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Matrix models and their cumulants

Random matrix models

Random matrix models (unitarily invariant probability laws on matrices)
are ubiquitous in physics (nuclear physics, disordered systems, random
surfaces, ...) and mathematics (combinatorics, non commutative
probability, knot theory, ...)

Statement of the problem

Derive analyticity in λ ∈ C for the cumulants defined as

Ka1b1c1d1,...,akbkckdk (λ,N) =

∂2

∂J∗a1b1
∂Jc1d1

· · · ∂2

∂J∗akbk∂Jckdk
logZ[J, J†;λ,N]

∣∣∣∣
J=J†=0

in a quartic N × N complex matrix model with

Z[J, J†;λ,N] =
∫

dM exp

{
−Tr(MM†)− λ

2N
Tr(MM†MM†)+

√
NTr(JM†)+

√
NTr(MJ†)

}

using the Loop Vertex Expansion (LVE) techniques (Rivasseau, 2007).
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Divergence of perturbative series

Divergence of perturbative expansion

Perturbative expansion based on Feynman graphs diverges

logZ[J, J†;λ,N] ” = ”
∑

n

anλ
n

an = sum of contributions of connected graphs of order n

Combinatorics: number of order n graphs ∼ n!

Analysis: λ = 0 boundary of analyticity domain

Physics: instability for λ < 0

R.P. Feynman F. Dyson
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Perturbation theory

Perturbative expansion of the path integral

Interacting theory ⇒ use of perturbation around free fields

∫
[Dφ]e−S[φ] =

∑

n

an(−λ)n with λ� 1 coupling constant

an =
∑

order n graphs

∼
n→∞

Cκnnan! ⇒ divergence of perturbative series

Exemples:

Anharmonic oscillator: H = P2 + X 2 + λX 4

ground state energy E0(λ) =
∑

n an(−λ)n

vacuum instability if λ < 0 (stability for all λ if series convergent)

Quantum Electrodynamics: L = − 1
4FµνF

µν + iψγµ(∂µ + ieAµ)ψ

vacuum instability α = e2

4πε0~c < 0 because of pair creation e+e−

”Le simple est toujours faux. Ce qui ne l’est pas est inutilisable.”
Paul Valery
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Counting Feynman graphs

Simple model (functional integral → ordinary integral)

Expansion based on Feynman graphs
∫

dφ√
2π

exp−
{

1

2
φ2 +

λ

4!
φ4

}
=

∑

Γ 4-valent graph

(−λ)|Γ|

S(Γ)

with |Γ| = # {vertices} (order of perturbation theory)
S(Γ) = # {transformations preserving Γ} (symmetry factor)

∑

|Γ|=n

1

S(Γ)
=

Γ(2n + 1/2)

6nΓ(1/2)n!
∼

n→∞

1√
π

(2

3

)n nn

en
√
n

( Stirling)

: 1
2 ×

(
1
23

)2

+ 1
2×23 + 1

2×4! = 35
3×27

Remarques:

Borel summation possible if an > 0 (sign alternance)

Other divergence: renromalized amplitudes in n! (renormalons)
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Trees

What is a (plane,rooted) tree?

Tree = connecter graph without cycle embedded in the plane and with
one marked vertex (root)

1 tree with 0 vertex:

1 tree with1 vertices:

2 trees with 2 vertices:

5 trees with 3 vertices:

Trees with n vertices counted by Catalan numbers Cn =
2n!

n!2(n + 1)
Cn =1, 1, 2, 5, 14, ... (A000108 On Line Encyclopedia of Integer Sequences)

http://oeis.org/A000108
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Counting trees through generating functionals

Combinatorial species

Discrete structure (trees, graphs,...) grouping objects by size (number of
vertices,...) equipped with combinatorial operations (insertion,cutting,...)

Generating series T (z) =
∑

n≥0

Cnz
n with Cn = # {trees of size n}

T1 Tk

→
T1 Tk

Cn =
∑

k≥0

∑

n1+···+nk=n+k

Cn1 . . .Cnk ⇒ T (z) =
1

1− zT (z)

T (z) =
−1 +

√
1− 4z

2z
=
∑

n≥0

2n!

n!2(n + 1)
zn (binomial formula)

Convergent expansions over trees

Cn ∼
n→∞

Cste 4nn−3/2 ⇒ ∑
T AT convergent if |AT | <

(
1
4

)#(vertices of T )
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A short summary of the LVE expansion

LVE techniques and results

Explicit expansion over trees of logZ[J, J†;λ,N] based on

Intermediate field (Hubbard-Stratonovitch transformation)

Replica trick (one matrix → n matrices)

