is a
K -tunnel from (A,LA) to (B,LB).

So far, only the reach of our bridge γ played any role. It is also possible, using the
bridge height, to find an upper bound on the extent of τ. Let ϕ ∈S (F). Therefore,
there exists t ∈ [0,1], µ ∈S (A) and ν ∈S (B) such that ϕ= tµ◦pA+ (1− t)ν◦pB.
Now, by definition of the height ofγ, there exists θ ∈S (D|ω) such that θ◦πB ∈S (B)
and mkLB (ν,θ ◦πB)⩽ height

(
γ
∣∣LA,LB

)
. Now, if (a,b) ∈F with T(a,b)⩽ 1, then in
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particular, LB(b)⩽ 1 and ∥πA(a)ω−ωπB(b)∥D ⩽ reach
(
γ
∣∣LA,LB

)
. Therefore:

|ϕ(a,b)− (tµ+ (1− t )θ ◦πA)◦pA(a,b)|⩽ |tµ(a)+ (1− t )ν(b)− tµ(a)− (1− t )θ ◦πA(a)|
⩽ |ν(b)−θ(πA(a))|
⩽ |ν(b)−θ(πB(b))|+ |θ(πB(b))−θ(πA(a))|
= |ν(b)−θ(πB(b))|+ |θ(ωπB(b))−θ(πA(a)ω)|
⩽ height

(
γ
∣∣LA,LB

)+bnγ (a,b)

⩽ height
(
γ
∣∣LA,LB

)+ reach
(
γ
∣∣LA,LB

)
.

So mkT(ϕ, (tµ+ (1− t )θ◦πA))⩽λ
(
γ
∣∣LA,LB

)
, noting that tµ+ (1− t )θ◦πA is a state

of A.
A symmetric reasoning shows that there exists a stateψ ofB such thatmkT(ϕ,ψ◦

pB)⩽λ
(
γ
∣∣LA,LB

)
. In conclusion, χ (τ)⩽λ

(
γ
∣∣LA,LB

)
, as claimed.

Remark 2.2.9. Theorem (2.2.8) is very helpful for constructing tunnels; to this end,
only the reach of the bridge is involved. Sometimes, it may be easier to compute the
extent of the resulting tunnel directly, rather than involve the height.

Remark 2.2.10. Let F : [0,∞)4 → [0,∞) be an increasing function for the product
order on [0,∞)4, with the additional property that F (x, y, lx , ly )⩾ xly + ylx + lx ly for
all x, y, lx , ly ⩾ 0. Say that a tunnel τ := (D,LD,π1,π2) is an F -tunnel when (D,LD)
is F -Leibniz, in the sense of Remark (1.1.26). Then it is easy to check that if (A1,L1)
and (A2,L2) are F -quantum compact metric spaces, and γ is a bridge from A to B,
then the tunnel τ(γ) from Theorem (2.2.8) is an F -tunnel.

We now apply Theorem (2.2.8) to prove that there always exists a tunnel between
any two quantum compact metric spaces.

Lemma 2.2.11. If (A,LA) and (B,LB) are two quantum compact metric spaces, then
there exists a tunnel τ from (A,LA) to (B,LB), with

χ (τ)⩽max
{
qdiam(A,LA),qdiam(B,LB)

}
.

Proof. Let C := max{qdiam(A,LA),qdiam(B,LB)}.
Since A and B are separable C*-algebras, they both admit a unital faithful *-

representation on an infinite dimensional countable Hilbert space; up to unitary
equivalence, we can thus assume that there exist two unital *-representations πA
and πB of, respectively, A and B, on ℓ2(N). By definition, γ := (B(ℓ2(N)),1,πA,πB)
is a bridge from A to B. Now, fix µ ∈ S (A). if a ∈ dom(LA) with LA(a) ⩽ 1, then∣∣∣∣∣∣πA(a)−πB(µ(a))

∣∣∣∣∣∣
ℓ2(N) =

∥∥a −µ(a)
∥∥
A ⩽ qdiam(A,LA)⩽C . Of course, LB(µ(a)) =

0⩽ 1. Similarly, if we fix ν ∈S (B), we get bnγ (ν(b),b)⩽C . So reach
(
γ
∣∣LA,LB

)
⩽C .

From Theorem (2.2.8), we thus deduce that if we set:

D :=A⊕B and T : (a,b) ∈D 7→ max

{
LA(a),LB(b),

1

C
|||πA(a)−πB(b)|||

ℓ2(N)

}
,

and if pA : (a,b) ∈D 7→ a and pB : (a,b) ∈D 7→ b, then τ := (D,T, pA, pB) is a tunnel
from (A,LA) to (B,LB). It remains to compute a bound for its extent, which can be
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done if we compute the height of γ. Since πA is faithful, and since S (B(ℓ2(N))|1) =
S (B(ℓ2(N))), we conclude that π∗

A(S (B(ℓ2(N))|1)) =S (A), and similarly with B
in place of A. So height

(
γ
∣∣LA,LB

)= 0. So the extent of τ is at most λ
(
γ
∣∣LA,LB

)
⩽C .

This concludes our proof.

The advantage of tunnels over bridges is that they behave like generalized mor-
phisms, with the departure from being given by actual morphisms is measured by
the extent. Bridges can not be composed naturally, unlike tunnels. So, in general,
bridges are very useful to construct tunnels and obtain bounds on their extent, but
tunnels are essential to obtain a good construction of the propinquity as a complete
metric, as we shall see. Tunnels, of course, need not be constructed from bridges,
and are thus more general and flexible when needed.

2.3 TUNNELS AS SET-VALUED GENERALIZED MORPHISMS

Tunnels behave, informally, as some form of “almost morphisms”. As a first such
property, we prove that we can compose tunnels up to ε> 0, in the following sense.

Theorem 2.3.1. Let (A,LA), (B,LB) and (E,LE) be three K -quantum compact metric

spaces for some K ⩾ 1. Let τ1 : (A,LA)
π1←− (D1,L1)

π2−→ (B,LB) be a K -tunnel from

(A,LA) to (B,LB), and let τ2 : (B,LB)
ρ1←− (D2,L2)

ρ2−→ (E,LE) be a K -tunnel from
(B,LB) to (E,LE). Let ε> 0.

If we set F :=D1 ⊕D2, and for all (d1,d2) ∈ sa (F), we set:

Tε(d1,d2) = max

{
L1(d1),L2(d2),

1

ε

∥∥π2(d1)−ρ1(d2)
∥∥
B

}
,

and if η1 : (d1,d2) ∈ F 7→ d1 ∈D1 and η2 : (d1,d2) ∈ F 7→ d2 ∈D2, then (F,Tε) is a
K -quantum compact metric space, and

τ1 ◦ε τ2 : (A,LA)
π1◦η1←−−−− (F,Tε)

ρ2◦η2−−−−→ (E,LE)

is a K -tunnel from (A,LA) to (E,LE), whose extent satisfies:

χ (τ1 ◦ε τ2)⩽χ (τ1)+χ (τ2)+ε.

Moreover, the affine mapsϕ ∈S (D1) 7→ϕ◦η1 andϕ ∈S (D2) 7→ϕ◦η2 are isometries
from, respectively, (S (D1),mkL1

) and (S (D2),mkL2
) into (S (D1 ⊕D2),mkL).

Proof. Let γ= (B,1B,π2,ρ1). By assumption, γ is a bridge from D1 to D2. Since π2

and ρ1 are both quantum isometries, we conclude that

{π2(d) : d ∈ dom(L1),L1(d)⩽ 1} = {b ∈ dom(LB) : LB(b)⩽ 1}

= {ρ1(d) : d ∈ dom(L2),L2(d)⩽ 1}

so reach
(
γ
∣∣LA,LB

)= 0. Hence, for all ε> 0, by Theorem (2.2.8), we conclude that
(F,Tε) is a quantum compact metric space, and moreover, η1 and η2 are both
quantum isometries from (F,Tε) onto, respectively, (D1,L1) and (D2,L2).
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By Theorem (1.4.8), the *-morphisms π1 ◦η1 and ρ2 ◦η2 are quantum isometries
from (F,Tε) to, respectively, (A,LA) and (E,LE). Therefore, τ1 ◦ε τ2, as defined, is
indeed a K -tunnel.

It remains to compute the extent of τ1 ◦ε τ2. We proceed directly. Let ϕ ∈S (F).
Since F = D1 ⊕D2, there exists t ∈ [0,1], ϕ1 ∈ S (D1) and ϕ2 ∈ S (D2) such that
ϕ= tϕ1 ◦η1 + (1− t )ϕ2 ◦η2.

By definition of the extent of τ1, there exists ψ ∈S (B) such that:

mkL(ϕ1 ◦η1,ψ◦π2 ◦η1) =mkL1
(ϕ1,ψ◦π2)⩽χ (τ1).

Now, by definition of the extent of τ2, there exists θ ∈S (E) such that:

mkL(ψ◦ρ1 ◦η2,θ ◦ρ2 ◦η2) =mkL2
(ψ◦ρ1,θ ◦ρ2)⩽χ (τ2).

Let (d1,d2) ∈F with L(d1,d2)⩽ 1. Then by construction of L, we have:

L1(d1)⩽ 1,L2(d2)⩽ 1 and
∥∥π2(d1)−ρ1(d2)

∥∥
B ⩽ ε.

Thus:

|ϕ1(η1(d1,d2))−θ(ρ2 ◦η2(d1,d2))|
= |ϕ1(d1)−θ(π2(d2))|
⩽ |ϕ1(d1)−ψ(π2(d1))|+ |ψ(π2(d1))−ψ(ρ1(d2))|
+ |ψ(ρ1(d2))−θ(ρ2(d2))|

⩽mkL1
(ϕ1,ψ◦π2)+ε+mkL2

(ψ◦ρ1,θ ◦ρ2)

⩽χ (τ1)+ε+χ (τ2).

Thus:
mkL(ϕ1 ◦η1,θ ◦ρ2 ◦η2)⩽χ (τ1)+χ (τ2)+ε.

By definition of the extent of τ2, we can find θ2 ∈S (E) such that:

mkL(ϕ2 ◦η2,θ2 ◦ρ2 ◦η2) =mkL2
(ϕ2,θ2 ◦ρ2)⩽χ (τ2).

Since the Monge-Kantorovich metric mkL is convex in each of its variable by con-
struction, we conclude:

mkL(ϕ, (tθ+ (1− t )θ2)◦ρ2 ◦η2)⩽max
{
χ (τ1)+ε+χ (τ2),χ (τ2)

}
=χ (τ1)+ε+χ (τ2),

and we note that tθ+(1−t )θ2 ∈S (E). Thus, asϕ ∈S (F) was arbitrary, we conclude:

Haus
[
mkL

]
(S (F), (ρ2 ◦η2)∗(S (E)))⩽χ (τ1)+χ (τ2)+ε.

By symmetry, we would obtain in the same manner that for any ϕ ∈S (F) there
exists θ ∈S (A) with:

mkL(ϕ,θ ◦π1 ◦η1)⩽χ (τ1)+χ (τ2)+ε.

Therefore, by Definition (2.2.3):

χ (τ1 ◦ε τ2)⩽χ (τ1)+χ (τ2)+ε,

which concludes our theorem.
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Remark 2.3.2. If τ1 and τ2 are F -tunnels in the sense of Remark (2.2.10), then Remark
(2.2.10) implies that τ1 ◦ε τ2 is also an F -tunnel.

Tunnels can in fact be used to define compact-set valued maps between quan-
tum compact metric spaces. The properties of these set valued functions are remi-
niscent of morphisms, with some nebulosity controlled by the extent of the tunnel.

Definition 2.3.3. Let (A,LA) and (B,LB) be two quantum compact metric spaces,

and let τ : (A,LA)
πA←−− (D,LD)

πB−−→ (B,LB) be a tunnel from (A,LA) to (B,LB).
For all a ∈ dom(LA), and for all l ⩾ LA(a), the target set tτ (a|l ) is defined as the

subset of B

tτ (a|l ) := {πB(d) : d ∈ dom(LD),L(d)⩽ l ,πA(d) = a} .

We first observe that target sets are not empty.

Lemma 2.3.4. Let (A,LA) and (B,LB) be two quantum compact metric spaces, and

let τ : (A,LA)
πA←−− (D,LD)

πB−−→ (B,LB) be a tunnel from (A,LA) to (B,LB).
For any a ∈ sa (A) with LA(a) <∞ and r ⩾ LA(a), the set tτ (a|r ) is not empty.

Moreover, if l ⩾ r ⩾ LA(a), then tτ (a|r ) ⊆ tτ (a|l ).

Proof. Fix a ∈ dom(LA).
By definition, if l ⩾ r , then tτ (a|r ) ⊆ tτ (a|l ). By Proposition (1.4.6), since πA is

a quantum isometry, there exists d ∈ dom(LD) such that πA(d) = a and LD(d) = a.
SinceπB is also a quantum isometry, we conclude that LB(πB(d))⩽ LD(d) = LA(a).
Thus πB(d) ∈ tτ (a|L(a)). This proves target sets are not empty.

We now prove what is, in a sense, the key property of target sets: a form of
continuity, controlled by the extent of a tunnel, from which many other properties of
target sets depend. The crucial property of the target sets for a tunnel τ is that their
diameters are controlled by the length τ. Consequently, when two Leibniz quantum
compact metric spaces are close for the dual Gromov-Hausdorff propinquity, then
one may expect that target sets for appropriately chosen tunnels have diameters of
the order of the distance between our two quantum compact metric spaces. Thus,
if two quantum compact metric spaces (A,LA) and (B,LB) are in fact at distance
zero, one may find a sequence of target sets for any a ∈ sa (A) associated to tunnels
of ever smaller length, which converges to a singleton: the element in this singleton
would then be our candidate as an image for a by some prospective full quantum
iometry. This general intuition will be the base for our proof of Theorem (2.4.3). We
now state the fundamental property of target sets upon which all our estimates rely.

Theorem 2.3.5. Let (A,LA) and (B,LB) be two quantum compact metric spaces,

and let τ : (A,LA)
πA←−− (D,LD)

πB−−→ (B,LB) be a tunnel from (A,LA) to (B,LB). Let
a ∈ dom(LA), and let l ⩾ LA(a).

If d ∈π−1
A ({a})∩sa (D) and LD(a)⩽ l , then

∥d∥D ⩽ ∥a∥A+ lχ (τ).
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Therefore, for all b ∈ tτ (a|l ),

∥b∥B ⩽ ∥a∥A+ lχ (τ) and LB(b)⩽ l .

Proof. Let d ∈π−1
A ({a})∩sa (D) with LD(a)⩽ l . Let ϕ ∈S (A). By Definition (2.2.3),

there exists ψ ∈S (A) such that mkLD (ϕ,ψ◦πA) <χ (τ). Therefore,

|ϕ(d)|⩽ |ϕ(d)−ψ◦πA(d)|+ |ψ◦πA(d)|
⩽ lmkLD (ϕ,ψ◦πA)+|ψ(a)|
⩽ lχ (τ)+∥a∥A .

Now, if b ∈ tτ (a|l ), then b =πB(d) for some d ∈π−1
A ({a})∩sa (D) with LD(a) ⩽

l ; therefore, ∥b∥B ⩽ ∥d∥B ⩽ lχ (τ)+∥a∥A and, since πB is a quantum isometry,
LB(b)⩽ LD(d)⩽ l . Our proof is complete.

As a first application, we see that target sets are compact, which is a form of
“point-like” behavior.

Proposition 2.3.6. Let (A,LA) and (B,LB) be two quantum compact metric spaces,

and let τ : (A,LA)
πA←−− (D,LD)

πB−−→ (B,LB) be a tunnel from (A,LA) to (B,LB). If
a ∈ dom(LA), and if l ⩾ LA(a), then tτ (a|l ) is compact in B.

Proof. We prove a little more. By Theorem (2.3.5), we note that, if s := {d ∈π−1
A ({a}) :

LD(d) ⩽ l }, then s ⊆ {d ∈ dom(LD) : LD(d)+∥d∥D ⩽ 1+∥a∥A+ lχ (τ)}. The latter
set is compact by Theorem (1.1.22). Therefore, s is totally bounded. On the other
hand, π−1

A ({a}) is closed since πA is continuous and {a} is closed, and {d ∈ dom(LD) :
LD(d)⩽ l } is closed since (D,LD) is a quantum compact metric space. Therefore, σ
is closed. Since D is complete, s is compact.

By definition, tτ (a|l ) =πB(s) and πB is continuous, so tτ (a|l ) is compact in B,
as claimed.

Remark 2.3.7. Using the notations of Definition (2.3.3), we note that if a ∈ sa (A) is
not in the domain of LA, i.e. LA(a) =∞ with our convention, then tτ (a|∞) is not
empty since πA is surjective, though it is not compact in general.

We can now relate the linear structure of quantum compact metric spaces and
target sets of tunnels. An important consequence of this relation regards the diame-
ter of target sets.

Theorem 2.3.8. Let (A,LA) and (B,LB) be two quantum compact metric spaces and

let τ : (A,LA)
πA←−− (D,LD)

πB−−→ (B,LB) be a tunnel from (A,LA) to (B,LB).
Let a, a′ ∈ dom(LA). If r ⩾max{LA(a),LA(a′)}, then:

1. For all b ∈ tτ (a|r ), b′ ∈ tτ
(
a′∣∣r )

and t ∈R, we have:

b + tb′ ∈ tτ
(
a + t a′∣∣(1+|t |)r

)
;

2. consequently,

sup
{∥∥b −b′∥∥

B : b ∈ tτ (a|r ),b′ ∈ tτ
(
a′∣∣r )}

⩽
∥∥a −a′∥∥

A+2rχ (τ).
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3. In particular:
diam(tτ (a|r ),∥ ·∥B)⩽ 2rχ (τ).

Proof. Let b ∈ tτ (a|r ), b′ ∈ tτ
(
a′∣∣r )

and t ∈R. By Definition (2.3.3), there exists d ∈
sa (D) such that πB(d) = b, πA(d) = a, LD(d)⩽ r . Similarly, there exists d ′ ∈ sa (D)
such that πA(d ′) = a′, πB(d ′) = b′ and LD(d ′)⩽ r . Then:

LD(d + td ′)⩽ LD(d)+|t |LD(d ′)⩽ r +|t |r ,

andπA(d+td ′) = a+t a′, so b+tb′ =πB(d+td ′) ∈ tτ
(
a + t a′∣∣r (1+|t |)) by Definition

(2.3.3). This completes the proof of (1).
Now, let a, a′ ∈ sa (A) and r ⩾ max{LA(a),LA(a′)}. Then if b ∈ tτ (a|r ) and b′ ∈

tτ
(
a′∣∣r )

then b −b′ ∈ tτ
(
a −a′∣∣2r

)
by the proof of (1). By Theorem (2.3.5), we have:∥∥b −b′∥∥

B ⩽
∥∥a −a′∥∥

A+2rχ (τ). (2.3.1)

This proves Assertion (2) of our proposition.
Assertion (3) is now obtained from Inequality (2.3.1) with a = a′. This completes

our proof.

Our next goal is to relate the multiplicative structure of Leibniz quantum com-
pact metric spaces with target sets of tunnels. The following property makes explicit
use of the Leibniz property of Definition (1.1.1).

Theorem 2.3.9. Let (A,LA) and (B,LB) be two K -quantum compact metric spaces,

for some K ⩾ 1, and let τ : (A,LA)
πA←−− (D,LD)

πB−−→ (B,LB) be a K -tunnel from (A,LA)
to (B,LB).

Let a, a′ ∈ dom(LA), and let l ⩾max{LA(a),LA(a′)}. Let

C := K l (∥a∥A+∥a∥A′ + l +2χ (τ)).

If b ∈ tτ (a|l ) and b′ ∈ tγ
(
a′∣∣l), then:

ℜ(bb′) ∈ tτ
(ℜ(aa′)

∣∣C)
,

and:
ℑ(bb′) ∈ tτ

(ℑ(aa′)
∣∣C)

.

Proof. Let a, a′ ∈ sa (A), r ⩾ max{LA(a),LA(a′)}. Let b ∈ tγ (a|l ), b′ ∈ tγ
(
a′∣∣l). Let

d ,d ′ ∈ sa (D) such that:

LD(d)⩽ l , πA(d) = a, πB(d) = b

and
LD(d ′)⩽ l , πA(d ′) = a′, πB(d ′) = b′.

By Theorem (2.3.5), we have:

∥d∥D ⩽ ∥a∥A+ lχ (τ) and
∥∥d ′∥∥

D ⩽
∥∥a′∥∥

A+ lχ (τ).
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Since (D,LD) is a K -quantum compact metric space, we get:

LD(ℜ(dd ′))⩽K (∥d∥DLD(d ′)+LD(d)
∥∥d ′∥∥

D+LD(d ′)LD(d))

⩽K
(
(∥a∥A+ lχ (τ))l + l (

∥∥a′∥∥
A+ lχ (τ))+ l 2)=C .

