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L Linear Theory. Beyond Fierz-Pauli J

Massive Spin |: Three polarizations

k= (m,0,0,0)
e, : € =(0,1,0,0)
e =(0,0,1,0)
e’ =(0,0,0,1)
Massless limit
k=(1,0,0,1)
el=e; €=e &=k

The only known way to stay with only two polarizations is to make the identification

-
The origin of gauge
invariance

JE = € + k €un — €u -+ 8M)\ Longitudinal polarizations are pure gauge.

N




Propagators from unitarity
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( )
\OS kuk
y Pp]uOb = N — § 2V
Dpu = Z E;}E;‘ — Pﬂ" = Nuw — szjl m
A \_ J
Transverse on shell "projector
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Lagrangians from propagators
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Massive photon I _ iF,'f,, - ;m'zA'ﬁ




Massive Spin Two Five polarizations

2
€i®6j—|—6j®6¢—§ <Z€k®€k> 5@']’
k

[Massless limit ]

63Ek®62+62®k
e, =kXRe1 +e1 QE
€5E/€®]€

€1 =€e1Xext+exep

These two rotate amongst themselves under
the little group.

€ =€1 X e —erR ey

The smallest gauge invariance we need to stay with two polarizations is transverse.

€af ~ €ap T 0alp)
k& =0




Unitarity again

Using transversality and tracelessness

3

Dypo = 1 (PIWPPU — 9 (PupPoo + P/MPVP))

To find the lagrangian, -




4 1

Normalization: 1 = ——
3 k%2 —m?

Computing the inverse of the propagator

Fierz-Pauli, with the Fierz-Pauli
mass term




Is it possible to get only the traceless part of the ME?
(Ve need Weyl)

BK 7 = K (n*Pn”? + 07 n"P — 20" nf7) — (K*kPn"" +
KV RO 4 BRET VP 4 KV kPR — QkMEYnPT — 2kPET )

n—2

fr KV —
" A

(K*kY — K*n)

(n—1)(n—2)
4

trir K = — k>

Traceless part of Fierz-Pauli

FHvpo _ Mvpo _ ln’“’tr KPo

traceless n

No lagrangian because it is not symmetric




The most general symmetric lagrangian

Q,ul/pa — KHVPO _ nlu/Mpa . M’W/ﬁpa
Asking for tracelessness

1

MHPY = — (tr KM — tr MnH")
n
1 1%
M? = — (tr KM —trtr Kn")
n

Linear form of Weyl-transverse

K" knH? + EFETn"P + KV EPnt? —

(&

SKUE = K2 + 1 7n"?) — (kP +

2 2
(n+ )k2n,u,1/77p0+

(k“k”np" + kPE M

~




LGeneraI linear transverse gauge invariance.J

£ = X prhorh

2 [

ﬂv;—l@mmn
4

No extra
scalar mode
with
enhanced
symmetry

There is in general an extra scalar mode.

In order for it not no be a ghost

>>]_—-2a-+-01——1)a2

b

n—2

Lroig=La+a L +b LYV,

Transverse

Fierz-Pauli

Unimodular




A second possibility is to enhance TDiff with an additional Weyl symmetry,

2 .
8h/11)=;¢n/ll)’ (13

by which the action becomes independent of the trace. In the generic transverse Lagrangiar
Lrpitelh 0] of Eq. (9), replace h,,, with the traceless part

/2/“, —> ];/1\) = l]/lp - (l]/’])n/(p. (14

This is formally analogous to (10) with A = —1/n, but cannot be interpreted as a field redef
inition. 'As such, it would be singular, because the trace i cannot be recovered from 7, . The
resulting Lagrangian

Lwrpitilhy] = Lroitlo]. (15
is still invariant under TDiff (the replacement (14) does not change the coefficients in front of th
terms £! and £). Moreover, it is invariant under (13), since h,w is. Using (11) with A = —1/n

we immediately find that this “WTDiff” symmetry corresponds to Lagrangian parameters

2 2
a=—, b= n
n n?