Forest formula (generalisation of fundamental theorem of calculus)

Bound on the resolvent ‖(1− i

√
λ

N
A)−1‖ ≤ 1

cos2
(

1
2 arg λ

)

⇒ Analyticity of logZ[J, J†;λ,N] and cumulants for λ in a cardioid

4|λ|2 ≤ cos2
(

1
2 arg λ

)
1
4

Reλ

Imλ
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Intermediate field representation

Write the quartic interaction using an auxiliary hermitian matrix A

exp− λ

2N
Tr(MM†MM†) =

∫
dA exp−

{
1

2
Tr(A2)− i

√
λ

N
Tr(M†AM)

}

⇔

⇔

Intermediate field (wavy line) on the right following the arrows

matricial intermediate field also represented as a double line
→
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Matrix model for the intermediate field

Perform the Gaußian integration over M (with log det = Tr log)

Z[J, J†;λ,N] =

∫
dMdA

exp−
{

1

2
Tr(A2)+Tr

[
M†
(

1−i
√
λ

N
A

)
M

]
+
√
NTr(JM†)+

√
NTr(MJ†)

}

=

∫
dA exp−

{
1

2
Tr(A2)+NTr log

(
1−i
√
λ

N
A
)
+NTrJ

(
1−i
√
λ

N
A

)−1

J†
}

⇔ ⇔

⇔
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Replica trick

Expand the exponential as a power series

Z[J, J†] =
∞∑

n=0

(−1)n

n!

∫
dµ(A)

[
NTr log

(
1−i
√
λ

N
A

)
+NTrJ

(
1−i
√
λ

N
A

)−1

J†
]n

Replace the integration over one matrix by an integration over an
n-tuple of matrices (replicas) with uniform covariance Cij = 1

Z[J, J†] =
∞∑

n=0

(−1)n

n!

∫

A=(A1,...,An)

dµC (A)
n∏

i=1

[
NTr log

(
1−i
√
λ

N
Ai

)
+NTrJ

(
1−i
√
λ

N
Ai

)−1

J†

]

Gaußian measure of covariance Cij (positive n × n matrix)
∫

dµC (A)Ai|abAj|cd = Cij δadδbc

with Ai|ab the matrix element in the row a and column b of Ai
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Forest formula

Brydges-Kennedy-Abdessalam-Rivasseau forest formula

For any function φ : R
n(n−1)

2 → C on complete graph with vertices i , j , ...

φ(1, . . . , 1) =
∑

F forest

∫ 1

0

∏

(ij)∈F

dtij
∂|E(F )|φ∏
(i,j)∈F ∂tij

(
inf

(kl)∈PF
i↔j

tkl

)

with PFi↔j unique path in F joining i and j , inf
(kl)∈PF

i↔j

tkl = 0 if PFi↔j = ∅

n=2: 1 2 1 2 φ(1) = φ(0) +
∫

[0,1]
dt12

∂F
∂t12

(t12)

n=3:
12

3

12

3

12

3

12

3

12

3

12

3

12

3

φ(1, 1, 1) = φ(0, 0, 0)+

∫

[0,1]

dt12
∂φ

∂t12
(t12, 0, 0)+

∫

[0,1]

dt23
∂φ

∂t23
(0, t23, 0)

+

∫

[0,1]

dt13
∂φ

∂t13
(0, 0, t13)

∫

[0,1]2

dt12dt23
∂2φ

∂t12∂t23
(t12, t23, inf(t12, t23))+

∫

[0,1]2

dt12dt13
∂2φ

∂t12∂t13
(t12, inf(t12, t13), t13)+

∫

[0,1]2

dt23dt13
∂2φ

∂t23∂t13
(inf(t23, t13), t23, t13)
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Application of the forest formula to the matrix model

Application of the BKAR forest formula with Cij → tijCij (i 6= j)

Derivative with respect to tij ⇒ edge between vertices i and j

∂

∂tij

(∫
dµC (A)V (A)

)
= Cij

∫
dµC (A)

∑

a,b

∂2

∂Ai|ab∂Aj|ba
V (A)

∂

∂tij
= Cij

Derivative of the resolvent ⇒ half-edge on vertex i

∂

∂Ai|ab

(
1− i

√
λ

N
Aj

)−1

cd

= i

√
λ

N
δij

(
1− i

√
λ

N
Aj

)−1

ca

(
1− i

√
λ

N
Aj

)−1

bd

Cilium on the vertex if there is an insertion of JJ†

Z[J, J†;λ,N] sum over forests ⇒ logZ[J, J†;λ,N] sum over trees
since the contribution of a forest factorizes over its connected
components
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LVE expansion

LVE expansion over trees

An LVE tree is a plane tree with labelled vertices and at most one cilium
per vertex

logZ[J, J†, λ,N] =
∑

T LVE tree

AT [J, J†;λ,N]
with

AT [J, J†;λ,N] =
(−λ)|E(T )|N

|V (T )|!