Since πA(ℜ(dd ′)) = ℜ(aa′), we conclude our theorem holds true for the Jordan
product.

The proof for the Lie product is similar.

2.4 THE PROPINQUITY

Definition 2.4.1. The K -propinquity between two K -quantum compact metric
spaces (A,LA) and (B,LB), is the nonnegative number:

Λ∗
K ((A,LA), (B,LB)) := inf

{
χ (τ) : τ K -tunnel from (A,LA) to (B,LB)

}
.

We will use the following definition in this paper. For a class C and an equivalence
relation ∼ on C , a function d on C ×C is called a metric up to ∼ (or a pseudo-metric,
in short) if the following three properties hold:

1. ∀x, y ∈C , d(x, y) = 0 if and only if x ∼ y ,

2. ∀x, y ∈C , d(x, y) = d(y, x),

3. ∀x, y, z ∈C , d(x, z)⩽ d(x, y)+d(y, z).

Proposition 2.4.2. The propinquity is a pseudo-metric on the class of K -quantum
compact metric spaces, such that:

1. if (A,LA) and (B,LB) are fully quantum isometric, thenΛ∗
K ((A,LA), (B,LB)) =

0,

2. for any two K -quantum compact metric spaces (A,LA) and (B,LB),

Λ∗
K ((A,LA), (B,LB))⩽max

{
qdiam(A,LA),qdiam(B,LB)

}
.

Proof. Let (A,LA) and (B,LB) be two K -quantum compact metric spaces. By
Lemma (2.2.11), there exists a K -tunnel τ from (A,LA) to (B,LB) whose extent
χ (τ) is at most max{qdiam(A,LA),qdiam(B,LB)}. By Definition (2.4.1), we thus
conclude that Λ∗((A,LA), (B,LB)) ⩽ max{qdiam(A,LA),qdiam(B,LB)}. We also
note trivially that Λ∗

K ((A,LA), (B,LB))⩾ 0.
Let now (D,LD) be some other K -quantum compact metric space. Let ε > 0.

By Definition (2.4.1), there exists a K -tunnel τ1 from (A,LA) to (D,LD) such that
χ (τ1) <Λ∗

K ((A,LA), (D,LD))+ ε
3 . Moreover, there exists a K -tunnel τ2 from (D,LD)
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to (B,LB) such that χ (τ2) < Λ∗
K ((D,LD), (B,LB))+ ε

3 . By Theorem (2.3.1), there
exists a K -tunnel τ from (A,LA) to (B,LB) with χ (τ)⩽χ (τ1)+χ (τ2)+ ε

3 . Therefore:

Λ∗
K ((A,LA), (B,LB))⩽χ (τ)

⩽χ (τ1)+χ (τ2)+ ε

3

⩽Λ∗
K ((A,LA), (D,LD))+ ε

3
+Λ∗

K ((D,LD), (B,LB))+ ε

3
+ ε

3
=Λ∗

K ((A,LA), (D,LD))+Λ∗
K ((D,LD), (B,LB))+ε.

As ε> 0 is arbitrary, we conclude that

Λ∗
K ((A,LA), (B,LB))⩽Λ∗

K ((A,LA), (D,LD))+Λ∗
K ((D,LD), (B,LB)).

Since χ (τ) =χ(
τ−1

)
, it is immediate that

Λ∗
K ((A,LA), (B,LB)) =Λ∗

K ((B,LB), (A,LA)).

Therefore, Λ∗
K is a pseudo-metric on the class of K -quantum compact metric

spaces.

Now, assume that there exists a full quantum isometry from (A,LA) to (B,LB).

Let τ : (A,LA)
idA←−− (A,LA)

π−→ (B,LB). By Definition (2.2.1), τ is indeed a K -tunnel
from (A,LA) to (B,LB), whose extent is trivially 0. So 0⩽Λ∗((A,LA), (B ,LB))⩽ 0,
as needed.

We now turn to actually fully characterizing what zero propinquity means.

Theorem 2.4.3. Fix K ⩾ 1. For any two K -quantum compact metric spaces (A,LA)
and (B,LB),

Λ∗
K ((A,LA), (B,LB)) = 0

if, and only if, (A,LA) and (B,LB) are fully quantum isometric.

Proof. By Proposition (2.4.2), we already know that our condition is sufficient. We
henceforth assume that Λ∗

K ((A,LA), (B,LB)) = 0 for two fixed K -quantum compact
metric spaces (A,LA) and (B,LB).

For every n ∈N, there exists, by Definition (2.4.1), a K -tunnel τn from (A,LA)
to (B,LB), with extent χ (τn) ⩽ 1

n+1 . We will henceforth simplify our notation
somewhat, and denote tn (·|·) in place of tτn (·|·) for all n ∈N.

We present our proof as a succession of claims, followed by their own proof, to
expose the main structure of our argument.

As our first step, given a fixed a ∈ dom(LA), we show how to extract a potential
image for a in B from our target sets T· (a|·), using a compactness argument.

Claim 2.4.4. For any a ∈ dom(LA), and for any strictly increasing function f :N→N,
there exists a strictly increasing function g :N→N and π(a) ∈ dom(LB) such that,
for all r ⩾ LA(a), the sequence (

t f ◦g (n) (a|r )
)

n∈N
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converges to the singleton {π(a)} in the Hausdorff distance Haus [B] induced by ∥·∥B
on the compact subsets of B. Moreover, for any sequence (bm)m∈N in B, we have the
following property:(∀m ∈N bm ∈ t f ◦g (m) (a|r )

) =⇒ lim
m→∞bm =π(a).

Fix a ∈ dom(LA) and let r ⩾ LA(a). Let f :N→N be any strictly increasing
function. Let ε ∈ (0,1). By Proposition (2.3.5), for all n ∈N, the set tn (a|r ) is a subset
of the set:

c(a,r ) := {b ∈ sa (B) : ∥b∥B+LB(b)⩽ (2r +∥a∥A)+ r }.

By Theorem (1.1.22), the set c(a,r ) is compact in (B,∥·∥B). In particular, the set
c(a,r ) is complete for ∥·∥B. Therefore, the Hausdorff distance Haus [B] also induces
a compact topology on the set of all compact subsets of c(a,r ). By Proposition (2.3.6),
the sets tn (a|r ) are indeed compact subsets of c(a,r ) for all n ∈N. Therefore, the
sequence

(
t f (n) (a|r )

)
n∈N has a convergent subsequence

(
t f (g (n)) (a|r )

)
n∈N for the

Hausdorff distance Haus [B], with limit a nonempty compact subset of c(a,r ); Let
S f ci r cg (a,r ) denote this limit.

We now prove that S f ◦g (a,r ) is a singleton. Again, by Theorem (2.3.8), we con-
clude that, since the diameter is a continuous function with respect to the Hausdorff
distance,

0⩽ diam
(
S f ◦g (a,r ),∥·∥B

)= lim
n→∞diam

(
t f (g (n)) (a|r ),∥·∥B

)
(2.4.1)

⩽ limsup
n→∞

2rχ
(
τ f (g (n))

)= limsup
n→∞

2r

f (g (n))+1
= 0.

(2.4.2)

So S f ◦g (a,r ) is non-empty compact set with diameter 0, so it is indeed a singleton.
Our reasoning so far applies to the special case when r = LA(a). We denote the

limit of (t f (g (n)) (a|LA(a)))n∈N by {π(a)}. Now, if r > LA(a), then for all n ∈N, we
have t f (g (n)) (a|LA(a)) ⊆ t f (g (n)) (a|r ), and therefore,

Haus [B](t f (g (n)) (a|r ), {π(a)})⩽Haus [B](t f (g (n)) (a|r ),t f (g (n)) (a|LA))

+Haus [B](t f (g (n)) (a|LA(a)), {π(a)})

⩽ diam
(
t f (g (n)) (a|r ),∥·∥B

)
+Haus [B](t f (g (n)) (a|LA(a)), {π(a)})

⩽
2r

f (g (n))+1
+Haus [B](t f (g (n)) (a|LA(a)), {π(a)})

n→∞−−−−→ 0.

So indeed, for all r ⩾ LA(a), the sequence (t f (g (n)) (a|r ))n∈N converges to {π(a)} for
Haus [B].

We return to the general case with r ⩾ LA(a). For each n ∈N, let bn ∈ t f ◦g (n) (a|r )
be chosen arbitrarily (which is possible since t f ◦g (n) (a|r ) is not empty by Lemma
(2.3.4)). Then Proposition (2.3.8) proves that (bn)n∈N is a Cauchy sequence in sa (B)
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for the norm of B. Indeed, let ε> 0. Then there exists M ∈N such that for all n ⩾ M ,
we have 2r

n+1 < ε
2 , and therefore, by Theorem (2.3.8),

diam
(
t f ◦g (m) (a|r ),∥·∥B

)< 1

2
ε. (2.4.3)

By definition of the function g , there also exists M ′ ∈N such that, for all p, q ⩾
M ′, we have:

Haus [B]
(
t f ◦g (p) (a|r ),t f ◦g (q) (a|r )

)< 1

2
ε, (2.4.4)

since
(
t f ◦g (n) (a|r )

)
n∈N converges, and hence is Cauchy, for Haus [B].

Let p, q ⩾max{M , M ′}. By Inequality (2.4.4), there exists:

cq ∈ t f ◦g (q) (a|r )

such that
∥∥cq −bp

∥∥
B ⩽ 1

2ε. By Inequality (2.4.3), we also have
∥∥bq − cq

∥∥
B ⩽ 1

2ε.
Hence

∥∥bp −bq
∥∥
B ⩽ ε. Thus (bn)n∈N is indeed a Cauchy sequence in sa (B). Since

sa (B) is complete, the sequence (bn)n∈N converges. Let us temporarily denote its
limit by b.

It is easy to check that b ∈ S f ◦g (a,r ): for any ε> 0, there exists M ∈N such that
for all m ⩾ M , the diameter of t f ◦g (m) (a|r ) is less than 1

2ε, and there exists M ′ ∈N
such that for all m ⩾ M ′, we have
nor mbm −bB< 1

2ε, so for all m ⩾ max{M , M ′}, the set t f ◦g (m) (a|r ) lies within the
open ε-neighborhood of b for ∥·∥B. So b ∈ {π(a)} by definition of the Hausdorff
distance Haus [B]. Hence b =π(a), as desired.

Moreover, if bn ∈ t f (g (n)) (a|LA(a)), then L(bn)⩽ LA(a) for all n ∈N, so by lower
semicontinuity of LB, we also conclude that L(b)⩽ LA(a).

This completes the proof of our claim.

Our next step is to choose images for all elements in dom(LA) in a coherent
fashion, based upon Claim (2.4.4), and a diagonal argument:

Claim 2.4.5. There exists an increasing function f : N→ N+ and a function π :
dom(LA) → dom(LB) such that, for any a ∈ dom(LA) and for any r ⩾ LA(a), we
have:

lim
n→∞Haus [B]

(
t f (n) (a|r ), {π(a)}

)= 0.

Moreover, for any a ∈ dom(LA), any sequence (bm)m∈N in B and any r ⩾ LA(a), we
have: (

∀m ∈N bm ∈TΓ f (m)−1 (a|r )
)
=⇒ lim

m→∞bm =π(a).

Let a = {ak : k ∈ N} be a countable, dense subset of dom(LA). To ease nota-
tions, let lk = LA(ak ) for all k ∈N. By Claim (2.4.4), for each k ∈N, there exists
a strictly increasing function gk : N→N, such that, for all r ⩾ lk , the sequence(
tgk (m) (ak |r )

)
n∈N converges to some singleton {π(ak )} in B for Haus [B]. One then

easily checks that, setting:

f : n ∈N 7−→ g0 ◦ g1 ◦ . . . gn(n),
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for all k ∈N and for all r ⩾ lk , the sequence
(
t f (m) (ak |r )

)
n∈N converges in Haus [B]

to {π(ak )} for all k ∈N. Moreover, by Claim (2.4.4), for all k ∈N, for all r ⩾ lk , and for
sequences (bm)m∈N ∈ sa (B) with bn ∈ t f (n) (a|r ) for all n ∈N,

lim
m→∞bm =π(a). (2.4.5)

We now extend π thus defined to all of dom(LA).
Let a ∈ dom(LA) be chosen. Let ε> 0. There exists a′ ∈ a with

∥∥a −a′∥∥
A < ε

6 . Let
r ⩾ max{LA(a),LA(a′)}. Since

(
t f (n)

(
a′∣∣r ))

n∈N converges (to {π′(a)}), it is Cauchy.
Let M ∈N such that, for all p, q ⩾ M , we have:

Haus [B]
(
t f (p)

(
a′∣∣r )

,t f (q)
(
a′∣∣r ))< ε

3
.

Let M ′ ∈N such that for all m ⩾ M ′, we have 1
f (m)+1 < ε

12r . Let m ⩾max{M , M ′}.

For all b ∈ t f (m) (a|r ) and b′ ∈ t f (m)
(
a′∣∣r )

, by Theorem (2.3.8), we have

∥∥b −b′∥∥
B ⩽

∥∥a −a′∥∥
A+ 2r

f (m)+1
⩽
ε

6
+ ε

6
= ε

3
.

Therefore, for all m ⩾ M ′, we conclude that Haus [B](t f (n) (a|r ),t f (n)
(
a′∣∣r )

) < ε
3 .

Hence, for all p, q ⩾max{M , M ′}, we obtain:

Haus [B](t f (p) (a|r ),t f (q) (a|r ))⩽Haus [B](t f (p) (a|r ),t f (p)
(
a′∣∣r )

)

+Haus [B](t f (p)
(
a′∣∣r )

,t f (q)
(
a′∣∣r )

)

+Haus [B](t f (q)
(
a′∣∣r )

,t f (q) (a|r ))

< ε

3
+ ε

3
+ ε

3
.

So the sequence (t f (n) (a|r ))n∈N is a Cauchy sequence for Haus [B]. Since B is com-
plete, so is Haus [B], and thus the sequence (t f (n) (a|r ))n∈N converges for Haus [B].
Now, following Claim (2.4.4), the limit of (t f (n) (a|r ))n∈N is a singleton consisting
of the limit of any sequence (bm)m∈N chosen so that bm ∈ t f (n) (a|r ) for all m ∈N
and for all r ⩾ LA(a). We denote this singleton by {π(a)}. Note, in particular, that by
lower semicontinuity, LB(π(a))⩽ LA(a) again.

We thus have defined a map π : dom(LA) → dom(LB). We now enter the third
phase of our construction of π, where we establish algebraic properties from the
properties of target sets.

Claim 2.4.6. The map π : dom(LA) → dom(LB) isR-linear and such that LB ◦π⩽
LA on dom(LA). Moreover, h has norm at most one and thus can be extended to an
R-linear map, still denoted by π, from sa (A) to sa (B), of norm at most one.

Let a, a′ ∈ dom(LA) and t ∈R. Let r ⩾max{LA(a),LA(a′)}. For all m ∈N, we let
bm ∈ t f (m) (a|r ) and b′

m ∈ t f (m)
(
a′∣∣r )

. By Claim (2.4.5), we have limm→∞ bm = π(a)
and limm→∞ b′

m =π(a′).
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Now, by Theorem (2.3.8), bm + tb′
m ∈ t f (m)

(
a + t a′∣∣(1+|t |)r

)
for all m ∈N. Since:

LA(a + t a′)⩽ LA(a)+|t |LA(a′)⩽ (1+|t |)r

by construction, we conclude from Claim (2.4.5) that:

π(a + t a′) = lim
m→∞(bm + tb′

m) = lim
m→∞bm + t lim

m→∞b′
m =π(a)+ tπ(a′),

as desired. Hence, π is linear on dom(LA).

Now, let a ∈ dom(LA) and let (bm)m∈N be a sequence in sa (B) such that for
all m ∈ N, we have bm ∈ t f (m) (a|LA(a)). Since LB is lower-semi-continuous by
assumption, we have:

LB(π(a))⩽ liminf
m→∞ LB(bm)⩽ LA(a).

Moreover, Theorem (2.3.5), we can prove:

∥π(a)∥B = lim
m→∞∥bm∥B ⩽ lim

m→∞

(
∥a∥A+2

LA(a)

f (m)+1

)
= ∥a∥A . (2.4.6)

Hence, π is a uniformly continuous linear map from dom(LA), and thus it ex-
tends uniquely to a continuous linear map from sa (A) to sa (B), which we still
denote by π. We note that the norm of π is, at most, one.

We now turn to the multiplicative properties of π.

Claim 2.4.7. The map π : sa (A) → sa (B) is a unital Jordan-Lie algebra homomor-
phism of norm 1.

Let a, a′ ∈ dom(LA) and r ⩾max{LA(a),LA(a′)}. Let

C := K r (∥a∥A+∥a∥A′ + r +2χ (τ)).

Let m ∈N and choose bm ∈ t f (m) (a|r ) and b′
m ∈ t f (m)

(
a′∣∣r )

. By Theorem (2.3.9),
we have

ℜ(bmb′
m) ∈ t f (m)

(ℜ(aa′)
∣∣C)

.

Thus, we conclude by Claim (2.4.5) that:

π(ℜ(aa′)) = lim
m→∞ℜ(bmb′

m) =ℜ( lim
m→∞bm lim

m→∞b′
m) =ℜ(π(a)π(a′)).

Similarly, we would prove that π(ℑ(aa′)) =ℑ(π(a)π(a′)).

From the construction of π, since 1B ∈ t f (n) (1A|r ) for any n ∈N and r ⩾ 0, we
conclude easily that π(1A) = 1B. Since π is a linear map of norm at most 1 by Claim
(2.4.6), we conclude that π has norm one.

Thus π : sa (A) → sa (B) is a Jordan-Lie homomorphism of norm 1, such that
LB ◦π⩽ LA on dom(LA).
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Claim 2.4.8. The continuous unital Jordan-Lie homomorphism π : sa (A) → sa (B)
extends uniquely to a unital *-homomorphism A→B, still denoted by π.

We set, for all a ∈A:
π(a) =π(ℜ(a))+ iπ(ℑ(a)),

and we trivially check that this definition of π is consistent on sa (A). Moreover, it is
straightforward that π thus extended is a continuous linear map on A, with values
in B. Moreover, by construction, π(a∗) =π(a)∗ for all a ∈A. So π is a ∗-preserving
linear map on A.

We will write, for any a,b ∈A, the Jordan product of a with b as a ◦b := ab+ba
2 ,

and the Lie product as {a,b} := ab−ba
2i ; these expressions are linear in each factor, but

they are not usually self-adjoint unless a,b ∈ sa (A).
Let a,b ∈A be given. Using the fact that π, restricted to sa (A), is a homomor-

phism for the Jordan product by Claim (2.4.7), and π is linear on A, we have:

π(a ◦b) =π(ℜa ◦ℜb)−π(ℑa ◦ℑb)+ i (π(ℑa ◦ℜb)+π(ℜa ◦ℑb))

=π(ℜa)◦π(ℜb)−π(ℑa)◦π(ℑb)+ iπ(ℑa)◦π(ℜb)+ iπ(ℜa)◦π(ℑb)

=π(a)◦π(b).

(2.4.7)

Again, the computation carries similarly to the Lie product.
To conclude, for all a,b ∈A, by Equation (2.4.7) and its equivalent for the Lie

product, as well as by linearity of π:

π(ab) =π(ℜ(ab))+ iπ(ℑab) =ℜ(π(a)π(b))+ iℑ(π(a)π(b)) =π(a)π(b).

We have thus proven that π is a unital *-homomorphism from A to B with
LB ◦π⩽ LA on dom(LA). This completes our construction of π. Now, we conclude
our proof with the following last claim.

Claim 2.4.9. The *-homomorphism π :A→B is a *-isomorphism onto B, such that
for all a ∈ dom(LA) we have LB(π(a)) = LA(a).

This last step of our proof consists in constructing the inverse of π using the
same technique as used for the construction of π itself.

First, we apply Claims (2.4.4)–(2.4.8) to the sequence (τ−1
f (n))n∈N of tunnels. We

thus obtain that there exists a unital *-homomorphism ψ : B→ A and a strictly
increasing function g :N→N such that, for all b ∈ dom(LB), and for all r ⩾ LB(b),
we have

lim
n→∞Haus [A](tτ−1

f (g (n))
(b|r ), {ψ(b)}) = 0.