(16




P 7{:() g4 Einstein's 1919 theory :“Spielen Gravitationsfelder im
¢ o | Aufber der materiellen Elementarteilchen eine

v
@ wesentliche Rolle?” (Sitzungsberichte der Prussischen
‘ Akad d.Wissenschaften)

1 . 1
RI“’ o T_Z.Rg‘“/ = [-{2 (Tlﬂ’ — HTQ#,,)

g()..'j 3 -éaj S =0 .
/ (Tracefree piece)
V,.R" = JV'R Trace recovered through Bianchi
. n—2_ K _
(E—E)V"R=—K—2V"T g BHLT=A
2 n n 1
R;w o 5 (R o 2’\) Guv = KzTuu




Variational principle?

Traceless equations === Scale symmetry!?

0.5
. a3 =
égu.'j

Weyl transformation:

2
Gasg 9 Gas

2n
g=detg.,s — 2"g

Sw = —21,) /d.l, lg|" R Not good enough
2




Einstein frame gp = |detg,,, | =1

Jordan frame

Sy = —Mn_Q/dnCE Rrp + Spae =

1 —1)(n —2) g"
_Mn—2 d™r 95 R un (n )(n )g v,ug Vug 4 Smatt
4n? g?







n—2
(n—1)

1
R 9/)52; - iguuvuﬁbgvuﬁbg)




HPRW (2013) claim that a similar action is the UV fixed
point of a truncated effective action under a functional
renormalization group.

In particular the quartic potential
vanishes asymptotically

Scalar potential in the Jordan frame = Cosmological
constant in the Einstein frame




Conformal invariance (VVeyl)

~ 2
G = 27
2—n

Qgg:ﬂ 2 Qg

UG equations of motion are in the gauge fixed sector of
TWF

5 SU (5 SST 6 S ST 6 (_f) g

Oguz/ Og/_w O(j)g Og/.u/




Tautological Weyl Gravity/ Dilaton gravity

. n n
5= [ Vil (~gg=y R

) (V0. )

It contains unimodular gravity in the gauge fixed sector

STWG;GF _

n— 2

8(n —1

(n—2)(n—-1) (Vg

2 ‘n £
))\ d"z |g|m | R+

4n?

92

:







S = M2 / VG d*z R[G]
















e’iW[guv,ng] = /Dg[.bl/ D¢g e—i%fd4a; \/—_g(ap¢gg@w ay(ﬁg'l‘% R ¢g)

DGp,u e 6rC J d*zR[G ]

1 149
G / d*z\/|G
= am_ ) 4oV |(2880E4[G] 320W4[G]+128R[G]2)




/ d(vol) Wy [Qgu] = / d(vol) "™ Wiy [gyu]

/ d(vol) Eq [V guw] = / d(vol) Q"% Ey4 [gu]

X (n — 4) — finite remainder
n—4
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The result may seem surprising at first sight, but it is a trivial
consequence of
| .- The counterterm must be conformal invariant.
2.-The only pointwise conformal invariant in four

dimensions is \@Wzl

The only logical way out would be that either
3.- There is no counterterm, that is the theory is finite
Or else
4.-Give up diffeomorphism invariance.
Then there are pointwise conformal invariants in
arbitrary dimension, such as

(—g)™ Wiy.










Divergence of the field equation

k'K poh?” = —2m? (kPh,, — kuh)

2
K2h = kykyh?”
Trace of the field equation

" Ky po b7 = —2(1 — n)m?>h

h=kuk,h* =0
K hy, =0

Klein-Gordon




['he canonically normalized field 1s

n—1 _

n—Qe

B b=t
H|
Q

by = —2V/2M"T

['he old gauge C' = 1 now reads

3. n2 [n—1 _n-o2
¢g+22]\,{[ 2 n_29 in = ().

n terms of ¢, the action is

n—2 1

n—2

(2.12)

(2.13)

Ly (cpyd (o2 )L
8(n_1)]\4n—2¢g§(v‘1’) —(=1) (8(n—1)> Aﬂﬂ[nqbg V(‘ﬁ)} (2.14)




The gauge C' = 1 means that

The new action 1s then written as

o= /d"x \/5{ TV [_Mn_Q( R+ ¢""V,o V,o)+ !

e VoD’ V(q))}

2n
e \/(n—l)(n—'Z) 7

(z)

= g(x).