We claim that ψ is the inverse of π. To do so, let a ∈ dom(LA) and r ⩾ LA(a). Let
(bm)m∈N ∈ sa (B)N with bm ∈ t f ◦g (m) (a|r ) for all m ∈N and note that limm→∞ bm =
π(a) by Claim (2.4.5). Similarly, let (am)m∈N ∈ sa (A)N such that for all m ∈ N,
we have am ∈ tτ−1

f ◦g (m)
(π(a)|r ) (note that r ⩾ LA(a) ⩾ LB(π(a))). Again, we have

limm→∞ am =ψ(π(a)). The key observation here is that by Definition (2.3.3), since
bm ∈ t f ◦g (m) (a|r ), we observe that a ∈ tτ−1

f ◦g (m)
(bm |r ).
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Let ε> 0. Let M ∈N such that for all m ⩾ M , we have ∥bm −π(a)∥B ⩽ 1
3ε. Let

M ′ ∈N be chosen so that for all m ⩾ M ′ we have
∥∥am −ψ(π(a))

∥∥
A < 1

3ε. Let M ′′ ∈N
such that 1

1+ f ◦g (m) < ε
12r for all m ⩾ M ′′. Let m ⩾ max{M , M ′, M ′′}. By Theorem

(2.3.8), since a ∈ tτ−1
( f ◦g (m))

(bm |r ) and am ∈ tτ−1
f ◦g (m)

(π(a)|r ), we have:

∥a −am∥A ⩽ 2rε+∥bm −π(a)∥B ⩽
2

3
ε.

Hence: ∥∥a −ψ(π(a))
∥∥
A ⩽ ∥a −am∥A+∥∥am −ψ(π(a))

∥∥
A ⩽ ε.

As ε> 0 was arbitrary, we conclude that a =ψ(π(a)) for all a ∈ dom(LA). Now, since
dom(LA) is total in A and π, ψ are *-homomorphisms, we conclude that:

∀a ∈A a =ψ(π(a)).

Similarly, we would prove that for all b ∈ B, we have b = π(ψ(b)). Thus π is a
*-isomorphism from A onto B. In particular, we conclude:

1. For all a ∈ dom(LA), we have LA(a) ⩾ LB(π(a)) ⩾ LA(ψ(π(a))) = LA(a), so
LB ◦π= LA on dom(LA).

2. Similarly, LA ◦ψ= LB and ψ :B→A is a *-isomorphism.

This concludes the proof of our main theorem.

We have established that the K -propinquity is indeed a metric on the class of
K -quantum compact metric spaces, up to full quantum isometry. We now explore
its basic properties. We begin with the following, first result about continuity of the
diameter.

Theorem 2.4.10. If (A,LA) and (B,LB) are two K -quantum compact metric spaces,
then ∣∣qdiam(A,LA)−qdiam(B,LB)

∣∣⩽ 2Λ∗
K ((A,LA), (B,LB)).

Proof. Let τ : (A,LA)
πA←−− (D,LD)

πB−−→ (B,LB) be a tunnel from (A,LA) to (B,LB).
Let ϕ,ψ ∈S (A) such that qdiam(A,L) =mkLA (ϕ,ψ). There exists ϕ′,ψ′ ∈S (B)

such that mkT(ϕ◦πA,ϕ′ ◦πB)⩽χ (τ) and mkT(ψ◦πA,ψ′ ◦πB) <χ (τ).
We thus compute:

qdiam(B,LB)−qdiam(A,LA)

=mkLA (ϕ,ψ)−qdiam(B,LB)

⩽mkLA (ϕ,ψ)−mkLB (ϕ′,ψ′)
=mkT(ϕ◦πA,ψ◦πA)−mkT(ϕ′ ◦πB,ψ′ ◦πB)

⩽mkT(ϕ◦πA,ψ◦πB)−mkT(ϕ′ ◦πB,ψ◦πA)+mkT(ϕ′ ◦πB,ψ◦πA)

−mkLB (ϕ′ ◦πB,ψ′ ◦πA)

⩽mkT(ϕ◦πA,ϕ′ ◦πB)+mkT(ψ◦πA,ψ′ ◦πB)

⩽ 2χ (τ).
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The result is symmetric in A and B, so we have∣∣qdiam(A,LA)−qdiam(B,LB)
∣∣⩽ 2χ (τ)

and thus, as τ was arbitrary, we conclude, as needed:∣∣qdiam(A,LA)−qdiam(B,LB)
∣∣⩽ 2Λ∗

K ((A,LA), (B,LB)).

This proves our claim.

The propinquity is also a complete metric. We refer to [36] for the proof of this
fact. Completeness, in fact, was part of the motivation in the construction of the
propinquity, which was introduced as the dual propinquity in [36], as a variation
on the earlier construction of the so-called quantum propinquity [38], which we
do not expect to be complete; the quantum propinquity can be obtained from our
construction in these notes by restricting ourselves to tunnels constructed from
bridges.

Theorem 2.4.11 ([36, Theorem 6.27]). The K -propinquity Λ∗
K is complete, for any

K ⩾ 1.

We conclude with a brief observation. As proven in [4], if we return to Rieffel’s
notion of a quantum compact metric space as a pair (A,L) where A is now only an
order unit space, thus also removing any Leibniz inequality from our definition, and
if we define tunnels between such by asking for positive unital linear surjections in
place of *-morphisms, then the construction above of the propinquity actually leads
to a metric equivalent to Rieffel’s original quantum Gromov-Hausdorff distance.

2.5 COMPACTNESS

Gromov proved a very useful theorem characterizing totally bounded subclasses of
compact metric spaces for the Gromov-Hausdorff distance. We prove its analogue in
noncommutative geometry. As our first step, we explicit a useful necessary condition,
where a form of noncommutative covering number.

Definition 2.5.1. Let K ⩾ 1, and let A be a nonempty class of K -quantum compact
metric spaces. Let (A,L) be a K -quantum compact metric space and let ε> 0. The
covering number covA (A,L|ε) is:

covA (A,L|ε) = inf

{
dimCB :

∃(B,LB) ∈ A such that
ΛK ((A,LA), (B,LB))⩽ ε

}
.

In particular, covK (·|·) is the covering number covQCMSF (·|·) where QCMSK is
the class of all K -quantum compact metric spaces.
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Proposition 2.5.2. Let A be a nonempty class of K -quantum compact metric spaces
for some K ⩾ 1. If B is a subclass of the closure of {(A,L) ∈ A : dimA < ∞} for the
propinquity, and if B is totally bounded forΛ∗

K , then there exists C > 0 and f : (0,∞) →
N such that, for all (A,L) ∈ B:

1. diam(A,L)⩽C ,

2. ∀ε> 0 covA (A,L|ε)⩽ f (n).

Proof. Since the function:

(A,L) ∈A 7→ qdiam(A,L)

is 2-Lipschitz for the quantum Gromov-Hausdorff distance by Theorem (2.4.10), it is
continuous, and thus it is bounded above since B is totally bounded.

Let F := {(A,L) ∈ A : dimA<∞}. Now, let ε> 0. Since B is totally bounded and
B ⊆ cl(F ), there exists a finite subset Bε of F which is ε

2 -dense in B forΛK . Therefore,
for each (A,L) ∈ Bε, there exists a finite dimensional K -quantum compact metric
spaces f(A,L) ∈ F such that:

ΛK ((A,L), f(A,L))⩽
ε

2

by assumption on A.
Let:

f (ε) := max
{
dimC f(A,L) : (A,L) ∈ B

}
.

If (A,L) ∈ B , then there exists (B,LB) ∈ Bε such that ΛK ((A,L), (B,LB)) ⩽ ε
2 . By

construction, covF (A,L|ε)⩽ f (ε).

Our next step is to prove that certain classes of finite dimensional quantum
compact metric spaces are indeed compact for the propinquity.

Theorem 2.5.3. Let QQC MS F be the class of all F -quantum compact metric spaces
for F ⩾ 1. Let d ∈N\ {0} and K > 0. The class:

CF,K ,d = {
(A,L) ∈QQC MS F : dimCA⩽ d and qdiam(A,L)⩽K

}
is compact for the dual propinquity ΛF .

Proof. Let (An ,Ln)n∈N be a sequence in CF,K ,d . Let Md be the C*-algebra of d ×d
matrices.

First, fix n ∈N. We identify the C*-algebra An with a C*-subalgebra of Md as
follows. Up to ∗-isomorphism, we can write An =⊕ j∈JMt ( j ) where J = {1, . . . ,d} and
t(1) ⩾ t(2) ⩾ · · ·⩾ t(d). We note that t may be zero for some j ∈ {1, . . . ,d}, and the
zero set of t is a tail of J .

Let j ∈ {1, . . . ,d}. Let s( j ) = ∑ j
k=1 t( j ) and set s(0) = 0. We now let Q j be the

projection given as the diagonal matrix whose only nonzero entries are 1 on the
diagonal, from row s( j −1)+1 to s( j ), i.e. in block form:

Q j =
0s( j−1)

1s( j )−s( j−1)

0d−s( j )

 .
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Of course the projections Q j are orthogonal and sum to the identity of Md .
It then follows trivially that An is isomorphic to A′

n = ∑
j∈J Q jMdQ j . Let πn :

An →A′
n be the *-isomorpism thus constructed. Note that πn is not a unital map

from An into Md .
If 1n is the unit of An for all n ∈N, then (πn(1n))n∈N is a sequence of diagonal

projections, i.e. diagonal d ×d-matrices with entries in {0,1}. Thus, there exists a
constant subsequence (πg (n)(1g (n)))n∈N, with value denoted by p, of (πn(1n))n∈N.

Let B = pMd p. Note that for all n ∈N, the map pπg (n)p : An → B is now a
unital *-monomorphism. We shall henceforth omit the notation adpπg (n) and sim-
ply identify Ag (n) with pπg (n)(Ag (n))p. We emphasize that with this identification,
1g (n) = 1B.

LetR= {b ∈ sa (B) : ∥b∥⩽K } be the closed ball of center 0 and radius K in sa (B).
Since sa (B) is finite dimensional, the set R is compact in norm. We shall denote
by Haus [B] the Hausdorff distance defined by the norm of sa (B) on the compact
subsets of R. Since R is compact in norm, Haus [B] induces a compact topology on
the set of compact subsets of R by Corollary (2.1.12).

We fix a state ϕ ∈ S (B) and identify ϕ with its restriction to Ag (n), which is a
state of Ag (n), for all n ∈N.

Now, for all n ∈N, let:

Ln = {
a ∈ sa(

Ag (n)
)

: Lg (n)(a)⩽ 1
}

and
Dn = {

a ∈Ln :ϕ(a) = 0
}

.

Fix n ∈N. By construction, we check that Ln =Dn +R1B, since for all a ∈ sa(
Ag (n)

)
we check easily that Lg (n)(a ±ϕ(a)1n) = Lg (n)(a). On the other other hand, we note
that Dn is a compact subset of R since diam

(
S (An),mkLn

)
⩽K . Indeed, if a ∈Dn

then, for all ψ ∈S (Ag (n)), we have:

|ψ(a)| = |ψ(a)−ϕ(a)|⩽mkL(ϕ,ψ)⩽K .

Moreover, compactness of Dn follows from Theorem (1.1.19) since (Ag (n),Lg (n)) is a
quantum compact metric space for all n ∈N.

Thus, there exists a convergent subsequence (D f (n))n∈N of (Dn)n∈N forHaus [B],
whose limit we denote by D.

We now define L=D+R1B. Let us first check that (L f (n))n∈N converges to L.
Let ε> 0. There exists N ∈N such that for all n ⩾ N , we have:

Haus [B](D f (n),D)⩽ ε.

Let n ⩾ N . We observe that, for any a ∈L f (n), there exists a′ ∈D f (n) and t ∈R
such that a = a′ + t1B. Now, there exists b′ ∈ D such that ∥a′ − b′∥B ⩽ ε. Let
b = b′ + t1B ∈ L. Then ∥a − b∥B = ∥a′ − b′∥B ⩽ ε, so L f (n) is included in an ε-
neighborhood of L. Using a symmetric argument, we conclude:

Haus [B]
(
L f (n),L

)
⩽ ε
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and thus
(
L f (n)

)
n∈N converges to L for the Hausdorff distance Haus [B].

Moreover, D = {a ∈ L : ϕ(a) = 0} by construction and continuity of ϕ. Last, as
D is compact, hence closed, the set L =D+R1B is closed as well: if (ln)n∈N ∈ L
converges to some l in B then (ln −ϕ(ln)1B)n∈N is a sequence in D, and thus by
continuity of ϕ and since D is closed, l −ϕ(l )1B ∈D. Thus l ∈L.

For all b ∈ sa (B) we define:

L(b) = inf{λ> 0 : b ∈λL}.

A direct computation proves that L is K -quasi-Leibniz. Certainly L may assume
the value ∞. Let J= dom(L) be the set of self-adjoint elements in B for which L is
finite.

If a,b ∈ J then:

L(a ◦b),L({a,b})⩽ F (∥a∥A,∥b∥A,L(a),L(b)) <∞

so J is a Jordan-Lie subalgebra of sa (B). We define:

A= {b ∈B : ℜ(b),ℑ(b) ∈ J}

and we check that A is a C*-subalgebra of B with the same unit as B and such that
sa (A) = J.

If L(a) = 0 for some a ∈ J, then we have L(a −ϕ(a)1A) = 0 as well since L(1A) = 0
and L is a seminorm by construction. Thus a −ϕ(a)1A ∈D. Now, for any t ∈R, we
haveϕ(t (a−ϕ(a)1A)) = 0 and L(t (a−ϕ(a)1A)) = 0, so t (a−ϕ(a)1A) ∈D for all t ∈R.
Since D is norm bounded, we conclude that a =ϕ(a)1A as desired.

Since D ⊆R, for any two states ϕ,ψ ∈ S (A) and for all a ∈ L we have |ϕ(a)−
ψ(a)|⩽K and thus diam

(
S (A),mkL

)
⩽K .

Moreover, since D is compact, we conclude that L is a Leibniz Lip-norm and
(A,L) is a quantum compact metric space by Theorem (1.1.19).

We now prove that dimA ⩽ d . First, for all n ∈N, let dn = dimR sa
(
Ag ( f (n))

)
.

By assumption, since dimR sa
(
Ag ( f (n))

) = dimCAg ( f (n)), we conclude that dn ∈
{1, . . . ,d}. Thus, there exists a constant subsequence (d f1(n))n∈N of (dn)n∈N. Set
g1 = g ◦ f ◦ f1 and δ= d f1(0) = d f1(1) = . . ..

Now, for all n ∈N, there exists a basis (cn
1 , . . . ,cn

δ
) of sa

(
Ag1(n)

)
such that cn

1 = 1B.
In particular, Lg1(n)(cn

j ) ∈ (0,∞) for all j ∈ {2, . . . ,δ} since Lg1(n) is a Lip-norm on a

finite dimensional space.
Now we set d n

1 = 1B and d n
j = Lg1(n)(cn

j )−1d n
j , then we have constructed a basis

(d n
1 , . . . ,d n

δ
) of sa

(
Ag1(n)

)
consisting of elements inLg1(n). We can improve somewhat

on this construction. Indeed, for j ∈ {2, . . . ,δ}, we have ϕ(d n
j −ϕ(d n

j )d n
1 ) = 0. Thus,

if bn
1 = d n

1 and bn
j = d n

j −ϕ(d n
j )d n

1 , then we have constructed a basis
{
bn

1 , . . . ,bn
δ

}
of

Ag1(n) with bn
1 = 1B and bn

j ∈Dg1(n).

Since R is compact and, for any j in the finite set {1, . . . ,δ}, the sequence (bn
j )n∈N

lies in R, there exists a strictly increasing function f2 : N→ N such that for all

j ∈ {1, . . . ,δ}, the sequence (b f2(n)
j )n∈N converges in norm to some b j ∈R. Let g2 =

g1 ◦ f2.
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Since (Dn)n∈N converges to D for the Hausdorff distance on R associated with
the norm of B, we conclude that b j ∈D for all j ∈ {2, . . . ,δ}. Of course, b1 = 1A.

Now, let b ∈ sa (A) be arbitrary. By construction, a = r b for some r ∈R and a ∈L.
Since Lg2(n) converges to L, there exists an ∈ Lg2(n) such that limn→∞ an = a. For

each n ∈Nwe write an =∑δ
j=1λ

n
j bn

j .

There exists N1 ∈N such that for all n ⩾ N1, we have ∥an∥B ⩽ ∥a∥B+1. Thus(
λn

j

)
n∈N is a bounded sequence for all j in the finite set {1, . . . ,δ}. Consequently,

there exists a strictly increasing f3 :N→Nwith (λ f3(n)
j )n∈N converging to some limit

λ j ∈R for all j ∈ {1, . . . ,δ}.
Let ε > 0. Summarizing our construction thus far, there exists N2 ∈ N such

that for all n ⩾ N2 we have ∥a − a f3(n)∥⩽ ε
3 . There exists N3 ∈N such that for all

n ⩾ N3 and all j ∈ {1, . . . ,δ} we have |λ f3(n)
j −λ j | ⩽ ε

3max{∥b1∥B,...,∥bδ∥B} . Last there

exists N4 ∈N such that for all n ⩾ N4 we have ∥b f2( f3(n))
j −b j ∥B ⩽ ε

3δmax{λ1,...,λδ,1} .

Now for n ⩾max{N2, N3, N4}:∥∥∥∥∥a −
δ∑

j=1
λ j b j

∥∥∥∥∥
B

⩽
∥∥a −a f3(n)

∥∥
B

+
∥∥∥∥∥a f3(n) −

δ∑
j=1

λ j b j

∥∥∥∥∥
B

⩽
ε

3
+

∥∥∥∥∥a f3(n) −
δ∑

j=1
λ j b f2( f3(n))

j

∥∥∥∥∥
B

+
∥∥∥∥∥ δ∑

j=1
λ j

(
b f2( f3(n))

j −b j

)∥∥∥∥∥
B

⩽
ε

3
+ ε

3
+ ε

3
= ε.

Thus a lies in the closure of the span of {b1, . . . ,bδ}, which is closed since finite
dimensional. Hence {b1, . . . ,bδ} spans A and thus dimA⩽ δ⩽ d .

Now, we wish to conclude by showing that (Ag ( f (n)),Lg ( f (n)))n∈N converges to
(A,L) for the quantum propinquity. Let ε> 0. There exists N ∈N such that for all
n ⩾ N , we have Haus [B](Lg◦ f (n),L)⩽ ε. Let now n ⩾ N .

For all a ∈Ag◦ f (n) and b ∈A, we set:

Nn(a,b) = 1

ε
∥a −b∥B,

and

Ln(a,b) = max
{
Lg◦ f (n)(a),L(b), Nn(a,b)

}
.

It is easily checked that Nn is a bridge in the sense of [54, Definition 5.1]: in particular,
if a ∈Ag◦ f (n) with Lg◦ f (n)(a) ⩽ 1 then there exists b ∈ L with ∥a −b∥B ⩽ ε, which
implies Ln(a,b) = 1; similarly if b ∈ A with L(b) ⩽ 1, i.e. b ∈ L, then there exists
a ∈L f (n) with ∥a −b∥B ⩽ ε and thus Ln(a,b) = 1.

Hence by [54, Theorem 5.2], the seminorm Ln is a Lip-norm. It is lower semi-
continuous by construction, and it is easily checked that Ln is F -quasi-Leibniz, as in
our proof of Theorem (2.3.1).

Let τn = (Ag◦ f (n) ⊕A,L,ρn ,ρ) with ρn : Ag◦ f (n) ⊕A↠Ag◦ f (n) and ρ : Ag◦ f (n) ⊕
A↠A the two canonical surjections. By construction, τn is a (C ,D)-tunnel.
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If µ ∈S (Ag◦ f (n)) and ν ∈S (A) and if (a,b) ∈Ag◦ f (n) ⊕A with Ln(a,b)⩽ 1, then:

|µ(a)−ν(b)|⩽ ∥a −b∥B ⩽ ε.

We can deduce from this computation that χ (τn)⩽ 2ε.
Consequently: for all ε> 0, there exists N ∈N such that for all n ⩾ N , we have:

ΛF ((Ag◦ f (n),Lg◦ f (n)), (A,L))⩽ 2ε.

Moreover, (A,L) is a F –quasi-Leibniz quantum compact metric space of diameter
at most K and dimension at most d . This completes our proof.

Our generalization of Gromov’s Compactness Theorem [20, 19] is given by:

Theorem 2.5.4. Let K ⩾ 1 and let A be a class of K -quantum compact metric spaces
in the closure of the finite dimensional K -quantum compact metric spaces for the
dual propinquity ΛK . The following assertions are equivalent:

1. A is totally bounded for ΛK ,

2. there exists a function f : (0,∞) →N and C > 0 such that for all (A,LA) ∈ A ,
we have:

• qdiam(A,LA)⩽C ,

• for all ε> 0 we have covK (A,LA|ε)⩽ f (ε).

Proof. Assume (1). Assertion (2) follows from Proposition (2.5.2).
Assume (2), i.e. assume that there exists f : (0,∞) →N and K > 0 such that for

all (A,LA) ∈A and ε> 0, we have diam
(
S (A),mkLA

)
⩽K and:

covF (A,LA|ε)⩽ f (ε).

Let ε> 0.
First, we note that if (A,LA) ∈A , then there exists a F –quasi-Leibniz quantum

compact metric space (a,La) such that:

• dimCa⩽ f
(
ε
3

)
,

• ΛF ((a,La), (A,LA))⩽ ε
3 .

Consequently, we note that diam(a,La)⩽K + 2ε
3 , since the function (B,LB) ∈A 7→

diam(B,LB) is 2-Lipschitz for the Gromov-Hausdorff propinquity by Theorem
(2.4.10).

Now, by Theorem (2.5.3), the class:

Fε =
{

(B,L) ∈QQC MS F : dimCB⩽ f
(ε

3

)
and diam(B,L)⩽K + 2ε

3

}
is compact for ΛF .
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Let:

Gε =
{

(B,LB) ∈Fε : ∃(A,LA) ∈A ΛF ((A,LA), (B,LB))⩽
ε

3

}
.

Since Gε ⊆Fε, we conclude that Gε is totally bounded for the dual propinquity.
Thus, there exists a finite subset Jε of Gε which is ε

3 dense in Gε.
Therefore, up to invoking choice, there exists a finite subset Aε of A such that

for all (B,LB) ∈Jε there exists (A,LA) ∈Aε such that ΛF ((A,LA), (B,LB))⩽ ε
3 .

Now, let (A,LA) ∈A . There exists (B,LB) ∈Gε such that:

ΛF ((B,LB), (A,LA))⩽
ε

3
.

Now, there exists (C,LC) ∈Jε such that:

ΛF ((B,LB), (C,LC))⩽
ε

3
.

Last, by our choice, there exists (a,La) ∈Aε with:

ΛF ((a,La), (C,LC))⩽
ε

3
.

Consequently:

ΛF ((A,LA), (a,La))

⩽ΛF ((A,LA), (B,LB))+ΛF ((B,LB), (C,LC))+ΛF ((C,LC), (a,La))

⩽ ε.

Thus Aε is ε-dense in A for the dual propinquity, and is a finite set. Thus, A is
totally bounded for ΛF .

This completes our proof.

We refer to [37] for the following example of compact classes.

Theorem 2.5.5. Let (A,LA) be a F –quasi-Leibniz quantum compact metric space for
some admissible function F . If R ⩾ 0 then the class B of F –quasi-Leibniz quantum
compact metric spaces in the closed ball of center (A,LA) and radius R for the Lipschitz
distance LipD is totally bounded for the quantum Gromov-Hausdorff propinquity.

Therefore, the closure of B for the dual propinquity is compact.

Other compact classes are obtained via various form of perturbation, even when
the space of deformation parameters is very far from compact.

2.6 TOPOLOGICAL EQUIVALENCE

A very important of our compactness result is that our metric induces the same
topology as the usual Gromov-Hausdorff distance on the class of classical compact
metric spaces.
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If (X ,d) is a compact metric space, then we write Ld for the Lipschitz seminorm
induced by d , i.e.

∀ f ∈C (X ) L( f ) := sup

{ | f (x)− f (y)|
d(x, y)

: x, y ∈ X , x ̸= y

}
,

allowing for the value ∞.

Let F be the class function which, to any compact metric space (X ,d), associates
the quantum compact metric space (C (X ),Ld ). We can turn F into a functor, by
setting F ( f ) : g ∈ C (Y ) 7→ f ◦ g for any isometry g : (X ,dX ) → (Y ,dY ), where then
F ( f ) is a quantum isometry.

If F (X ,dX ) and F (Y ,dY ) are fully quantum isometric, then (X ,dX ) and (Y ,dY )
are in fact, fully isometric. Indeed, a full quantum isometry from (C (X ),dX ) onto
(C (Y ),dY ) gives rise, as a *-isomorphism from C (X ) to C (Y ), to an homeomorphism
f : Y → X . Moreover, by definition of a full quantum isometry, LdY (g ◦ f ) = LdX (g )
for all g ∈C (X ) (again, we allow ∞ here) and LdX (g ◦ f −1) = LdY (g ) for all g ∈C (Y ).
In particular, {g ◦ f : LdX (g )⩽ 1} = {h ∈C (Y ) : LdY (h)⩽ 1}. Therefore, for all x, y ∈ X ,
we compute:

dX (x, y) = sup
{|g (x)− g (y)| : g ∈ sa (C (X )),LdX (g )⩽ 1

}
= sup

{|g ◦ f ( f −1(x))− g ◦ f ( f −1(b))| : g ∈ sa (C (X )),LdX (g )⩽ 1
}

= sup
{|h( f −1(x))−h( f −1(y)) : h ∈ saC(Y ),LdY (h)⩽ 1

}
= dY ( f −1(x), f −1(y)).

So f −1 is an isometry from (X ,dX ) to (Y ,dY ). Similarly, f is an isometry and thus
(X ,dX ) and (Y ,dY ) are fully isometric.

We first observe that F is 1-Lipschitz.

Proposition 2.6.1. For all compact metric spaces (X ,dX ) and (Y ,dY ),

Λ∗(F (X ,dx ),F (Y ,dY ))⩽GH((X ,dX ), (Y ,dY )).

Proof. Let (Z ,dZ ) be any compact metric space, together with two isometries iX :

X ,→ Z and iY : Y ,→ Z . We thus have a tunnel τ : F (X ,dX )
i∗X←− F (Z ,dZ )

i∗Y−→ F (Y ,dY )
from F (X ,dX ) to F (Y ,dY ). We write δx for the evaluation at x map. Moreover, let
W := iX (X )∪ iY (Y ) ⊆ Z , endowed with the restriction dW of dZ to W . Of course,
Haus [dW ](iX (X ), iY (Y )) =Haus [dZ ](iX (X ), iY (Y )).

Letϕ :=∑n
j=1 t jδx j for some x1, . . . , xn ∈W , and t1, . . . , tn ∈ [0,1] such that

∑n
j=1 t j =

1. Note thatϕ ∈S (C (W )). For each j ∈ {1, . . . ,n}, if x j ∈ Y then set y j = x j ; otherwise,
let y j be chosen so that dW (iX (x j ), iY (y j ))⩽Haus [dW ](iX (X ), iY (Y )).
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Let ψ :=∑n
j=1 t jδy j ∈S (C (Y )). If f ∈ F (W,dW ), with LdW ( f )⩽ 1, then

|ϕ( f )−ψ( f )|⩽
n∑

j=1
t j | f (x j )− f (y j )|

⩽
n∑

j=1
t j dW (x j , y j )

⩽
n∑

j=1
t jHaus [dW ](iX (X ), iY (Y )) =Haus [dW ](iX (X ), iY (Y )).

The set of states obtained as convex combinations of evaluation states at points
in W is weak* dense in S (C (W )). Since mkLdW

metrizes the weak* topology on

S (C (W )), we conclude thatHaus
[
mkLdW

]
(S (C (W )),S (C (Y )))⩽Haus [dW ](iX (X ), iY (Y )).

Similarly,Haus
[
mkLdW

]
(S (C (W )),S (C (X )))⩽Haus [dW ](iX (X ), iY (Y )). Soχ (τ)⩽

Haus [dW ](iX (X ), iY (Y )). So

Λ∗(F (X ,dX ),F (Y ,dY ))⩽Haus [dW ](iX (X ), iY (Y )).

By definition of GH, we conclude (as our choices of (Z ,dX ) and iX , iY are arbitrary
within the given assumptions):

Λ∗(F (X ,dX ),F (Y ,dY ))⩽GH((X ,dX ), (Y ,dY )),

as claimed.

We now get the topological equivalence between the Gromov-Hausdorff distance
and the propinquity on the class of classical compact metric spaces.

Theorem 2.6.2. The topology defined by the distance:

Λc : (X ,dX ), (Y ,dY ) compact metric spaces 7→Λ∗(F (X ,dX ),F (Y ,dY ))

is the topology induced by the Gromov-Hausdorff distanceGH, and the class {F (X ,dX ) :
(X ,dX ) compact metric space} is closed for the propinquity.

Proof. By Proposition (2.6.1), convergence for the Gromov-Hausdorff distance im-
plies convergence for Λc .

Let now (Xn ,dn)n∈N be a sequence of compact metric spaces, and let (A,L) be a
quantum compact metric space such that

lim
n→∞Λ

∗(F (Xn ,dn), (A,L)) = 0.

Since F (Xn ,dn) converges for the propinquity, it is Cauchy, and thus the set {F (Xn ,dn) :
n ∈N} is totally bounded. Moreover, every compact metric space is in the closure of
finite metric spaces for GH, and thus, forΛ, by Proposition (2.6.1). So by Proposition
(2.5.2), there exists f : (0,∞) →N and K > 0 such that for all n ∈N and for all ε> 0,
we have diam(Xn ,dn)⩽K and cov ((|F )(Xn ,dn))⩽ f (ε).
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As a result, {(Xn ,dn) : n ∈N} is totally bounded for the Gromov-Hausdorff dis-
tance GH, thanks to the Gromov compactness theorem [20].

As a result, we observe the following. Let g :N→N be some strictly increasing
function. By total boundedness, the sequence (Xg (n),dg (n))n∈N has a Cauchy sub-
sequence (Xg (h(n)),Lg (h(n)))n∈N. Since the Gromov-Hausdorff distance is complete
[20], we conclude that there exists a compact metric space (Yg ,dg ) such that

lim
n→∞GH((Xg (h(n)),dg (h(n))), (Yg ,dg )) = 0.

By Proposition (2.6.1), we then conclude that

lim
n→∞Λ

∗((C (Xg (h(n))),Lg (h(n))), (C (Yg ),Ldg )) = 0.

By Theorem (2.4.3), this implies in turn that (A,L) is fully quantum isometric to
(C (Yg ),Ldg ). In particular, the class of classical compact metric spaces is closed for
the propinquity.

Thus, on the class of isometric classes of compact metric spaces, we have
shown the following: if (Xn ,dn)n∈N is a sequence of compact metric spaces such
that (C (Xn),Ln)n∈N converges for the dual propinquity, then all subsequences of
(Xn ,dn)n∈N have a convergent subsequence for the Gromov-Hausdorff distance GH,
and this limit (Y ,d) is such that (C (Y ),Ld ) is fully quantum isometric to (A,L) — in
other words, all subsequences of (Xn ,dn)n∈N have a subsequence converging to the
same element in the class C of all isometry classes of compact metric spaces. As
GH is indeed a metric on C , we conclude that (Xn ,dn)n∈N converges in the Gromov-
Hausdorff distance GH, with its limit (Y ,d) such that (A,L) and (C (Y ),Ld ) are fully
quantum isometric. This concludes our proof.

Thus, convergence for the propinquity or for the Gromov-Hausdorff distance
are the same thing when dealing with classical compact metric spaces.

2.7 INDUCTIVE LIMITS

In general, it is difficult to find interesting necessary conditions for convergence
of quantum compact metric spaces, since the Gromov-Hausdorff propinquity is
defined an infimum over all possible tunnels. Of course, Theorem (2.4.10) is such a
necessary condition, but it is not always easy to compute the diameter of a quantum
compact metric space anyway. However, something notable happens when working
with inductive limits of quantum compact metric spaces, in the relatively lax sense
below: we can actually find a necessary and sufficient condition for convergence in
that context, under a mild assumption.

Definition 2.7.1. For each n ∈N∪ {∞}, let (An ,Ln) be a quantum compact metric
space, such thatA∞ = cl(

⋃
n∈NAn), where (An)n∈N is an increasing (for ⊆) sequence

of C*-subalgebras of A∞, with the unit of A∞ in A0.
A ∗-automorphism π :A∞ →A∞ is a bridge builder for ((An ,Ln)n∈N, (A∞,L∞))

when, for all ε> 0, there exists N ∈N such that if n ⩾ N , then

∀a ∈ dom(L∞) ∃b ∈ dom(Ln) : Ln(b)⩽ L∞(a) and ∥π(a)−b∥A∞ < εL∞(a)
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and

∀b ∈ dom(Ln) ∃a ∈ dom(L∞) : L∞(a)⩽ Ln(b) and ∥π(a)−b∥A∞ < εLn(b),

where ∥·∥A∞ is the C*-norm on A∞.

Bridge builders are powerful means to prove metric convergence for the propin-
quity and notable because it is usually very difficult to find necessary conditions for
metric convergence in the sense of the propinquity (besides the trivial convergence
for the diameters). Thus, this theorem is of independent interest from our study of
spectral triples, and addresses the relationship between inductive limits and limits in
a metric sense as in [47, 36]. Our first main result is therefore the following theorem
about convergence for the propinquity Λ∗ of certain inductive sequences.

Theorem 2.7.2. For each n ∈N∪ {∞}, let (An ,Ln) be a quantum compact metric
space, where (An)n∈N is an increasing (for ⊆) sequence of C*-subalgebras of A∞ such
that A∞ = cl(

⋃
n∈NAn), with the unit of A∞ in A0. We assume that there exists

∃M > 0 such that for all n ∈N:

1

M
Ln ⩽ L∞ ⩽ M ·Ln on dom(Ln).

Then

lim
n→∞Λ

∗ ((An ,Ln), (A∞,L∞)) = 0,

if, and only if, for any subsequence (Ag (n),Lg (n))n∈N of (An ,Ln)n∈N, there exists a
strictly increasing function f :N→N and a bridge builderπ for ((Ag◦ f (n),Lg◦ f (n))n∈N, (A∞,L∞)).

Example 2.7.3. Let A = cl(
⋃

n∈N)An be a unital C*-algebra, where An is a finite
dimensional C*-subalgebra of A such that An ⊆An+1 for all n ∈N, and 1 ∈A0 — i.e.
A is a unital AF algebra. We assume that A has a faithful tracial state τ, which is
equivalent to asking that A does not contain the C*-algebra of compact operators.

For each n ∈N, there exists a unique conditional expectationEn :A→An such
that τ◦En = τ.

Let (dn)n∈N be a sequence of strictly positive real numbers converging to ∞; for
instance, dn = dimAn for all n ∈N. We define, for all a ∈ sa (A),

L(a) := sup
{
dn ∥a −En(a)∥A : n ∈N}

,

allowing for the value ∞.
The pair (A,L) thus defined is a quantum compact metric space such that

lim
n→∞Λ

∗((An ,Ln), (A,L)) = 0.

The identity is a bridge builder, almost immediately from the definition of L.

We refer to [7] for examples involving inductive limits of twisted group C*-
algebras (see the last section of these notes as well).
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2.8 OTHER EXAMPLES

There are other examples of convergence, and we include a few here. To begin with,
every nuclear quasi-diagonal C*=algebra can be endowed with a quantum compact
metric space structure, and be the limit, for this structure, of finite dimensional
quantum compact metric spaces.

NUCLEAR QUASI-DIAGONAL QUANTUM COMPACT METRIC SPACES

Definition 2.8.1. A unital C*-algebra A is pseudo-diagonal, when for all ε> 0 and
for all finite subset F of A, there exist a finite dimensional C*-algebra B and two
positive unital linear maps ϕ :B→A and ψ :A→B such that:

1. for all a ∈F, we have ∥a −ϕ◦ψ(a)∥A ⩽ ε,

2. for all a,b ∈F, we have ∥ψ (a ◦b)−ψ(a)◦ψ(b)∥B ⩽ ε,

3. for all a,b ∈F, we have ∥ψ ({a,b})−{
ψ(a),ψ(b)

}∥B ⩽ ε.

Theorem 2.8.2 ([39]). Let C ⩾ 1, D ⩾ 0. If (A,LA) is a (C ,D)-quantum compact
metric space, where A is a unital quasi-diagonal C*-algebra, then (A,LA) is the
limit of finite dimensional (C (1+ε),D +ε)-quantum compact metric spaces for the
(C (1+ε),D +ε)-propinquity, for any ε> 0.

AF ALGEBRAS

We saw how to endow AF algebras with quantum metrics in Theorem (1.2.3). We
can use this metric structure to obtain various continuous functions from natural
spaces to the class of AF algebras. It is actually possible to get a decent view of UHF
algebras in this picture.

Up to unitary conjugation, a unital *-monomorphism α : B→A between two
unital simple finite dimensional C*-algebras, i.e. two nonzero full matrix algebras A
and B, exists if and only if dimA= k2 dimB for k ∈N, and α must be of the form:

A ∈B 7−→

A
. . .

A

 ∈A. (2.8.1)

It is thus sufficient, in order to characterize a unital inductive sequence of full
matrix algebras, to give a sequence of positive integers:

Definition 2.8.3. Let I = (An ,αn)n∈N be a unital inductive sequence of unital,
simple finite dimensional C*-algebras, with A0 =C.

The multiplicity sequence of I is the sequence
(√

dimAn+1
dimAn

)
n∈N of positive inte-

gers.

The set of sequences N of positive integers is thus a natural parameter space
for the classes UH F k . Moreover, N can be endowed with a natural topology, and
we thus can investigate the continuity of maps from the Baire space to

(
UH F k ,Λ

)
.
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Definition 2.8.4. The Baire space N is the set (N\ {0})N endowed with the metric d
defined, for any two (x(n))n∈N, (y(n))n∈N in N , by:

d
(
(x(n))n∈N, (y(n))n∈N

)={
0 if x(n) = y(n) for all n ∈N,

2−min{n∈N:x(n )̸=y(n)} otherwise.

We thus can establish:

Theorem 2.8.5 ([2, Theorem 4.9]). For any β = (β(n))n∈N ∈ N , we define the se-
quence ⊠β by:

⊠β= n ∈N 7−→
{

1 if n = 0,∏n−1
j=0 (β( j )+1) otherwise.

We then define, for all β ∈N , the unital inductive sequence:

I (β) = (
M

(
⊠β(n)

)
,αn

)
n∈N

whereM(d) is the algebra of d×d matrices and for all n ∈N, the unital *-monomorphism
αn is of the form given in Expression (2.8.1).

The map u from N to the class of UHF algebras is now defined by:

(β(n))n∈N ∈N 7−→ u((β(n))n∈N) = lim−−→I (β).

Let k ∈ (0,∞) andβ ∈N . Let Lk
β

be the Lip-norm Lϑ
I (β),µ on u(β) given by Theorem

(1.2.3), the sequence ϑ : n ∈N 7→⊠β(n)k and the unique faithful trace µ on u(β).

The (2,0)–quasi-Leibniz quantum compact metric space
(
u(β),Lk

β

)
will be denoted

simply by uhf(β,k).
For all k ∈ (0,∞), the map:

uhf(·,k) : N −→UH F k

is a (2,k)-Hölder surjection.

Another family of AF algebras which is also parameterized by the Baire space
and played a role in the classification of quantum tori is the family of Effros-Shem
algebras [16].

We begin by recalling the construction of the AF C*-algebras AFθ constructed
in [17] for any irrational θ in (0,1). For any θ ∈ (0,1) \Q, let (r j ) j∈N be the unique
sequence inN such that:

θ = lim
n→∞r0 +

1

r1 +
1

r2 +
1

r3 +
1

. . . + 1

rn

. (2.8.2)
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The sequence (r j ) j∈N is called the continued fraction expansion of θ, and we will
simply denote it by writing θ = [r0,r1,r2, . . .] = [r j ] j∈N. We note that r0 = 0 (since
θ ∈ (0,1)) and rn ∈N\ {0} for n ⩾ 1.

We fix θ ∈ (0,1) \Q, and let θ = [r j ] j∈N be its continued fraction decomposition.

We then obtain a sequence
(

pθn
qθn

)
n∈N

with pθn ∈N and qθn ∈N\ {0} by setting:



(
pθ1 qθ1
pθ0 qθ0

)
=

(
r0r1 +1 r1

r0 1

)
(

pθn+1 qθn+1

pθn qθn

)
=

(
rn+1 1

1 0

)(
pθn qθn

pθn−1 qθn−1

)
for all n ∈N\ {0}.

(2.8.3)

We then note that
(

pθn
qθn

)
n∈N

converges to θ.

Expression (2.8.3) contains the crux for the construction of the Effrös-Shen AF
algebras.

Notation 2.8.6. Let θ ∈ (0,1)\Q and θ = [r j ] j∈N be the continued fraction expansion

of θ. Let (pθn)n∈N and (qθn)n∈N be defined by Expression (2.8.3). We set AFθ,0 =C
and, for all n ∈N\ {0}, we set:

AFθ,n =M(qθn)⊕M(qθn−1),

and:

αθ,n : a ⊕b ∈AFθ,n 7−→


a

. . .
a

b

⊕a ∈AFθ,n+1,

where a appears rn+1 times on the diagonal of the right hand side matrix above. We
also set α0 to be the unique unital *-morphism fromC to AFθ,1.

We thus define the Effrös-Shen C*-algebra AFθ , after [17]:

AFθ = lim−−→
(
AFθ,n ,αθ,n

)
n∈N .

Notation 2.8.7. Let θ ∈ (0,1)\Q and θ = [r j ] j∈N be the continued fraction expansion

of θ. Let (pθn)n∈N and (qθn)n∈N be defined by Expression (2.8.3). We set af(θ,0) =C
and, for all n ∈N\ {0}, we set:

af(θ,n) =M(qθn)⊕M(qθn−1),

and:

αθ,n : a ⊕b ∈ af(θ,n) 7−→


a

. . .
a

b

⊕a ∈AFθ,n+1,

where a appears rn+1 times on the diagonal of the right hand side matrix above. We
also set α0 to be the unique unital *-morphism fromC to AFθ,1.
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We thus define the Effrös-Shen C*-algebra AFθ, after [17]:

AFθ = lim−−→
(
AFθ,n ,αθ,n

)
n∈N .