2

GV, OV, d

(2.1




SU — —]Lfn_2/dn$ RE -+ Smatt —

_ ["_2/65% gn ( R+ (n—1)n —2)¢"Vug Vug
An2 g2

) —I— Smatt




Some comments on gauge fixing

U(l) Lorenz gauge

A" =0 =0A,=0

How to recover the full covariant and gauge
invariant Maxwell equations given four solutions of
the Klein Gordon equation?

Perform an arbitrary gauge transformation

A, = A, +0,A




A = 9, A"

Eliminating the gauge parameter Maxwell is

A

v

easily recovered

0\ = 0,0,A"

If the gauge parameter is restricted (harmonic, for
example) we DO NOT recover Maxwell.

Out of the same gauge fixed theory, several gauge
Invariant theories can be obtained depending on the
assumed gauge symmetry.




Belaboring: Weyl gauge 1210 — 0
Do) A" = 0

A; = 0;0; A7

AQ — (90/\ —> (92140 — 6’0811\

~

Ai= A, + 9\

[l (AZ — &A) — 818] (AJ — 8]/\) — &@AJ — &AA




[:lflo — Ool:lz"\ — 80 (()(2)‘\ + A‘\) = ()g‘\ + OOOZAZ = ()3:10 + 00()2:12 = 600/“4“

Covariant form of Maxwell
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Back to basics: The linear theory.

Fierz-Pauli and beyond

(& J
k= (m,0,0,0)
Three polarizations ef} e =(0,1,0,0)
e =(0,0,1,0)
e’ =(0,0,0,1)
k=(1,0,0,1)
el=e; €=e =k

The only known way to stay with only two polarizations is to make the identification

€ = €+ k €un — €u -+ 8M)\ Longitudinal polarizations are pure gauge.




Propagators from unitarity

_ A A _ _ k#ky
D, = E €,€q = P, =, - 2

A
Transverse on shell "projector"  P.%° =1, -

Lagrangians from propagators

L ~ A* (P'J'os);ul A" = : ;A" ((K* = m*) m + kuk,) A

k? — m?
Massive photon

L=1F2 _
4

1

3 .-
5™ A




Massive Spin Two = Five polarizations

2
€i®6j—|—6j®6¢—§ <Z€k®€k> (5@'
k

[Massless limit j

6351’6@624-62@]6
e, =kXRe1 +e1 QEK
€5E/€®]€

€1 =€e1Rextexer

These two rotate amongst themselves under
the little group.

€ =€1 X e —erRen

The smallest gauge invariance we need to stay with two polarizations is transverse.

€af ~ €ap T 0alp)
k& =0




Unitarity again
D, e = z Gﬁyéfa = clnf,,n;’;, + czn;‘f,,k,\k,, + kuknro

A
tes(MinTiy, + Maotion) + Ca(kukomy, + Kk, +

kukang)‘ -+ kl/k/\nZg + Cskp kukrkeo

Using transversality and tracelessness

3
Dype = 1 (P/WPPU ) (PupPoo + P/wPV/))>

To find the lagrangian, PLW — PEVOS

. TOS pTOS
D,uz/pa = (1 <P,u1/ Ppa -

DO | QO

TOS pTOS TOS pTOS
(Pup Po +P/w PVp ))




4 1

Normalization: 1 = ——
3 k%2 —m?

Computing the inverse of the propagator

Fierz-Pauli, with the Fierz-Pauli
mass term




Divergence of the field equation

k'K poh?” = —2m? (kPh,, — kuh)

2
Kh = kykgh?”
Trace of the field equation

" Ky po b7 = —2(1 — n)m?>h

h=kuk,h* =0
K hy, =0

Klein-Gordon




s it possible to get only the traceless part of the ME?
(We need Weyl)

BK T = KX (n*Pn”? +nM7n"P — 20" nf7) — (K*kPn"" +
KV RO 4 kPR YR 4 KV kPO — 2kMEY PO — 2kPET )

n—2

tr KMV —
" A

(K*EY — K*n™)