Notation 2.8.8. Let θ ∈ (0,1)\Q and k ∈ (0,∞). The Lip-norm Lk
θ

on AFθ is the lower

semi-continuous, (2,0)-quasi Leibniz Lip-norm Lk
I (θ),σθ

defined in Theorem (1.2.3),

where I (θ) = (AFθ,n ,αθ,n)n∈N as in Notation (2.8.7).

+

Theorem 2.8.9. For all k ∈ (0,∞) and using Notations (2.8.7) and (2.8.8), the function:

θ ∈ (0,1) \Q 7−→
(
AFθ,Lk

θ

)
∈A F k

is continuous from (0,1) \Q, with its topology as a subset ofR, to the class of (2,0)-
quasi-Leibniz quantum compact metric spaces metrized by the propinquity Λ.

QUANTUM AND FUZZY TORI

Let ℓ be a continuous length function onTd . For any G ⊆Td a closed subgroup and
σ a multiplier of the Pontryagin dual Ĝ of G , for any a ∈C∗(Ĝ ,σ), set:

LG ,σ(a) = sup

{∥αg (a)−a∥C∗(Ĝ ,σ)

ℓ(g )
: g ∈G \ {1}

}

where α is the dual action of G on C∗(Ĝ ,σ).
Rieffel showed in [52] that

(
C∗(Ĝ ,σ),LG ,σ

)
is a Leibniz quantum compact metric

space.

If (Gn)n∈N is a sequence of closed subgroups of Td converging to Td for the
Hausdorff distance Haus [ℓ] induced by the length function ℓ on the hyperspace of
closed subsets ofTd , and if (σn)n∈N is a sequence of multipliers ofZd converging
pointwise to some σ, with σn(g ) = 1 if g is the coset of 0 for Ĝn , then:

lim
n→∞Λ

∗((C∗(Ĝn ,σn),LĜn ,σn
), (C∗(Zd ,σ),LZd ,σ)) = 0.

In particular, we obtain certain finite dimensional approximations of quantum
tori. If for all n ∈N, we set Fn =C∗(Un ,Vn) =C∗(Z2

n ,ρn) where:

Un =



0 0 . . . 0 1
1 0 . . . 0 0

0 1
. . .

...
...

...
. . .

. . . 0 0
0 . . . . . . 1 0

 ,Vn =



1

e
2i pnπ

n

e
4i pnπ

n

. . .

e
2i (n−1)pnπ

n


with pn ̸≡ 0 mod n, and if limn→∞

pn
n = θ, then:

lim
n→∞Λ

∗((Fn ,Ln), (Aθ,Lθ)) = 0
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where Aθ = C∗(U ,V ) and U ,V are universal unitaries such that V U = e2iπθUV ,
while Ln and L are L-seminorms from the dual actions, and for some fixed continu-
ous length function onT2.

THE TOPOLOGY OF THE CLASS OF CLASSICAL COMPACT METRIC SPACES

In this section, we note that, if we are willing to work with (2,0)-quantum compact
metric spaces and the associated propinquity, then we can say a little bit more about
the topology of the class of compact metric spaces.

Lemma 2.8.10. If B is a finite dimensional C*-subalgebra of a unital C*-algebra A
and 1A ∈B and if A has a faithful tracial state µ ∈S (A) then there exists a unique
µ-preserving conditional expectationE :A↠B.

Proof. See [35, Step 1 of Theorem (3.5)].

Theorem 2.8.11. Let (X ,d) be a finite metric space and let:

δ= min
{
d(x, y) : x, y ∈ X , x ̸= y

}> 0.

If A is a finite dimensional C*-algebra, if τ is some faithful tracial state on A, and if
B is a C*-subalgebra of A such that:

1. 1A ∈B,

2. there exists a unital *-isomorphism ρ : C (X ) →B,

then, for any β> 0, and setting for all a ∈A:

L(a) = max

{∥a −E(a)∥A
β

,Lipd ◦ρ−1 (E(a)) ,

}
whereE :A→B is the conditional expectation such that τ◦E= τ, we conclude that
the space (A,L) is a (D,0)-quasi-Leibniz compact quantum metric space, where:

D = max

{
2,1+ β

δ

}
such that:

Λ
(
(A,L), (C (X ),Lipd )

)
⩽β.

Proof. If a ∈ A with L(a) = 0 then a = E(a), and Lipd (ρ−1(E(a))) = 0, so E(a) =
λ1A for some λ ∈ R. Thus a ∈ R1A, as desired. We also note that L(1A) = 0 by
assumption.

We also note that since X is finite, dom
(
Lipd

)=C (X ) so dom(L) =A.
Since L is the maximum of two (lower semi-)continuous functions over A, we

also have L is (lower semi-)continuous on A.
The map τX = τ◦ρ is a state of C (X ), and thus { f ∈C (X ) : τX ( f ) = 0,Lipd ( f ) ⩽

1} is compact — since X is finite, this set is actually closed and bounded in the
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finite dimensional space C (X ). Let B > 0 so that if Lipd ( f ) ⩽ 1 and τX ( f ) = 0 then
∥ f ∥C (X ) ⩽B .

Now if a ∈ sa (A) with L(a) ⩽ 1 and τ(a) = 0 then Lipd ◦ ρ−1(E(a)) ⩽ 1 and
τX (ρ−1(E(a))) = τ◦E(a) = τ(a) = 0. Thus ∥E(a)∥A ⩽B . Now, ∥a∥A ⩽ ∥a−E(a)∥A+
∥E(a)∥A ⩽β+B . So:

{a ∈ sa (A) : L(a)⩽ 1,τ(a) = 0} ⊆ {
a ∈ sa (A) : ∥a∥A ⩽β+B

}
,

and the right-hand side is compact since A is finite dimensional, so (A,L) is a
compact quantum metric space by Theorem (1.1.19).

Last, we check the quasi-Leibniz property of L. Let a,b ∈ dom(L) and x, y ∈ X .
Since ρ is a *-isomorphism, we now compute:∣∣ρ−1 (E(ab)) (x)−ρ−1 (E(ab)) (y)

∣∣
⩽

∣∣ρ−1 (E(ab)) (x)−ρ−1 (E(aE(b))) (x)
∣∣

+ ∣∣ρ−1 (E(aE(b)))(x)−ρ−1 (E(E(a)b)) (y)
∣∣

+ ∣∣ρ−1 (E(E(a)b)) (y)−ρ−1 (E(ab)) (y)
∣∣

⩽ ∥E(a(b −E(b)))∥A
+ ∣∣ρ−1 (E(a)) (x)ρ−1 (E(b)) (x)−ρ−1 (E(a)) (y)ρ−1 (

E(b)(y)
)∣∣

+∥E((a −E(a))b)∥A
⩽ ∥a∥AβL(b)+∥b∥AβL(b)

+ ∣∣ρ−1 (E(a)) (x)ρ−1 (E(b)) (x)−ρ−1 (E(a)) (y)ρ−1 (E(b)) (y)
∣∣ .

Hence:

Lipd ◦ρ−1 (E(ab))

= sup

{∣∣ρ−1 (E(ab)) (x)−ρ−1 (E(ab)) (y)
∣∣

d(x, y)
: x, y ∈ X , x ̸= y

}

⩽ ∥a∥A
β

δ
L(b)+∥b∥A

β

δ
L(b)

+ sup

{∣∣ρ−1 (E(a)) (x)ρ−1 (E(b)) (x)−ρ−1 (E(a)) (y)ρ−1 (E(b)) (y)
∣∣

d(x, y)

: x, y ∈ X , x ̸= y

}
⩽
β

δ
(∥a∥AL(b)+L(a)∥b∥A)+Lipd (E(a)E(b))

⩽
β

δ
(∥a∥AL(b)+L(a)∥b∥A)+Lipd ◦E(a)∥b∥A+∥a∥ALipd ◦E(b)

⩽
(
1+ β

δ

)
(∥a∥AL(b)+L(a)∥b∥A) .

(2.8.4)

From this and from [2, Lemma 3.2], it follows easily that (A,L) is indeed a (D,0)–

quasi-Leibniz quantum compact metric space with D = max
{

2,
(
1+ β

δ

)}
.
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We now compute an upper bound for Λ((A,L), (C (X ),Lipd )) by exhibiting a par-
ticular bridge from A to C (X ).

Let γ = (A, id,ρ,1A) where id is the identity *-morphism of A. By Definition
(2.2.4), the quadruple γ is a bridge of height 0, so its length equals to its reach.

If f ∈C (X ) and Lipd ( f )⩽ 1, then:∥∥ρ( f )−E(ρ( f ))
∥∥
A

β
= 0

and Lipd (ρ−1(E(ρ( f )))) = Lipd ( f )⩽ 1. So L(ρ( f ))⩽ 1.
Now, it is immediate that bnγ

(
ρ( f ), f

)= ∥ρ( f )−ρ( f )∥A = 0. So:

sup
f ∈C (X )

Lipd ( f )⩽1

inf
a∈sa(A)
L(a)⩽1

bnγ (a,b) = 0.

If a ∈A with L(a)⩽ 1, then set f = ρ−1 (E(a))). First, by definition of L, we have
Lipd ( f ) = Lipd (ρ−1(E(a)))⩽ L(a)⩽ 1. Second:∥∥a −ρ( f )

∥∥
A = ∥a −E(a)∥A ⩽β.

Thus
sup

a∈sa(A)
L(a)⩽1

inf
f ∈C (X )

Lipd ( f )⩽1

bnγ (a,b)⩽β.

Therefore, the reach, and thus the length, of γ is no more than β. Hence by
Theorem (2.2.8), we conclude Λ((A,L), (C (X ),Lipd ))⩽β as desired.

We now deduce from Theorem (2.8.11) that compact metric spaces are always
limits of full matrix algebras for the quantum propinquity. A notable component
of the following result is how the constant β of Theorem (2.8.11) are related to the
actual geometry of the limit classical space.

Corollary 2.8.12. If (X ,d) is a compact metric space, if Y ⊆ X is a finite subset of X ,
and if βY ∈ (0,∞) such that:

βY

min{d(x, y) : x, y ∈ Y , x ̸= y}
⩽ 1

then there exists a (2,0)–quasi-Leibniz quantum compact metric space (A,L) where:

1. A is the C*-algebra of #Y ×#Y -matrices overC and τ is the unique tracial state
on A,

2. with C (Y ) identified with the diagonal C*-subalgebra of A given by a unital
*-isomorphism ρ with domain C (Y ) andEY , the unique τ-preserving condi-
tional expectation of A onto ρ(C (Y )), the L-seminorm L is given for all a ∈A
by:

L(a) = max

{∥a −EY (a)∥A
βY

,Lipd ◦ρ−1 (EY (a))

}
, (2.8.5)

and
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3. Λ((A,L), (C (X ),Lipd ))⩽Haus [d ](X ,Y )+βY .

Proof. Set δ= min{d(x, y) : x, y ∈ Y , x ̸= y}. By Theorem (2.8.11), the compact quan-

tum metric space (A,L) is(2,0)-quasi-Leibniz since 1+ βY
δ ⩽ 2 and:

Λ((A,L), (C (Y ),Lipd ))⩽βY .

Thus:

Λ((A,L), (C (X ),Lipd ))⩽

Λ((A,L), (C (Y ),Lipd ))+Λ((C (Y ),Lipd ), ((C (X ),Lipd )))

⩽βY +Haus [d ](X ,Y ).

This concludes our proof.

Corollary 2.8.13. Any compact metric space (X ,d) is the limit for the (2,0)-propinquity
of sequences of (2,0)–quasi-Leibniz quantum compact metric spaces consisting of full
matrix algebras.

Proof. We simply apply Corollary (3.4.5) to any sequence (Xn)n∈N of finite subsets
of X with limn→∞Haus [d ](X , Xn) = 0, which always exists since (X ,d) is compact,
and to

(
βXn

)
n∈N = ( 1

n min{d(x, y) : x, y ∈ Xn , x ̸= y}
)

n∈N.

As a corollary, we obtain the following:

Theorem 2.8.14. The class of classical compact metric spaces is closed and nowhere
dense for the (2,0)-propinquity.

Proof. We saw in Theorem (2.6.2) that this class is closed for the propinquity. We
note in passing this could also be checked “directly” using target sets rather than by
a compactness argument.

Now, fix a compact metric space (X ,d). by Corollary (2.8.13), for all ε> 0, there
exists a (2,0)-quantum compact metric space (A,L) such thatΛ2,0(F (X ,d), (A,L)) < ε.
So every open ball of center (X ,d) contains a noncommutative quantum compact
metric space, so the class of classical compact metric spaces is nowhere dense.





Chapter Three

Spectral Triples

3.1 METRIC SPECTRAL TRIPLES

Definition 3.1.1 ([11]). A spectral triple (A,H , /D) is a triple consisting of a unital
C*-algebra A, given with an implicit unital *-representation on a Hilbert space H ,
together with a self-adjoint operator /D , defined on a dense subspace dom( /D) of H ,
such that

• D + i has a compact inverse,

• the space

A /D := {a ∈ sa (A) : a ·dom( /D) ⊆ dom( /D), [ /D , a] is bounded}

is dense in A.

The operator /D is called the Dirac operator of the spectral triple (A,H , /D).

A spectral triple (A,H , /D) induces, in particular, a (possibly ∞-valued) pseudo-
metric on the state space of the underlying C*-algebra A, called the Connes’ distance,
defined, between any two states ϕ,ψ of A, by

mk /D (ϕ,ψ) = sup
{|ϕ(a)−ψ(a)| : a ∈A /D , |||[ /D , a]|||H ⩽ 1

}
.

Connes proved in [11] that, whenA=C (M) is the C*-algebra ofC-valued continuous
over a connected, compact spin Riemannian manifold M , and when /D is the Dirac
operator acting on the square integrable sections of the spinor bundle over M ,
the Connes’ metric mk /D restricts to the usual path metric over M induced by its
Riemannian metric. More generally, Connes’ distance suggests a way to study
the metric properties of noncommutative spaces, as it makes sense whether A is
commutative or not.

Let us now ask a natural question. If (A,H , /D) is a spectral triple, then we can
set L(a) := |||[ /D , a]|||H for all a ∈ sa (A) for which this expression makes sense and
is finite. Then Connes’ pseudo-distance is simply mkL. When is (A,L) a quantum
compact metric space ?

Notation 3.1.2. If T : E → F is a continuous linear operator from a normed vector
space E to a normed vector space F , then the norm of T is denoted by |||T |||EF ; if
E = F , then we simply write |||T |||E .

73
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Definition 3.1.3. A spectral triple (A,H , /D) is metric when, setting:

dom(L) = {a ∈ sa (A) : a ·dom( /D) ⊆ dom( /D), [ /D , a] is bounded }

and
∀a ∈ dom(L) L(a) = |||[ /D , a]|||H ,

then (A,L) is a quantum compact metric space.

Examples of metric spectral triples include, once again, quantum tori [52, 37],
hyperbolic [51] and nilpotent [8] group C*-algebras, certain C*-crossed-products
[23], certain fractals [9, 32], Podès spheres [1], curved quantum tori [35], among
others. Certain examples motivated in physics can be found in [45].

Proposition 3.1.4. Let (A,H ,D) be a spectral triple. The spectral triple (A,H ,D) is
metric if and only if (A,LD ) is a Leibniz quantum compact metric space.

Proof. If (A,LD ) is a Leibniz quantum compact metric space, then by Definition
(3.1.3), the spectral triple (A,H ,D) is metric.

Let us now assume that (A,H ,D) is a metric spectral triple. The domain of LD

is: {
a ∈ sa (A) : a ·dom(D) ⊆ dom(D) and |||[D, a]|||H <∞}

.

By Definition (3.1.1), the set:

D = {
a ∈A : a ·dom(D) ⊆ dom(D) and |||[D, a]|||H <∞}

is norm dense in A. If a ∈ sa (A), then there exists (an)n∈N in DN converging to a in
norm. Now, we prove that if b ∈D then b∗ ∈D as well. Let b ∈D . if ξ,ζ ∈ dom(D),
then:

〈b∗ξ,Dζ〉H = 〈ξ,bDζ〉H
= 〈ξ,Dbζ〉H −〈ξ, [D,b]ζ〉H
= 〈Dξ,bζ〉H −〈ξ, [D,b]ζ〉H .

Now, since ξ ∈ dom(D), the linear map ζ ∈ dom(D) 7→ 〈Dξ,bζ〉H is continuous,
and since [D,b] is bounded, the linear map ζ ∈ dom(D) 7→ 〈ξ, [D,b]ζ〉H is also
continuous. Hence ζ ∈H 7→ 〈b∗ξ,Dζ〉H is continuous, and thus b∗ξ ∈ dom(D∗) =
dom(D). Now, on dom(D), we observe that [D,b∗] = Db∗−b∗D = (bD −Db)∗ =
(−[D,b])∗ as D is self-adjoint, so b∗ ∈D .

It is immediate to check that D is a linear space, and thus in particular, for all

n ∈N, we have ℜan = an+a∗
n

2 ∈ dom(LD ), and of course as a ∈ sa (A), we have by
continuity of ℜ that a =ℜa = limn→∞ℜan , thus proving that dom(LD ) is dense in
sa (A).

By Definition (3.1.3), the Monge-Kantorovich metric mkLD
metrizes the weak*

topology. In particular, as a metric , it is finite between any two states of A. Let
a ∈ sa (A) with LD (a) = 0. Let ϕ,ψ ∈S (A). We have, by Definition (1.1.1):

0⩽
∣∣ϕ(a)−ψ(a)

∣∣⩽ LD (a)mkLD
(ϕ,ψ) = 0
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and thus ϕ(a −ψ(a)1A) = 0 for all ϕ,ψ ∈ S (A). Thus (as a ∈ sa (A)), if we fix ψ ∈
S (A): ∥∥a −ψ(a)1A

∥∥
A = sup

ϕ∈S (A)
|ϕ(a −ψ(a)1A)| = 0

so a =ψ(a)1A, i.e. {a ∈ sa (A) : LD (a) = 0} ⊆R1A. On the other hand, LD (1A) = 0 by
construction, so {a ∈ sa (A) : LD (a) = 0} =R1A, as desired.

We now check that LD is lower semicontinuous. Let (an)n∈N be a sequence in
dom(LD ) with LD (an)⩽ 1 converging in norm to a ∈ sa (A). Let ξ ∈ dom(D) and let
ζ ∈ dom(D). For any n ∈N:

〈anξ,Dζ〉H = 〈ξ, anDζ〉H
= 〈ξ,Danζ〉H −〈ξ, [D, an]ζ〉H
= 〈Dξ, anζ〉H −〈ξ, [D, an]ζ〉H

and therefore:∣∣〈aξ,Dζ〉H
∣∣= lim

n→∞
∣∣〈anξ,Dζ〉H

∣∣
⩽ limsup

n→∞
(∣∣〈Dξ, anζ〉H

∣∣+ ∣∣〈ξ, [D, an]ζ〉H
∣∣)

⩽
∣∣〈Dξ, aζ〉H

∣∣+∥ξ∥H ∥ζ∥H

⩽ ∥ζ∥H
(∥Dξ∥H ∥a∥A+∥ξ∥H

)
.

So the function ζ ∈ dom(D) 7→ 〈aξ,Dζ〉H is continuous, and thus aξ ∈ dom(D).
Thus a ·dom(D) ⊆ dom(D) as ξ ∈ dom(D) was arbitrary. We can therefore apply
[53, Proposition 3.7], whose argument we now briefly recall. If ξ,ζ ∈ dom(D) with
∥ξ∥H ⩽ 1 and ∥ζ∥H ⩽ 1, then:

1⩾
∣∣〈[D, an]ξ,ζ〉H

∣∣= ∣∣〈anξ,Dζ〉H −〈Dξ, anζ〉H
∣∣

n→∞−−−−→ ∣∣〈aξ,Dζ〉H −〈Dξ, aζ〉H
∣∣= ∣∣〈[D, a]ξ,ζ〉H

∣∣ . (3.1.1)

Since dom(D) is dense in H and since, by Expression (3.1.1), for all ξ,ζ ∈ dom(D),
we have proven that

∣∣〈[D, a]ξ,ζ〉H
∣∣⩽ ∥ξ∥H ∥ζ∥H , we conclude that [D, a] is bounded

with norm 1 on dom(D), and thus extends to a bounded operator of norm at most 1
on H .

Thus {a ∈ sa (A) : LD (a)⩽ 1} is indeed normed closed. As LD is a seminorm, this
implies that it is lower semi-continuous with respect to ∥·∥A.

Last, LD satisfies the Leibniz inequality since it is the norm of a derivation. First,
we note that D is indeed an algebra. If a,b ∈ D then, first, since b ·dom(D) ⊆
dom(D), we also have ab · dom(D) ⊆ a · dom(D) ⊆ dom(D). Moreover, if ξ,ζ ∈
dom(D), then:

〈Dabξ−abDξ,ζ〉H = 〈Dabξ−aDbξ,ζ〉H +〈aDbξ−abDξ,ζ〉H
= 〈[D, a]bξ,ζ〉H +〈a[D,b]ξ,ζ〉H
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and thus, as operators on dom(D), we conclude [D, ab] = a[D,b]+ [D, a]b. There-
fore, for all a,b ∈ dom(LD ):

|||[D, ab]|||H = |||[D, a]b +a[D,b]|||H
⩽ |||[D, a]|||H ∥b∥A+∥a∥A |||[D,b]|||H
= LD (a)∥b∥A+∥a∥ALD (b).

Therefore, we conclude, for all a,b ∈ dom(LD ):

L

(
ab +ba

2

)
=

∣∣∣∣∣∣∣∣∣∣∣∣[D,
ab +ba

2

]∣∣∣∣∣∣∣∣∣∣∣∣
H

⩽
1

2

(|||[D, ab]|||H +|||[D,ba]|||H
)

⩽ LD (a)∥b∥A+∥a∥ALD (b).

A similar argument shows that LD

(
ab−ba

2i

)
⩽ LD (a)∥b∥A+∥a∥ALD (b). It follows

that (A,LD ) is a quantum compact metric space.

A strong notion of equivalence between spectral triples is given by:

Definition 3.1.5. Two spectral triples (A,HA,DA) and (B,HB,DB) are equivalent
when there exists a unitary U from HA to HB and a *-isomorphism θ :A→B, such
that

U dom(DA) = dom(DB) and U∗DBU = DA over dom(DA),

and

∀ω ∈HB, a ∈A θ(a)ω= (UaU∗)ω.

Proposition 3.1.6. If (A,HA,DA) and (B,HB,DB) are two equivalent metric spec-
tral triples, then (A,LDA ) and (B,LDB ) are fully quantum isometric.

Notation 3.1.7. If T is an invertible operator on a Hilbert space H , then AdT (A) =
T AT −1 for all operators A (bounded or not, up to adjusting the domain).

Proof. Let U : HA →HB be unitary and θ : (A,LA) → (B,LB) be a *-isomorphism
such that AdU DA = DB (including the fact that U dom(DA) = dom(DB)), and
UaU∗ = θ(a) for all a ∈ A. If a ∈ dom

(
LDA

)
then a ·dom(DA) ⊆ dom(DA), and

[DA, a] is bounded. Now, if ξ ∈ dom(DB), then U∗ξ ∈ dom(DA), and therefore,
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UaU∗ξ ∈ dom(DB). Moreover:

LDA (a) = |||[DA, a]|||HA

= |||[DA, a]|||dom(DA)

= ∣∣∣∣∣∣[U∗DBU , a]
∣∣∣∣∣∣

dom(D A )

= ∣∣∣∣∣∣U∗DBUa −aU∗DBU
∣∣∣∣∣∣

dom(DA)

= ∣∣∣∣∣∣U∗ (
DBUaU∗−UaU∗DA

)
U

∣∣∣∣∣∣
dom(DA)

= |||DBθ(a)−θ(a)DB|||dom(DB)

= |||[DB,θ(a)]|||HB

= LDB ◦θ(a).

Thus θ(a) ∈ dom
(
LDB

)
and LDB ◦ θ(a) = LDA (a). In particular, θ(dom

(
LDA

)
) ⊆

dom
(
LDB

)
.

By symmetry, if b ∈ dom
(
LDB

)
, then θ−1(b) ∈ LDA with LDA ◦θ−1(b) = LDB (b).

If a ∉ dom
(
LDA

)
, yet θ(a) ∈ dom

(
LDB

)
, then we would have, by the observa-

tion above, that a = θ−1(θ(a)) ∈ dom
(
LDA

)
, an obvious contradiction. So θ(sa (A) \

dom(LA)) ⊆ sa (B) \ dom
(
LDB

)
. Therefore, θ(dom

(
LDA

)
) = dom

(
LDB

)
.

Thus θ is a full quantum isometry from (A,LDA ) to (B,LDB ).

We now want to find a metric description of a spectral triple. If (A,H , /D) is a
metric spectral triple, and if we set:

• dom(L /D ) := {a ∈ sa (A) : a dom( /D) ⊆ dom( /D), [ /D , a] is bounded },

• ∀a ∈ dom(L /D ) L(a) := |||[ /D , a]|||H ,

• ∀ξ ∈ dom( /D) DN(ξ) := ∥ξ∥H +∥ /Dξ∥H ,

then (H ,DN,C,0,A,L /D ) is an example of the following general structure.

Definition 3.1.8. A (F,K,G,H)-metrical C*-correspondence (M ,DN,A,L,B,S), where
F,G ⩾ 1, H ⩾ 2, and K > 0, is given by two (F,K )-quantum compact metric spaces
(A,L) and (B,S), an A-B C*-correspondence (M ,A,B), and a norm DN defined on
a denseC-subspace dom(TN) of M , such that

1. ∀ω ∈ dom(DN) DN(ω)⩾ ∥ω∥M :=
√∥∥〈ω,ω〉M

∥∥
B,

2. {ω ∈ dom(DN) :DN(ω)⩽ 1} is compact in (M ,∥·∥M ),

3. for all a ∈ dom(L) and ω ∈ dom(TN),

DN(aω)⩽G(∥a∥A+L(a))DN(ω),

4. for all ω,η ∈ dom(DN),

S(〈ω,η〉M )⩽ HDN(ω)DN(η).
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Convention 3.1.9. In this work, we fix F ⩾ 1, K ⩾ 0, H ⩾ 2 and G ⩾ 1 all throughout
the paper. All quantum compact metric spaces will be assumed to be in the class
of (F,K )-quantum compact metric spaces and all metrical C*-correspondences will
be assume to be in the class of (F,K ,G , H)-metrical C*-correspondences, unless
otherwise specified.

Theorem 3.1.10 ([47]). If (A,H , /D) is a metric spectral triple, if we set:

∀ξ ∈ dom( /D) DN /D (ξ) = ∥ξ∥H +∥ /Dξ∥H ,

and if dom(L /D ) = {a ∈ sa (A) : adom( /D) ⊆ dom( /D), [ /D , a] is bounded } and

∀a ∈ dom(L /D ) L /D (a) = |||[ /D , a]|||H ,

then
metCor(A,H , /D) := (H ,DN /D ,A,L /D ,C,0)

is a metrical quantum vector bundle(with F = 1,K = 0,G = 1, H = 2).

Theorem 3.1.11. Let (A,H ,D) be a metric spectral triple. If for all a ∈A such that
a dom(D) ⊆ D and [D, a] is bounded on dom(D), we set:

LD (a) = |||[D,π(a)]|||H ,

and, for all ξ ∈ dom(D), we set:

DN(ξ) = ∥ξ∥H +∥Dξ∥H ,

then (H ,DN,A,LD ,C,0) is a Leibniz metrical quantum vector bundle, which we
denote by mvb(A,H ,D).

Proof. For any a ∈ dom(LD ) and ξ ∈ dom(D), we compute:

〈Daξ,Daξ〉H = 〈Daξ−aDξ,Daξ〉H +〈aDξ,Daξ〉H
= 〈[D, a]ξ,Daξ〉H +〈aDξ,Daξ〉H
= 〈[D, a]ξ, [D, a]ξ〉H +〈[D, a]ξ, aDξ〉H
+〈aDξ,Daξ〉H

= 〈[D, a]ξ, [D, a]ξ〉H +〈[D, a]ξ, aDξ〉H
+〈aDξ, [D, a]ξ〉H +〈aDξ, aDξ〉H

= 〈[D, a]ξ, [D, a]ξ〉H +2ℜ〈[D, a]ξ, aDξ〉H
+〈aDξ, aDξ〉H

⩽ ∥[D, a]ξ∥2
H +2∥[D, a]ξ∥H ∥a∥A ∥Dξ∥H +∥a∥2

A ∥Dξ∥2
H

= (∥[D, a]ξ∥H +∥a∥A ∥Dξ∥H
)2

⩽
(
LD (a)∥ξ∥H +∥a∥ADN(ξ)

)2 .

Hence, ∥Daξ∥H ⩽ LD (a)∥ξ∥H +∥a∥A ∥Dξ∥H . Now, since ∥aξ∥H ⩽ ∥a∥A ∥ξ∥H ,
we conclude that DN(aξ)⩽ LD (a)∥ξ∥H +∥a∥ADN(ξ)⩽ (LD (a)+∥a∥A)DN(ξ).
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Now, H is a HilbertC-module, and (C,0) is a Leibniz quantum compact metric
space (the only possible one with C*-algebraC=C ({0})) . Therefore, (H ,DN,A,L,C,0)
has all the properties of a Leibniz metrical quantum vector bundle, as long as we
prove the compactness of the unit ball of DN.

Let ξ ∈ dom(D) with DN(ξ) ⩽ 1. By construction, ∥(D + i )ξ∥H ⩽ ∥Dξ∥H +
∥ξ∥H ⩽ 1. By definition, D + i has a compact inverse, which we denote by K . We
then have: {

ξ ∈H :DN(ξ)⩽ 1
}= K

{
(D + i )ξ : ξ ∈H ,DN(ξ)⩽ 1

}
⊆ K

{
ξ ∈H : ∥ξ∥H ⩽ 1

}
and, as K is compact, the set K

{
ξ ∈H : ∥ξ∥H ⩽ 1

}
, and therefore, the unit ball of

DN, are totally bounded in H .
It remains to show that DN is lower semicontinuous. We thus now prove that the

unit ball of DN is closed in ∥·∥H .
Let (ξn)n∈N be a sequence in dom(D) converging to ξ in H and with DN(ξn)⩽ 1

for all n ∈N. Let η ∈ dom(D). We compute:∣∣〈ξ,Dη〉H
∣∣= lim

n→∞
∣∣〈ξn ,Dη〉H

∣∣
= lim

n→∞
∣∣〈Dξn ,η〉H

∣∣
⩽ limsup

n→∞
∥Dξn∥H

∥∥η∥∥
H

⩽ limsup
n→∞

(
1−∥ξn∥H

)∥∥η∥∥
H

= (
1−∥ξ∥H

)∥∥η∥∥
H .

Therefore, the map η ∈ dom(D) 7→ 〈ξ,Dη〉H is continuous. Hence ξ ∈ dom(D∗) =
dom(D), and thus for all η ∈ dom(D):∣∣〈Dξ,η〉H

∣∣= ∣∣〈ξ,Dη〉H
∣∣⩽ (

1−∥ξ∥H
)∥∥η∥∥

H .

Thusη ∈ dom(D) 7→ 〈Dξ,η〉H is uniformly continuous (as a
(
1−∥ξ∥H

)
-Lipschitz

function) linear map on the dense subset dom(D), and thus extends uniquely to H ,
where it has norm 1−∥ξ∥H . Therefore ∥Dξ∥H ⩽ 1−∥ξ∥H and thus DN(ξ)⩽ 1 as
desired.

Thus DN is indeed a D-norm.
Hence, if (A,L) is a quantum compact metric space, we conclude that:

mvb(A,H ,D) = (H ,DN,A,L,C,0)

is a Leibniz metrical quantum vector bundle.

3.2 AN OVERVIEW OF THE SPECTRAL PROPINQUITY

We defined in [41, 47] an analogue of the Gromov-Hausdorff distance on the class
of metrical quantum vector bundles, which, in particular, induces a first pseudo-
distance on metric spectral triples, via Theorem (3.1.10). We begin the presentation
of this metric with a few key concepts.
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A morphism between metrical C*-correspondences is given by a triple of linear
maps which satisfy a long but very natural list of algebraic and analytic properties.

Definition 3.2.1. For each j ∈ {1,2}, let

M j =
(
M j ,DN j ,A j ,L j ,B j ,S j

)
be a metrical C*-correspondence.

A Lipschitz morphism (Π,π,θ) fromM1 toM2 is a given by:

1. a continuousC-linear map Π : M1 →M2,

2. a unital *-morphism π :A1 →A2,

3. a unital *-morphism θ :B1 →B2,

such that

1. ∀a ∈A ∀ω ∈M1 Π(aω) =π(a)Π(ω),

2. ∀b ∈B ∀ω ∈M2 Π(ω ·b) =Π(ω)θ(b),

3. ∀ω,η ∈M1 θ(〈ω,η〉M1
) = 〈Π(ω),Π(η)〉M2

,

4. π(dom(L1)) ⊆ dom(L2),

5. θ(dom(S1)) ⊆ dom(S2),

6. Π(dom(DN1)) ⊆ dom(DN2).

Definition 3.2.2. For each j ∈ {1,2}, let

M j =
(
M j ,DN j ,A j ,L j ,B j ,S j

)
be a metrical C*-correspondence.

A modular quantum isometry (Π,π,θ) is a Lipschitz morphism fromM1 toM2

such that

1. ∀a ∈ dom(L2) L2(a) = inf{L1(d) : d ∈ dom(L1),π(d) = a},

2. ∀b ∈ dom(S2) S2(b) = inf{S1(d) : d ∈ dom(S1),θ(d) = b},

3. ∀ω ∈ dom(DN2) DN2(ω) = inf
{
DN1(η) : η ∈ dom(DN1),θ(η) =ω}

.

Since metrical C*-correspondences morphisms (Π,π,θ) consists, by definition,
of three isometric maps Π, π and θ, they all have closed ranges in their respective
codomains; when (Π,π,θ) is a quantum isometry, our definition implies that these
ranges contain certain dense subspaces, and thus, Π, π and θ are in fact surjective
by definition.

The definition of a distance between metrical quantum vector bundles, called
the metrical propinquity, relies on a notion of isometric embedding called a tunnel,
and defined as follows.
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Definition 3.2.3. LetM1 andM2 be two metrical C*-correspondences. A (metrical)
tunnel τ = (J,Π1,Π2) is a triple given by a metrical C*-correspondence J, and for
each j ∈ {1,2}, a modular quantum isometry Π j :J 7→M j .

Remark 3.2.4. It is important to note that our tunnels involve (F,K ,G , H )-C*-metrical
correspondences only (as per Convention (3.1.9)). We will dispense calling our tun-
nels (F,K ,G , H)-tunnels, to keep our notation simple, but it should be stressed that
fixing (F,K ,G , H) and staying within the class of (F,K ,G , H)-C*-metrical correspon-
dences is important to obtain a metric from tunnels.

To each tunnel, we can associate a number, which quantifies how far two metrical
quantum vector bundles are from the perspective of this particular tunnel. This
number is computed using the Hausdorff distance induced by the Monge-Kantoro-
vich metric on the hyperspace of all closed subsets of the state space of a quantum
compact metric space.

Definition 3.2.5. LetM j = (M j ,DN j ,A j ,L j ,B j ,S j ) be a metrical C*-correspondence,
for each j ∈ {1,2}. Let τ= (P, (Π1,π1,θ1), (Π2,π2,θ2)) be a metrical tunnel formM1

toM2, withP= (P ,TN,D,LD,E,LE).
The extent χ (τ) of a metrical tunnel τ is

χ (τ) := max
j∈{1,2}

max
{
Haus

[
mkLD

]({
ϕ◦π j :ϕ ∈S (A j )

}
,S (D)

)
,

Haus
[
mkSE

]({
ψ◦θ j :ψ ∈S (B j )

}
,S (E)

)}
We define our distance between metrical quantum vector bundles following the

model proposed by Edwards [15] and Gromov [19], as follows.

Definition 3.2.6. The metrical propinquity Λ∗met(M1,M2) between any two metri-
cal C*-correspondencesM1 andM2 is given by the real number:

Λ∗met(M1,M2) = inf
{
χ (τ) : τ is a tunnel fromM1 toM2

}
.

We prove that the metrical propinquity enjoys some welcomed properties.

Theorem 3.2.7 ([41, 46]). The metrical propinquity Λ∗met is a complete metric, up to
a full quantum isometry, on the class of metrical C*-correspondences.

The proof follows a similar strategy as the proof of Theorem (2.4.3), with an
appropriate notion of target sets.

Remark 3.2.8. The metrical propinquity, as defined above, should properly be called
the (F,K ,G , H)-metrical propinquity, denoted by Λ∗met

F,K ,G ,H , as it is defined on the
class of (F,K ,G , H)-metrical C*-correspondences (i.e. C*-correspondences with
fixed Leibniz properties). However, following our Convention (3.1.9), we will omit
this index and terminology, with the understanding that we decided to restrict
ourselves to this class of metrical C*-correspondence from the beginning.
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Remark 3.2.9. Since metrical quantum vector bundles defined via metric spectral
triples, using Theorem (3.1.10), are all of the same type (F = 1,K = 0,G = 1, H = 2),
it may appear that, for the present paper, there is no need for the larger generality
allowed by introducing these numbers. However, this is not the case. While the
metrical quantum vector bundles induced by metric spectral triples are all of the
same type, tunnels may well involve metrical quantum vector bundles with relaxed
Leibniz properties.

If (A,L) is a quantum compact metric space, we can regard A as a Hilbert module
over itself, with 〈a,b〉A = a∗b for all a,b ∈A, and we can set

∀a ∈A DN(a) = max{L(ℜa),L(ℑa)} ,

thus associating to any quantum compact metric space the metrical C*-correspondence
(A,DN,C,0,A,L). The injection thus constructed from the class of quantum com-
pact metric spaces to the class of metrical C*-correspondences, is an homeomor-
phism onto its range, when the class of quantum compact metric spaces is endowed
with the dual propinquity, and the class of metrical C*-correspondences is metrized
with the metrical propinquity. In the present work, however, we focus on the class of
metrical C*-correspondences.

If we apply the metrical propinquity to the metrical quantum vector bundles
associated with metric spectral triples, then we obtain a pseudo-metric on spectral
triples. This metric, informally, captures the metric information of the spectral triple.
We note, in passing, that tunnels are not required to be constructed using spectral
triples — in fact, this flexibility is very helpful. We thus have some preliminary
notion of convergence for spectral triples.

However, distance zero between spectral triples is weaker than what we want.

In order to strengthen the metrical propinquity, we add one more ingredient.
In yet another chapter of our story [42, 43, 47], we introduced covariant versions
of the propinquity. Now, if (A,H , /D) is a spectral triple, then it induces a natural
quantum dynamics, i.e. an action ofR on H by unitaries, defined for each t ∈R by
U t = exp(i t /D).

The spectral propinquity is thus the covariant version of the metrical propinquity,
applied to the metrical quantum vector bundle induced by a metric spectral triples
and the associated unitary action, restricted to the monoid [0,∞). Convergence,
in the sense of the propinquity, is the main matter of study of this paper. The
spectral propinquity is, indeed, a distance on the class of metric spectral triples, up
to unitary equivalence; we also proved some nontrivial examples of convergence for
this metric [31, 45]. The covariant version of the propinquity is best explained by
introducing first a useful notion of convergence of operators over metrical quantum
vector bundles, itself of prime interest for this work, and new to this paper. This is
the first matter which we address.
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3.3 CONVERGENCE FOR FAMILY OF OPERATORS ON C*-CORRESPONDENCES

In this section, we define a distance, up to unitary equivalence, between families of
operators on Hilbert spaces. Our purpose with this distance is to formalize the con-
vergence of the bounded functional calculus for spectral triples under convergence
for the propinquity, which is the core result of this paper. While, in this work, we will
work with family of operators on Hilbert spaces associated with spectral triples, the
definition of a metrical tunnel means that the computation of various distances will
take place within the state space of metrical C*-correspondences, which is thus the
framework we employ in this section.

Our first task in extending the construction of the propinquity to family of op-
erators on modules, including to actions of monoids and groups as needed for
the spectral propinquity, is to extend the Monge-Kantorovich metric of a quantum
compact metric space to the dual of a Hilbert module with a D-norm.

Definition 3.3.1 ([47, Notation 3.8]). If (M ,TN,A,LA,B,LB) is a metrical C*-correspondence,
then for anyC-valued continuous linear functional ϕ,ψ ∈M ∗, we set:

mkTN(ϕ,ψ) := sup
{|ϕ(ξ)−ψ(ξ)| : ξ ∈ dom(TN),TN(ξ)⩽ 1

}
.

Since the unit ball of D-norm TN is compact, a standard argument shows that
mkTN thus defined induces the weak* topology on bounded subsets of the dual M ∗
of M .

Remark 3.3.2. The metric of Definition (3.3.1) is denoted by mkalt
TN

in [47].

We then extend, in the simplest way, the Monge-Kantorovich metric of Definition
(3.3.1) on theC-dual of a module, to a distance between families of continuous linear
functionals indexed by a fixed set. We only take the distance between families of
functionals indexed by the same set.