(n—1)(n—2)
4

trtr K = — 2

Traceless part of Fierz-Pauli

FHvpo _ | Mvpo _ ln’“’tr KPo

traceless n

No lagrangian because it is not symmetric




The most general symmetric lagrangian

Q,ul/pa — KHVPO _ nMVM,OO' . M’W/ﬁpa
Asking for tracelessness

1

MHPY = — (tr KM — tr MnH")
n
1 1%
M® = — (tr KM —trtr Kn")
n

Linear form of Weyl-transverse

K" knH? + EFETn"P + KV EPntT —

\

SKUET = K2 + 17n"?) — (kP +

2 2
(n+ )k2n,u,1/77p0+

(k“k”np" + kPE M
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LGeneraI linear transverse gauge invariance.J

1
ch==
4

I 1,
£ = 5 0"hO hyp, LV = —7 Ouhd"h.

8,k 0" h,,, L1 = _% 8,18, kY,

There is in general an extra scalar mode.

In order for it not no be a ghost

S 1—2a+ (n—1)a?
- n— 2

b

Copig = La+a L +b 1V, TDiff

No extra mbe] lef

scalar mode
with

2
enhanced = —, b= ——. .




Coming back to Weyl transverse...

Lowest order effective lagrangian...

No allowed dimension zero operators:
Lo = F(|g])

55{] = Ad/d,le(] =0

This (purely gravitational)
symmetry is incompatible with
a cosmological constant




Dimension two operators:

SN = ——|g|‘ = 998, |g|95lg]

The gravitational equations of motion are now:

655"
5goB

1-2n 1 1-2n v
“aulgoslal-( #9,lgla.lg| - 21910, (1

1—-2n v
= g" 3#'9')) o

where the gravitational constant has been deleted because it is not important
in the absence of matter. These equations are traceless up fo a total derivative

JS(I) l1—-n
o unat” B o ghv
[ g° 7 = +2nd, (Ig g 6#'9') j

This means that the Noether current associated to WTDIff is

W = |g| =" g" 89|




Second dimension two operator

9 _ 1
bs,éz, =é (—@/dnl’lgllnl{)

- q(2) n in 5§ af 1 1
é,S.f’ — /d xlgll bg3 (2’;2”90313— 2?}203>

n /n 1 - af
- /d w|g|l 2'{2 (ga;'iA - vav3) bg !

The variation still vanishes for Weyl transformations

bg" =~ g because Vagu =0

EM are traceless up to a total derivative only

1 2—-n, . ,|2-3n _ l1—n
[ R#,,—;ng, - |g| : g laugaug - vuapg_ ( e

o o 9 '0,90399"" + 0, (859*° )) g,u”




Einstein frame: VIg.IRlg]) = |g|* R

Einstein metric is unimodular

Unimodular variational principle would yield
Einstein's 1919 EM (This is not what he had in mind)




A different viewpoint

———Wcﬁfﬂ jalx (¢ — 191%)
Owing to the auxiliary fields, we can introduce
unconstrained Einstein metric:
Vlge|Rlge] = V/]g|6R
9%, = pig,,
Scalar-tensor Iagrangian

l '_ [ 2—n
L= _2&2¢fR fx U— (1| 5V (]1- Rf (]}« ¢ n-2 X(l — |g“_ on )+

+2n:l(r:—l 2) ( (‘E"f & ) VEgE d c:(j O) (3.1)

Quantum effects give Lagrange multipliers propagators




scalar density ¢. For example, for a scalar field ® (not to be confused with the scalar
density ¢ of gravitational origin),

Ly = |gel" g% 8,90,%
Under conformal transformations in the old frame
6 — Q"
and for consistency,
x — Q7%
whereas the unimodular Einstein metric is inert. What looks like a purely gravita-
tional symmetry in one frame, looks like a matter symmetry in another. Potential

energy coupled to gravitation is again forbidden, because they appear in the new
frame as

¢~ "2V (D)

(1 _ 47'L2

L2 (n . 2)2 ¢—2g§y6p¢a,,¢




[ Conclusions }

There are no natural models.

Too much arbitrariness?

More work is needed before it can be
assessed whether TG is a useful alternative




L Newtonian limit J

St = —mTc/f(g)ds ~ —mTc/f(l + /{\h!)\/l

f(g)

In order for the transverse action to get the correct Newtonian limit

SNp = —m dt(

2

2

v
02———|—<I>N—|—...>

Potential in terms of the metric

mTf( ) =m

hoo — 2f(1)
(f(1) + f7(1))c?