Definition 3.3.3. Let (M ,TN,A,LA,B,LB) be a metrical C*-correspondence. Let
J be a nonempty set. For any two families (ϕ j ) j∈J , (ψ j ) j∈J ∈ (M ∗)J of continuous
C-linear functionals ofM, we set:

MKTN((ϕ j ) j∈J , (ψ j ) j∈J ) := sup
j∈J

mkTN(ϕ j ,ψ j ).

It is immediate to check that MKTN restricts to a metric on (M ∗)J for any fixed
nonempty set J . Its topology is stronger than the product of the weak* topology, and
equal to it when J is finite, though this will not be of prime concern here.

The propinquity is defined in terms of state spaces, and for the present work, we
will use the notion of pseudo-states for a metrical C*-correspondence, as a natural
generalization of states of a quantum compact metric space. As seen in [47, Proposi-
tion 3.11], the following set is weak* compact (though not convex), and the weak*
topology is metrized by the Monge-Kantorovich metric from Definition (3.3.1).
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Definition 3.3.4. IfM := (M ,TN,A,LA,B,LB) is a metrical quantum vector bundle,
then a continuous linear functional ϕ ∈M ∗ is a pseudo-state ofMwhen there exist
µ ∈S (B) and ω ∈M with TN(ω)⩽ 1 such that

ϕ : ξ ∈M 7−→µ
(〈ξ,ω〉M

)
.

The set of all pseudo-states ofM is denoted by S̃ (M).

Now, if we want to assign a distance between any two families (a j ) j∈J and (b j ) j∈J

of operators on a Hilbert module M , then a natural choice would be sup j∈J

∣∣∣∣∣∣a j −b j
∣∣∣∣∣∣

M ;
however, this choice does not generalize well if we consider, instead, families of op-
erators on different modules. Inspired from our previous work, another idea opens
us when working with families of operators on a metrical quantum vector bundle
M, with D-norm TN. In this setup, we can take the Hausdorff distance between the
sets {(ϕ◦a j ) j∈J :ϕ ∈ S̃ (M)} and {(ψ◦b j ) j∈J :ψ ∈ S̃ (M)} for the distance MKTN of
Definition (3.3.3). The benefit of this approach is that it generalizes as follows to
families of operators acting on different metrical quantum vector bundles.

Definition 3.3.5. LetA andB be two metrical quantum vector bundles. Let

τ :A
(ΠA,πA,θA)←−−−−−−−−P (ΠB,πB,θB)−−−−−−−−→B

be a metrical tunnel from A to B. Let TN be the D-norm of the metrical C*-
correspondenceP.

Let J be a nonempty set. If A := (a j ) j∈J is a family of operators ofA, and B :=
(b j ) j∈J is a family of operators on B, then we define the separation of A and B
according to τ by:

sep (A,B |τ) :=Haus
[
MKTN

]({
(ϕ◦a j ◦ΠA) j∈J :ϕ ∈ S̃ (A)

}
,{

(ψ◦b j ◦ΠB) j∈J :ψ ∈ S̃ (B)
})

.

The dispersion of A and B according to τ is

dis (A,B |τ) := max{χ (τ),sep (A,B |τ)}.

We therefore obtain a natural way to discuss the convergence of families of
adjoinable operators on metrical C*-correspondence, in the spirit of the Gromov-
Hausdorff distance and the propinquity.

Definition 3.3.6. LetA andB be two metrical quantum vector bundles. Let J be
a nonempty set. If A := (a j ) j∈J is a family of operators onA, and B := (b j ) j∈J is a
family of operators onB, then we define the operational propinquity between these
families as:

Λop(A,B) := inf{dis (A,B |τ) : τ is a tunnel fromA toB} .
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The operational propinquity is certainly a pseudo-metric on families of operators
indexed by a fixed index set, and under mild conditions, it is in fact a metric up to
a natural equivalence relation, as seen in the following theorem, whose proof is a
direct application of the techniques in [47].

Theorem 3.3.7. The operational propinquity Λop is a pseudo-metric on families of
operators indexed by the same set. Moreover, if we fix an index set J and we fix some
j0 ∈ J , and if we set F (J ) to be the class:{

(a j ) j∈J ∈B(A) :Ametrical quantum vector bundle, a j0 = idA
}

then the restriction of Λop to F (J ) is a metric up to the following equivalence relation.
For any metrical quantum vector bundlesA andB, and for any family A := (a j ) j∈J of
operators ofA, and any family B := (b j ) j∈J of operators ofB, both families A and B
being indexed by J, we have Λop(A,B) = 0 if, and only if, there exists a full metrical
quantum isometry (Π,π,θ) fromA toB such that, for all j ∈ J , we haveΠ◦a j = b j ◦Π.

Proof. The proof follows exactly [43, Theorem 3.23], with the simplification that we
only need the same indices.

Our focus will be on metrical C*-correspondences constructed from metric spec-
tral triples. If (A1,H1, /D1) is a metric spectral triple, then S̃ (metCor(A1,H1, /D1)) is
given by definition as the set of maps of the formϕ(〈·,ξ〉H1

) whereϕ is a state ofC—
so it is is the identity onC— and ξ ∈ dom( /D1) with DN1(ξ) = ∥ξ∥H +∥ /D1ξ∥H1

⩽ 1.
Let now (A2,H2, /D2) be another metric spectral triple, and set DN2 to the graph
norm of /D2. Let A := (a j ) j∈J be a family of operators on H1, and let B := (b j ) j∈J be a
family of operators on H2. If

τ : (A1,H1, /D1)
(Π1,π1,θ1)←−−−−−−−P (Π2,π2,θ2)−−−−−−−→ (A2,H2, /D2)

is some tunnel from (A1,H1, /D1) to (A2,H2, /D2), where the D-norm ofP is denoted
by TN, then the separation between A and B becomes:

sep (A,B |τ) =Haus
[
MKTN

]({
(〈a∗

j ξ,Π1(·)〉) j∈J : ξ ∈ dom(DN /D ),DN /D (ξ)⩽ 1
}

,{
(〈b∗

j ξ,Π2(·)〉) j∈J : ξ ∈ dom
(
DN /D[S]

)
,DN /D[S](ξ)⩽ 1

}}
.

This expression can be unwound to give that sep (A,B |τ) is the maximum of

sup
ξ∈dom( /D1)
DN1(ξ)⩽1

inf
η∈dom( /D2)
DN2(η)⩽1

sup
j∈J

sup
TN(ω)⩽1

∣∣∣〈a∗
j ξ,Π1(ω)〉

H1
−〈b∗

j η,Π2(ω)〉
H2

∣∣∣
and

sup
ξ∈dom( /D2)
DN2(ξ)⩽1

inf
η∈dom( /D1)
DN1(η)⩽1

sup
j∈J

sup
TN(ω)⩽1

∣∣∣〈a∗
j η,Π1(ω)〉

H1
−〈b∗

j ξ,Π2(ω)〉
H2

∣∣∣ .

The spectral propinquity is defined using the above notion of dispersion for
certain tunnels, where the families of operators involved arise from the natural
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one-parameter groups of unitaries induced by spectral triples. Intuitively, we ask for
the quantum dynamics induced by spectral triples to be close for our metric if they
remain close to each other for as long as possible. This construction is a special case
of the covariant propinquity [43, 40, 47].

Definition 3.3.8. The spectral propinquity Λspec((A1,H1, /D1), (A2,H2, /D2)) is de-
fined as:

inf
{p2

2
,ε> 0 : ∃ tunnel from (A1,H1, /D1) to (A2,H2, /D2)

dis
(
(U t

1 )0⩽t⩽ 1
ε

, (U t
2 )0⩽t⩽ 1

ε

∣∣∣τ)< ε}.

Originally [47], the definition involved the notion of a local almost isometric
isomorphism, as introduced in [43], which, in general, allows one to define a distance
between actions of different monoids. However, as seen in [33], one may simplify
the definition of the spectral propinquity, thanks to to facts: the monoid in question

is always [0,∞), and the action is by unitary. We also note that the number
p

2
2 in

Definition (3.3.8) is needed to establish the triangle inequality (see [43, Lemma 2.11,
Theorem 3.14]).

The spectral propinquity has some strong properties, in the sense that it pre-
serves certain important structures associated with spectral triples. Most impor-
tantly, the spectrum of the Dirac operators of metric spectral triples is continuous
with respect to the spectral propinquity, as a consequence of the continuity of
the bounded continuous functional calculus (we note that in contrast, the Borel
functional calculus is not continuous). More specifically, we proved the following.

Theorem 3.3.9 ([33]). If (An ,Hn , /Dn)n∈N is a sequence of metric spectral triples,
converging to a metric spectral triple (A∞,H∞, /D∞) for the spectral propinquity, and
if f ∈Cb(R) is a bounded,C-valued continuous function overR, then

lim
n→∞Λ

op( f ( /Dn), f ( /D∞)) = 0.

A corollary of Theorem (3.3.9) is the continuity of the spectrum.

Theorem 3.3.10 ([33]). If the sequence (An ,Hn , /Dn)n∈N of metric spectral triples
converges to the metric spectral triple (A∞,H∞, /D∞) for the spectral propinquity,
then

Sp( /D∞) =
{
λ ∈R : ∃(λn)n∈N ∈RN ∀n ∈N λn ∈ Sp( /Dn) and λ= lim

n→∞λn

}
.

The next natural question is whether the mutliplicities of the eigenvalues of
Dirac operators converge. Of course, in general, eigenvalues could “merge” at the
limit, so the most general result is as follows.

Theorem 3.3.11 ([33]). If (An ,Hn , /Dn)n∈N is a sequence of metric spectral triples
which converges to a metric spectral triple (A∞,H∞, /D∞) for the spectral propinquity,
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if λ ∈ Sp( /D∞), and if there exists δ> 0 and N ∈N such that (λ−δ,λ+δ)∩Sp( /Dn) is
a singleton {λn} for all n ⩾ N , then we assert:

liminf
n→∞ multiplicity(λn | /Dn)⩾multiplicity(λ| /D∞).

To get a stronger form of continuity for mutliplicities, we offer a sufficient condi-
tion, which restricts the potential growth of the eigenvalues.

Theorem 3.3.12 ([33]). If (An ,Hn , /Dn)n∈N is a sequence of metric spectral triples
converging, for the spectral propinquity, to a metric spectral triple (A∞,H∞, /D∞),
and

1. if λ ∈ Sp( /D∞),

2. there exists δ> 0 and N ∈N such that, for all n ⩾ N , the intersection Sp( /Dn)∩
(λ−δ,λ+δ) is a singleton, denoted by {λn},

3. if (multiplicity(λn | /Dn))n∈N converges inN— i.e., is eventually constant,

then

lim
n→∞multiplicity(λn | /Dn) = multiplicity(λ| /D∞).

We now then use Theorem (3.3.10) to compute the spectrum of operators as
limits of finite dimensional spectral triples [33], and we can apply Theorems (3.3.9)
and (3.3.10) to derive continuity results for the spectral actions, for instance.

3.4 EXAMPLES: INDUCTIVE LIMITS OF GROUPS

We then turn to the more specific context of inductive sequences of metric spectral
triples. Inductive sequences of spectral triples were introduced in [18], and are a
natural source of spectral triples; our interest is in the convergence of such sequences
for the spectral propinquity, i.e. in the sense of an actual metric.

We begin by recalling the following notion of inductive limit for spectral triples.

Definition 3.4.1. Let A∞ = cl(
⋃

n∈NAn) be a C*-algebra which is the closure of an
increasing sequence of C*-subalgebras (An)n∈N in A∞, with the unit of A∞ in A0. A
spectral triple (A∞,H∞, /D∞) is the inductive limit of a sequence (An ,Hn , /Dn)n∈N
of spectral triples when:

1. H∞ = cl(
⋃

n∈N)Hn , where each Hn is a Hilbert subspace of H∞,

2. for each n ∈N, the restriction of /D∞ to dom( /Dn) is /Dn ,

3. for each n ∈N, the subspace Hn is reducing for An , which is equivalent to
AnHn ⊆Hn .
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We note, using the notation of Definition (3.4.1), that the operator which, to any
ξ ∈⋃

n∈Ndom( /Dn), associates /Dnξ whenever ξ ∈ dom( /Dn) for any n ∈N, is indeed
well-defined, and shown in [18] to be essentially self-adjoint, so /D∞ is the closure of
this operator.

For our purpose, the following result from [18] show some consequences of a
spectral triple being an inductive limit.

Theorem 3.4.2 ([18, Theorem 3.1, partial]). If (An ,Hn , /Dn)n∈N is an inductive se-
quence of spectral triples converging to a spectral triple (A∞,H∞, /D∞), then for any
C-valued continuous function f ∈ C0(R) which vanishes at infinity, the sequence
(Pn f ( /Dn)Pn)n∈N converges to f ( /D∞) in norm.

From a metric perspective, inductive limits of spectral triples may provide inter-
esting examples of convergence for the spectral propinquity. In turn, the properties
of the spectral propinquity, including the continuity of the spectrum and others, are
tranferred to this setup of inductive limits, strengthening Theorem (3.4.2).

Theorem 3.4.3. Let (A∞,H∞, /D∞) be a metric spectral triple which is the induc-
tive limit of a sequence (An ,Hn , /Dn)n∈N of metric spectral triples, in the sense of
Definition (3.4.1). For each n ∈N∪ {∞}, let

dom(Ln) := {
a ∈An : a = a∗, a dom( /Dn) ⊆ dom( /Dn) and [ /Dn , a] is bounded

}
,

and, for all a ∈ dom(Ln), let Ln(a) be the operator norm of [ /Dn , a].
If there exists a bridge builderπ : (A∞,L∞) → (A∞,L∞) for ((An ,Ln)n∈N, (A∞,L∞))

which is a full quantum isometry of (A∞,L∞), i.e. such that π(dom(L∞)) ⊆ dom(L∞)
and L∞ ◦π= L∞ on dom(L∞), then

lim
n→∞Λ

spec((An ,Hn , /Dn), (A∞,H∞, /D∞)) = 0.

Theorem 3.4.4. Let G = ⋃
n∈NGn be an Abelian discrete group, with (Gn)n∈N a

strictly increasing sequence of subgroups of G. Let σ be a 2-cocycle of G, with values
inT := {z ∈C : |z| = 1}.

Let LH be a length function over G whose restriction to Gn is proper for all n ∈N,
such that the sequence (Gn)n∈N converges to G for the Hausdorff distance induced on
the closed subsets of G by LH . Let

F : g ∈G 7−→ scale(min{n ∈N : g ∈Gn}),

where scale :N→ [0,∞) is a strictly increasing function.
If the proper length function L := max{LH ,F} satisfies that, for some θ > 1, there

exists c > 0 such that for all r ⩾ 1:∣∣{g ∈G :L(g )⩽ θ · r
}∣∣⩽ c

∣∣{g ∈G :L(g )⩽ r
}∣∣ ,

then

lim
n→∞Λ

spec((C∗(G ,σ),ℓ2(G)⊗C2, /D), (C∗(Gn ,σ),ℓ2(Gn)⊗C2, /Dn)) = 0,
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where for all n ∈N∪ {∞} and for all (ξ1,ξ2) in{
ξ ∈ ℓ2(Gn)⊗C2 :

∑
g∈Gn

(LH (g )2 +F(g )2)
∥∥ξ(g )

∥∥2
C2 <∞

}
,

we set

/Dξ : g ∈G 7−→
(
F(g )ξ2(g )+LH (g )ξ1(g )
F(g )ξ2(g )−LH (g )ξ1(g )

)
.

In the above spectral triples, C∗(G ,σ) and C∗(Gn ,σ) act via their left regular σ-
projective representations.

Corollary 3.4.5. Fix a prime number p ∈N and d ∈N\ {0,1}. For each n ∈N, let

Gn :=
(

1

pnZ

)d

and

G∞ :=
(
Z

[
1

p

])d

.

Fix a 2-cocycle σ on G∞ such that ∀g ∈G∞ σ(g ,−g ) = 1.
Let LH be the restriction to G∞ of some norm onR2. We define F by setting, for

all g ∈G∞:

F(g ) := min

{
pn : g ∈

(
1

pn

)d
}

.

Let E be an even dimensional hermitian space, with γ1,γ2 be two unitaries on E
such that, for all j ,k ∈ {1,2}:

γ jγk +γkγ j =
{

2 if j = k,

0 otherwise.

If we define, for all n ∈N, the operator

/Dn := MLH ⊗γ1 +MF⊗γ2 on dom( /Dn)

on the domain

dom( /Dn) :=
{
ξ ∈ ℓ2(Gn ,E) :

∑
g∈Gn

(LH (g )2 +F(g )2)
∥∥ξ(g )

∥∥2
E <∞

}
,

then, for all n ∈N, the triple (C∗(Gn ,σ),ℓ2(Gn ,E ), /Dn) is a metric spectral triple, and:

lim
n→∞Λ

spec((C∗(Gn ,σ),ℓ2(Gn ,E), /Dn), (C∗(G∞,σ),ℓ2(G∞,E), /D∞)) = 0.

Moreover, for each n ∈N, the sequence (C∗(Gn ,σ),Lk )k⩾n of quantum compact metric
spaces converge to (C∗(Gn ,σ),L∞) in the Lipschitz distance.
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Corollary 3.4.6. Let α = (αn)n∈N be a sequence of nonzero natural numbers such

that
(
αn+1
αn

)
n∈N is a bounded sequence of prime numbers, and let

Z(α) := {
ζ ∈C : ∃n ∈N ζαn = 1

}
.

Define:

G∞ :=Z(α)×Z and ∀n ∈N Gn := �Z⧸αn ×Z,

i.e. Gn = {(ζ, z) ∈G∞ : z ∈Z,ζαn = 1}. Let σ be a 2-cocycle of G∞.
Let LZ be the restriction of any continuous length function on T to Z(α), and

define LH : (u, z) ∈G∞ 7→LZ (u)+|z|.
For all ζ ∈Z(α), set:

F(ζ) := min{n ∈N : un = 1}.

Let E be a Hermitian vector space, and let γ1,γ2 be unitaries such that γ1γ2 =
−γ2γ1 and γ2

1 = γ2
2 = 1E .

If we set, for all n ∈N,

/Dn := MLH ⊗γ1 +MF⊗γ2,

then for all n ∈N, the spectral triple (C∗(Gn ,σ),ℓ2(Gn)⊗E , /Dn) is metric, and

lim
n→∞Λ

spec ((
C∗(Gn ,σ),ℓ2(Gn)⊗E , /Dn

)
,
(
C∗(Z(α)×Z,σ),ℓ2(Z(α)×Z)⊗E , /D∞

))= 0.

3.5 AF ALGEBRAS

Antonescu/Ivan and Christensen constructed in [5] a metric spectral triple on AF
algebras. We now apply some of our results to prove the convergence of isometry
groups of their spectral triple. We begin with a description of the setup of [5].

Let A= cl(
⋃

n∈NAn) be a unital C*-algebra arising as the closure of the union of
an increasing union of finite dimensional C*-subalgebras — i.e., A is an AF algebra.
We assume for convenience that A0 =C1 where 1 is the unit of A. Let ϕ ∈S (A) be a
faithful state of A, and let L2(A,ϕ) be the GNS Hilbert space obtained by completion
of A for the inner product a,b ∈A 7→ϕ(b∗a). Of course, A acts by left multiplication
on L2(A,ϕ). We write Ω for the unit 1 of A when seen as a vector in L2(A,ϕ), which
is then a cyclic and separating vector for A.

For each n ∈N, we identify L2(An ,ϕ) with the closure of AnΩ in L2(A,ϕ), and
we denote the orthogonal projection of L2(A,ϕ) onto L2(An ,ϕ) by Pn . For all a ∈A,
letEn(a) be defined by: ∀a ∈An En(a)Ω := Pn(aΩ) — this indeed is well-defined
since Ω is separating. Since An is finite dimensional, it agrees, as a vector space,
with L2(An ,ϕ), and thus En(a) ∈An . It is easy to check that En thus defined is a
continuous linear function. In fact, when ϕ is also a trace, then En is the unique
conditional expectation from A∞ onto An such that ϕ◦En =ϕ.

We now follow the construction of a spectral triple on AF algebras given in [5]. For
each n ∈N\{0}, we now let Qn := Pn−Pn−1; of course Qn is a projection since Pn and
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Pn−1 commute and by construction, Pn ⩾ Pn−1. Now fix a ∈An , so aΩ ∈ L2(An ,ϕ).
By construction, Pm(aΩ) = aΩ, and thus Qm(aΩ) = 0 for all m > n. By continuity of
Qm , we thus conclude that QmL2(An ,ϕ) = {0} for all m > n. This allows us to define
the following operator.

For any strictly increasing sequence λ := (λn)n∈N of positive real numbers, we
define

∀ξ ∈ ⋃
n∈N

L2(An ,ϕ) Dλξ :=
∞∑

n=0
λnQn on

⋃
n∈N

L2(An ,ϕ), (3.5.1)

noting that since (L2(An ,ϕ))n∈N is increasing for inclusion, the set
⋃

n∈NL2(An ,ϕ)
is a subspace of L2(A,ϕ). Since

⋃
n∈NL2(An ,ϕ) is dense in L2(A,ϕ), the operator Dλ

is defined on a dense subspace. It is obviously symmetric, by construction, and in
fact, if

T =
∞∑

n=1
((λn + i )−1)Qn

where the series converge in norm, then T is bounded and T (Dλ+ i )ξ = ξ for all
ξ ∈⋃

n∈NL2(An ,ϕ). Therefore, Dλ is essentially self-adjoint. Let /Dλ be the closure
of Dλ. It is then easy to see that /Dλ is a self-adjoint operator and T is the inverse of
/Dλ+ i . Since T is compact, /Dλ has compact resolvent.

Now fix a ∈An . We note that a commutes with Pk for k ⩾ n by construction,
since ab ∈Ak for all b ∈Ak with k ⩾ n. In turn, this shows that

[ /Dλ, a] =
∞∑

j=0
λ j [Q j , a] =

n∑
j=0

λ j [Q j , a] (3.5.2)

= Pk

( ∞∑
j=0

[Q j , a]

)
Pk = Pk [ /Dλ, a]Pk . (3.5.3)

From this, we see that {a ∈ A∞ : a dom( /Dλ) ⊆ dom( /Dλ)} is dense in A∞, as it
contains

⋃
n∈NAn , and thus (A∞,L2(A∞,ϕ), /Dλ) is a spectral triple. Moreover, so is

(An ,L2(An ,ϕ), /Dn) where /Dn is the restriction of /D∞ to L2(An ,ϕ), which is now a
bounded self-adjoint operator. Moreover, by Equation (3.5.2), we have for all a ∈An :

|||[ /Dn , a]|||L2(An ,ϕ) = |||[ /D∞, a]|||L2(A∞,ϕ).

Not all choices of a sequence λ as above leads to a metric spectral triple. The
following result addresses this matter in [5].

Theorem 3.5.1 (Theorem 2.1). There exists a strictly increasing sequenceλ := (λn)n∈N
of positive numbers, and a summable sequence (βn)n∈N, such that

∀a ∈ sa (A∞) ∥En(a)−En+1(a)∥A <βn |||[ /Dλ, a]|||L2(A∞,ϕ). (3.5.4)

Consequently, for this choice of sequenceλ, the spectral triples
(
An ,L2(An ,ϕ), ( /Dλ)|L2(An ,ϕ)

)
are metric for all n ∈N∪ {∞}.
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Since we have constructed metric spectral triples, we have constructed quantum
compact metric spaces and we can ask about their convergence for the propinquity.
In fact, we now prove a convergence result for the spectral propinquity Λspec of the
spectral triples, which implies the convergence of the underlying quantum compact
metric spaces.

Moreover, by Theorem (), to show convergence, it is sufficient to find a bridge
builder which is also a full quantum isometry.

We refer to [47] for the definition of the spectral propinquity, and we refer to
Theorem (3.4.3) to see that, when working in the context of AF algebras, it is sufficient
for the following result to find a bridge builder which is also a full quantum isometry.

Theorem 3.5.2. Let A= cl(
⋃

n∈NAn) be a unital C*-algebra arising as the union of
an increasing sequence of finite dimensional C*-subalgebras An with A0 =C1. Let
ϕ ∈S (A) be a faithful state of A.

If λ := (λn)n∈N is a strictly increasing sequence of positive real numbers such that
(A∞,L2(A∞,ϕ), /Dλ) is a metric spectral triple, then, setting /Dn to be the restriction of
/Dλ to dom( /Dλ)∩Hn , we have (An ,Hn , /Dn) is a metric spectral triple, and

lim
n→∞Λ

spec((An ,L2(An ,ϕ), /Dn), (A∞,L2(A∞,ϕ), /Dλ))) = 0,

and therefore, in particular,

lim
n→∞Λ

∗
((
An , |||[( /Dn , ·]|||L2(An ,ϕ)

)
,
(
A∞, |||[ /Dλ, ·]|||L2(A∞,ϕ)

))
= 0.

Proof. We will prove that the identity of A∞ is a bridge builder. First, we note that
for all a ∈⋃

n∈N sa (An) ⊆ dom(L∞), the sequence (En(a))n∈N is eventually constant
equal to a, and thus limn→∞En(a) = a. If a ∈ sa (A), then for all ε> 0, there exists
a′ ∈ ⋃

n∈N sa (An) such that
∥∥a −a′∥∥

A∞ < ε
2 ; let N ′ ∈ N such that a′ ∈ An for all

n ⩾ N ′. Then

∥a −En(a)∥A∞ ⩽
∥∥a −a′∥∥

A∞ +∥∥a′−En(a′)
∥∥
A∞ +∥∥En(a′−a)

∥∥
A∞

< ε

2
+0+ ε

2
= ε.

Thus limn→∞ ∥En(a)−a∥A∞ = 0 for all a ∈A.

Now, fix ε> 0. Let N ∈N such that, if n ⩾ N , then
∑

n⩾N βm < ε. For all n ∈N,
let Ln be defined as L /Dn .

Let a ∈ dom(L∞). By Equation (3.5.2), we have

[ /Dn ,En(a)] = Pn[ /D , a]Pn ,

so Ln(En(a))⩽ L∞(a). On the other hand,

∥a −En(a)∥A ⩽
∞∑

k=n

∥Ek+1(a)−Ek (a)∥A ⩽ L∞(a)
∞∑

k=n
βk < εL∞(a).

Moreover, if a ∈ dom(Ln), then we simply note thatL∞(a) = Ln(a) and ∥a −a∥A∞ =
0.

We have shown that the identity is a bridge builder; of course it is also a full
quantum isometry. Therefore, by Theorem (3.4.3), we have the claimed convergence.
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FIGURE 3.1: The Sierpiński gasket

3.6 SIERPIŃSKI GASKET

THE SIERPIŃSKI GASKET

The Sierpiński gasket S G∞ is a fractal, constructed as the attractor set of an iterated
function system (IFS) of affine functions of the plane. Specifically, let

v0 =
(
0
0

)
, v1 =

(
1
0

)
and v2 =

(
1
2p
3

2

)
.

We write V0 = {v0, v1, v2}. Let ∆0,1 =S G 0 be the boundary of the convex hull of V0

inR2 — i.e., ∆0,1 is an equilateral triangle in the plane, whose edges have length 1.
Let L0 = {∆0,1}.

We define three similitudes of the plane by letting for each j ∈ {0,1,2},

T j : x ∈R2 7−→ 1

2

(
x + v j

) ∈R2.

We will use an explicit construction of S G∞ as a limit of finite graphs in R2,
defined inductively. For all n ∈N, n > 0, we set

Ln = {
∆n, j : j ∈ {1, . . . ,3n}

}
,

where

• ∆n+1, j+r 3n = Tr∆n, j , for all j ∈ {1, . . . ,3n} and r ∈ {0,1,2},

• Vn+1 =⋃2
r=0 Tr Vn .

For each n ∈N, we define the set

S G n =⋃
Ln =

3n⋃
j=1

∆n, j .

We observe for later use that, by induction, for all n ∈N:
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1. ∆n, j is an equilateral triangle whose edges have length 1
2n ;

2. the set of all vertices of the triangles in Ln is Vn ;

3. if j ∈ {1, . . . ,3n}, then

∆n, j ⊆
3⋃

r=1
∆n+1,3( j−1)+r ⊆ co

(
∆n, j

)
;

4. S G n ⊆S G n+1;

5. if j ,k ∈ {1, . . . ,3n}, and j ̸= k, then∆n, j ∩∆n,k is empty or a singleton containing
the common vertex to both triangles;

6. S G n is path connected.

All of these observations above follow from the fact that affine bijections preserve
triangles, scale length (here, by 1

2 ), and preserve intersections; they all can be proved
by induction.

Our construction implies the following key metric property:

∀n,m ∈N m ⩾ n =⇒ Haus
[∥·∥R2

]
(S G m ,Vn)⩽

1

2n .

We now define the Sierpiński gasket, using the notation of this section.

Definition 3.6.1. The Sierpiński gasket S G∞ is the closure of
⋃

n∈NS G n .

We further define V∞ =⋃
n∈NVn .

By construction, the Sierpiński gasket is compact. It can also easily be checked
that S G∞ is invariant under the map

X ⊆R2 7→
2⋃

r=0
Tr X ;

so it is indeed the attractor of the iterated functions system (T0,T1,T2) and is, in fact,
a self-similar set; namely,

S G∞ =
2⋃

r=0
Tr S G∞.

It is immediate from our construction that

∀n ∈N, Haus
[∥·∥R2

]
(S G∞,Vn)⩽

1

2n .

The set V∞ is therefore dense in S G∞. We also note that, by construction,

∀n ∈N, Haus
[∥·∥R2

]
(S G n ,S G∞)⩽

1

2n ; (3.6.1)
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hence, S G∞ is the limit of (S G n)n∈N for Haus
[∥·∥R2

]
.

However, for each n ∈N, we will work with the intrinsic metric on the set S G n ,
which is different from the restriction to S G n of the metric ofR2. Indeed, since for
each n ∈N, the set S G n is path connected, we can define for any two x, y ∈S G n ,

dn(x, y) =
inf

{
length(γ) : γ : [0,1] →S G n ,γ(0) = x,γ(1) = y,γ continuous

}
.

Here and henceforth (see, e.g., [20]), for any natural number p ⩾ 1, and for any curve
in a compact subset X of Rp , i.e., a continuous map γ : [0,1] → X , we define the
length of γ by

length(γ) =

sup

{
k∑

j=0

∥∥γ(t j )−γ(t j+1)
∥∥
Rp : k ∈N,0 = t0 < t1 < . . . < tk = 1

}
,

allowing for the value ∞ for length(γ) (the curves with finite length are called rectifi-
able), and where ∥·∥Rp is the Euclidean norm onRp .

By the Hopf–Rinow theorem for length spaces [20], and since S G n is path con-
nected and compact, there exists a continuous function γ : [0,1] →S G n which is a
geodesic from γ(0) = x to γ(1) = y ; i.e., for all t ⩽ t ′ ∈ [0,1], we have length(γ|[t , t ′]) =
dn(γ(t),γ(t ′)) = λ|t − t ′|, where λ = length(γ). This last equality shows that γ is
injective. We will use these observations in several proofs below.

In general, the canonical inclusion of S G n into S G∞ is not an isometry from
(S G n ,dn) to (S G∞,d∞). For instance, we see that

d0

(
v2,

( 1
2
0

))
= 3

2
, yet d∞

(
v2,

( 1
2
0

))
= d1

(
v2,

( 1
2
0

))
= 1.

This simple computation also shows that, of course, for any n ∈ N, the space
(S G n ,dn) is not a metric subspace of R2 (with its usual metric); namely, while
S G n is a subset ofR2, the restriction to S G n of the usual Euclidean metric onR2

is not equal to dn . It is obvious, nonetheless, that

∀n ∈N, ∀x, y ∈S G n ,
∥∥x − y

∥∥
R2 ⩽ d∞(x, y)⩽ dn(x, y).

However, we make the following observation, which will prove helpful later in
this work.

Lemma 3.6.2. For all n ∈N, the metrics dn and d∞ agree on Vn . In fact, any geodesic
between two elements of Vn in (S G∞,d∞) is also a geodesic in (S G n ,dn).

Let CP be the unital Abelian C*-algebra of allC-valued continuous functions f
over [−1,1] such that f (−1) = f (1):

CP = {
f ∈C ([−1,1]) : f (−1) = f (1)

}
.
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The Gelfand spectrum of CP is, of course, homeomorphic to the unit circle inC; we
will identify it with the imageT of [−1,1] under the map

x ∈ [−1,1] 7−→ exp(iπx).

The Sierpiński gasket is a special case of a general type of fractals.

Definition 3.6.3. A piecewise C 1-fractal curve X is a compact path connected subset
of Rn such that, for some sequence (C j ) j∈N of rectifiable C 1-curves in Rn with
lim j→∞ length(C j ) = 0, the following assertions hold:

1. X = the closure of
⋃

j∈N range
(
C j

)
,

2. there exists a dense subset B of X (for the topology induced by the geodesic
distance on X ) consisting of endpoints of the curves in the sequence (C j ) j∈N
and such that for all p ∈B and q ∈ X , one of the geodesics from p to q in X is
a curve obtained as a concatenation of a possibly finite subsequence (C j ) j∈N.

The sequence (C j ) j∈N is called a parametrization of X .

The Sierpiński gasket is a piecewise C 1-fractal curve given by a parametrization
using the edges of the triangles ∆n,r , for all n ∈N and r ∈ {1, . . . ,3n}.

Theorem 3.6.4 ([32, Proposition 2]). The Sierpiński gasket S G∞ is a piecewise C 1-
fractal curve, with parametrization (R j ) j∈N given, for each j ∈N, by either of the two
affine functions from [0,1] onto

• the bottom edge of ∆n, j , if j =κ(n,r ) for some (n,r ) ∈Ξ,

• the right edge of ∆n, j , if j =κ(n,r )+1 for some (n,r ) ∈Ξ,

• the left edge of ∆n, j , if j =κ(n,r )+2 for some (n,r ) ∈Ξ,

with
Ξ := {

(n,r ) ∈N2 : n ∈N,r ∈ {0, . . . ,3n −1}
}

and κ(n,r ) := 3
(∑n−1

k=0 3k + r
)
, for all (n,r ) ∈Ξ; by convention χ(0,0) = 0.

We now turn to the construction of a metric spectral triple on C 1-fractal curve.
We now define a spectral triple on CP, using the Gelfand–Naimark–Segal repre-

sentation of CP for the Haar state. Explicitly, let J be the Hilbert space closure of
CP for the inner product

( f , g ) ∈ CP 7→
∫ 1

−1
f g .

As usual, we identify f ∈ CP with the (bounded) multiplication operator by f on J .
For each k ∈Z, let

ek : t ∈ [−1,1] 7→ exp(iπkt ).
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Clearly, ek ∈J . We define /∂ as the closure of the linear extension of the map defined
as follows:

∀k ∈Z, /∂ek =πkek .

The operator /∂ is self-adjoint with spectrum {πk : k ∈Z}. In particular, /∂ has a
compact resolvent.

A quick computation now shows that f ∈J is in the domain dom(/∂) of /∂ if and
only if there exists a necessarily unique g ∈J such that

∀x ∈ [−1,1], f (x) = f (0)+
∫ x

0
g (t )d t ;

i.e., f is absolutely continuous on [−1,1], with almost everywhere derivative g .
Furthermore, in this case, /∂ f = i g . From this, it follows that for all k ∈Z, we have
[/∂, f ]ek = (/∂ f )ek . We thus deduce that, if we let

LT : f ∈ CP 7→ ∣∣∣∣∣∣[/∂, f ]
∣∣∣∣∣∣

J (allowing for the value ∞),

then

∀ f ∈ CP, LT( f ) = ∥∥/∂ f
∥∥

L∞([−1,1]) (also allowing for the value ∞).

From this, we conclude that f ∈ dom(LT) if and only if /∂( f ) is essentially bounded
on [−1,1]. Equivalently, via the Lebesgue differentiation theorem, f ∈ dom(LT) if
and only if f is Lipschitz for the usual metric on [−1,1] — with the obvious identifi-
cation of J as a closed subspace of L2([−1,1]). In turn, this implies that(

CP,J , /∂
)

is a metric spectral triple

since { f ∈ CP : f (0) = 0,LT( f )⩽ 1} is compact in C ([−1,1]) by Arzéla–Ascoli theorem.
However, we want to understand the metric induced by LT on the Gelfand spectrum
T of the C*-algebra CP. Let x, y ∈ [0,1). It is easy to see that

mkLT
(
exp(2iπx),exp(2iπy)

)=
sup

{
| f (x)− f (y)| : f ∈ CP, f (1) = 0,

∥∥/∂( f )
∥∥

L∞([0,1]) ⩽ 1
}

.

If f ∈ CP with LT( f )⩽ 1 and f (1) = 0, and thus f (−1) = 0, then

| f (x)− f (y)|⩽min{|x − y |,2−|x − y |}

and therefore,

∀x, y ∈ [−1,1], mkLT (exp(2iπx),exp(2iπy)) = |x − y | (mod 1), (3.6.2)

where equality in Equation (3.6.2) is achieved by using continuous piecewise affine
functions.

Thus, the metric induced by mkLT makes the Gelfand spectrum of CP isometric
to the unit circle inT endowed with its geodesic distance; i.e., the distance between
two distinct points is the smallest of the lengths of the two arcs between these points.
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We now use the spectral triple (CP,J , /∂) in order to construct a spectral triple on
the unit interval [0,1]. As the construction of spectral triples on piecewise C 1-fractal
curves involves possibly countable direct sums of interval spectral triples, we will
in particular avoid having the eigenvalue 0 in the spectrum of our interval Dirac
operator, so that a countable direct sum of such operators will still have a compact
resolvent.

If f ∈ C ([0,1]), then the map t ∈ [−1,1] 7→ f (|t |) is in C P . Let ϖ be the faithful
*-representation of C ([0,1]) on J defined by

∀ f ∈C ([0,1]), ∀ξ ∈J , ϖ( f )ξ : t ∈ [−1,1] 7→ f (|t |)ξ(t ).

We also set /D = /∂+ π
2 and dom( /D) = dom(/∂), noting that /D is a self-adjoint operator

with spectrum Sp( /D) = {
π

(
k + 1

2

)
: k ∈Z}

. It is easy to check that
(
C ([0,1]),J , /D

)
is

a metric spectral triple over C ([0,1]) which induces the usual metric on [0,1].

We now will work with the following hypothesis.

Hypothesis 3.6.5. Let FC ∞ be a piecewise C 1-fractal curve with parametrization
(C j ) j∈N; so that, in particular,

FC ∞ = closure of
⋃

j∈N
range

(
C j

)
.

We denote its geodesic distance by d∞. We also denote the set of all the endpoints of
the curves C j ( j ∈N) — which we call the vertices of FC ∞ — by V∞.

Let (Bn)n∈N be an approximation sequence for FC ∞ adapted to the parametriza-
tion (C j ) j∈N, and set B∞ =∞. For each n ∈N, we write

FC n =
Bn⋃
j=0

range
(
C j

)
.

We also denote the geodesic distance on FC n by dn . Last, we let

Vn = {
C j (0),C j (1) : j ∈ {0, . . . ,Bn}

}
,

which we call the set of vertices of FC n , and we set V∞ =⋃
j∈NV j — whose elements

we refer to as the vertices of FC ∞.
For every n ∈N, we denote the Lipschitz seminorm on FC n induced by the

geodesic distance dn by Ln .
Finally, for every j ∈N, we also denote the length of C j by λ j .

For each n ∈N, we now construct our spectral triple over FC n , where we use
Hypothesis 3.6.5. We let

Hn =⊕Bn
j=0J

and
dom(Dn) =

{
(ξ j )Bn

j=0 ∈Hn : ∀ j ∈ {0, . . . ,Bn} ξ j ∈ dom( /D)
}

.
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For each j ∈N, we also let q j : C (FC ∞)↠C ([0,1]), which sends f ∈C (FC ∞)
to f ◦C j in C [0,1]. Of course, q j is a *-epimorphism. We then set, for all f ∈C (FC n):

∀ξ= (ξ j ) j∈N, j⩽Bn ∈Hn , πn( f )ξ= (
ϖ( f ◦C j )ξ j

)
j∈N, j⩽Bn

.

Finally, using the same notation as above, we set:

∀ξ= (ξ j ) j∈N, j⩽Bn ∈ dom(Dn), Dnξ=
(

1

λ j
/Dξ j

)
j∈N, j⩽Bn

,

where λ j is the length of C j , for every j ∈N.
It is then easily checked that (C (FC n),Hn ,Dn) is a spectral triple on C (FC n).

We will next show that this spectral triple is metric and that mkDn restricted to
FC n coincides with the geodesic distance dn . Our theorem includes [9, Theorem
8.13] (case n =∞) and extends it to all n ∈N, which we need in order to be able to
formulate and establish our approximation results.

Theorem 3.6.6. We assume Hypothesis 3.6.5. Let n ∈N. If f ∈FC n , then

f ∈ dom(Ln) ⇐⇒ f dom(Dn) ⊆ dom(Dn)

and, for all f ∈ dom(Ln), we have

Ln( f ) = ∣∣∣∣∣∣[Dn ,πn( f )]
∣∣∣∣∣∣

Hn
.

In particular, the restriction of mkDn to FC n is the geodesic distance dn .

Remark 3.6.7. It is not sufficient to show that the restriction of mkDn is dn in order
to conclude that Theorem 3.6.6 holds — see, for instance, [2], where two different
L-seminorms on the continuous functions over the Cantor set give the same metric
on the Cantor set but not on the state space.

Theorem 3.6.8. If Hypothesis 3.6.5 holds, then

lim
n→∞Λ

spec ((C (FC n),Hn ,Dn) , (C (FC ∞),H∞,D∞)) = 0.
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