(5 e

o)

+ /ihoo — U—th
C

2

fm(9)

9]




Einstein's equations

cK? 1
Roo = —1po AD N ~ il )CBRQ/OT

2

reduce to Poisson's equation provided




Einstein's equations

cK? 1
Roo = —1po AD N ~ il )CBRQ/OT

2

reduce to Poisson's equation provided




The matter part is Diff. invariant

V ‘g‘?uT/ﬂ/ — 8MA

Integrability of Einstein's equations

Just shifts height and position of

A = const minima of the potential

The full action, before multiplier condensation, is only TDiff
invariant




WTDiff: Einstein's 1919

1 1 Can't be obtained f
R'L“/ — ﬁRg/’“/ =X (T,U,V _ ETg,U,V> an € obtained Trom

an unconstrained variational principle

(Trace-free piece of EE; cc disappears)

Bianchi = vr.-vir == "2vp_ Svr =D

2

n—2 2k

¥ R+ TT = constant = —\ *

1 .
CC reappears as an Ry — =(R+2\)gu = rcsz.,
integration constant 2




Some simple models:

5= [ @5 (<5 I @R+ £ (@) Lngu))

Fm(g) =1 (Extreme example)

Tdiff viewed as Diff in the unitary gauge C=1|

$— [ g (<5 GCIR fnlgCO) L 0))

C=Compensator




LMassesJ

S = [ @2 fnl9) 3 (" Bi0 i = V(5:)

()

Eikonal approximation

9"k, k, = m?

ky =0

Passive gravitational mass equal to inertial mass

e




Energy-momentum tensors

TDiff &= v, ( T,

" 1
\ /\g|> - , /\g\ Ol (It is not automatically conserved)

Rosenfeld does not reduce to Belinfante in flat space

fm(g) =1

(The second piece is missing in the active EMT)




Fluid approximation
mae(GR) = Tpuu” = p

o _ fml9)
: ﬁ”*(ﬁ

Mo —ma(GR) _ P fm = 29f}n , fm = /Idl
ma(GR)  p /gl V19l

ﬁf)

=

Experimental bound [ AS =6, — 6y <1071 1

Dipolar gravitational radiation




One-loop ultraviolet divergences

¢« = g.C>  Several changes of

guw = Q%g;,, frame and variable

02 = (o)
F\(Q) = Q" (fFH?)

—1(Qn—2

(2(n ~—D(n—2)
Q2

"Equivalent” scalar-tensor theory

2
- (o) (g ) )wma,gzgwamayqz




Counterterm:

85 = 47r / o VT {2 B 1 (@00

A3 12 fo+ £72 fu fa) 920,070, w*—" A2 f3
+§A2[f’1f 2f A B2 ) + A2[3f + 2]
X [24f 7% fr— 18f 72 1 f — 67 f ‘f”fA+6f Lpr e 10f72 £ f
T e 2 T TR~ AT P fo 28 T S — £ LS
x [12f 7 f = 18f 2 7 =6 P 6T R =2 R S
T R e 2 T TR = AT T S e 2f T S e~ PR S
s (75)

When there is no cosmological constant we recover the old results of 't Hooft -Veltman

A=0 o
160 9. 0up" 00
f:fﬁb:l =e(47r) /tzl4 Vo %RZ




There are only two cases in which the theory
is one-loop finite on-shell (without cc)

2

2n— 1) f " (f) = (n—2)f5 = 0

Einstein, 1915

(Diff. invariance)

5 -WTDif flge) = g

(Weyl invariance)

Einstein, 1919




2n
g(2)C? = eVr-1D(-2) o)

2n 2n
Vo @ _ g2n e’ @




Scalar fields:

S B
1g]° 251‘“’0,4 9, P

¢ — QP

No allowed Weyl invariant interactions with the measure

N
gl=d"z

Nonminimal terms are allowed

c
2 R®? ' >
e 2
pin—2)+4—2n M ~
M m° ~ R

Also allowed interactions decoupled from gravitation:

4z V(®,)

Potential energy does not weigh (an overkill)