∫ ∏

e∈E(T )

dte
∏

e=ij∈E(T )

inf
e′∈Pi↔j

te′

∫
dµCT

(A)
−→∏

c∈∂T

(
1− i

√
λ

N
Aic

)−1

(JJ†)ηc

(CT )ij = inf
{
te
∣∣ e in the unique path Pi→j in T joining i and j

}
−→∏

c∈∂f

= oriented product around the corners on the boundary of T .

Corner = pair of half edges attached to the same vertex

ic is the label of the vertex the corner c belongs to.

ηc = 1, 0 if c is followed by a cilium (1) or not (0).
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Example of a tree amplitude

1 2 3

4

A
1 2 3

4 =
N(−λ)3

4!

∫

0

dt12dt23dt24

∫
dµC (A)

Tr

[(
1− i

√
λ

N
A3

)−1(
1− i

√
λ

N
A2

)−1(
1− i

√
λ

N
A4

)−1(
1− i

√
λ

N
A2

)−1

(
1−i

√
λ

N
A1

)−1

JJ†
(

1−i

√
λ

N
A1

)−1(
1−i

√
λ

N
A2

)−1(
1−i

√
λ

N
A3

)−1

JJ†
]

C =




1 t12 inf(t12, t23) inf(t12, t24)
t12 1 t23 t24

inf(t12, t23) t23 1 inf(t23, t24)
inf(t12, t24) t24 inf(t23, t24) 1



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Convergence and analyticity in the cardioid

Convergence of the LVE expansion for the generating function

For any disc D ⊂ C, there is ε > 0 such that for λ ∈ D and ‖JJ†‖ < ε

logZ[J, J†;λ,N] =
∑

T LVE tree

AT [J, J†;λ,N]

with C the cardioid

C =

{
λ ∈ C with 4|λ| < cos2

(arg λ

2

)}
1
4

Reλ

Imλ

Bound on the resolvent
∥∥(1− i

√
λ
NA
)−1∥∥ ≤ 1

cos arg λ
2

Bound on the tree amplitude A[J, J†;λ,N] ≤ N2|λ|n‖JJ†‖k

(n+1)!
(

cos arg λ
2

)2n+k

Number of LVE trees with n edges and k cilia

(2n + k − 1)! (n + 1)!

(n + k)! (n + 1− k)! k!
≤ 22n+k−1 (n − 1)!

(n + 1)!

(n + 1− k)! k!
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Addition of loop edges and LVE graphs

Recursive generation of loop edges by writing the resolvents as

∏

i

(
1− i

√
λs
N Ai

)−1

aibi

=
∏

i

δai ,bi +

∫ s

0

ds ′
d

ds ′

∏

i

(
1− i

√
λs′

N Ai

)−1

aibi

〈
d

ds

( )〉

=

〈 〉
+

〈 〉

Iteration ⇒ addition of loop edges to the tree

LVE graph

An LVE graph (G ,T ) is ribbon graph G with at most one cilium per
vertex, labels on its vertices, a distinguished spanning tree T and labels
on the edges in E (G )− E (T ) (loop edges)
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Amplitude of an LVE graph

The amplitude associated to an LVE graph (G ,T ) is (for n > 0)

A(G ,T )[J, J
†;λ,N] =

(−λ)|E(G)|N |V (G)|−|E(G)|

|V (G )|!∫

1≥s1≥···≥s|E(G)|−|E(T )|≥0

∏

e∈E(G)−E(T )

dse

∫ ∏

e∈E(T )

dte
∏

e=ij∈E(G)−E(T )

inf
e′∈Pi↔j

te′

∫
dµCT

(A)
∏

f∈F (G)

Tr

{ −→∏

c∈∂f

(
1− i

√
λs|E(G)|−|E(T )|

N
Aic

)−1

(JJ†)ηc
}

(CT )ij = inf
{
te
∣∣ e in the unique path Pi→j in T joining i and j

}

ic is the label of the vertex the corner c belongs to.

ηc = 1, 0 if c is followed by a cilium (1) or not (0).

se ∈ [0, 1] associated to every loop edge e ∈ E (G )− E (T )
−→∏

c∈∂f

= oriented product around the corners on the boundary of f
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Example of a planar LVE graph

loop 1

loop 2

1 2 3

A loop 1

loop 2

1 2 3

=
N−1(−λ)4

3!

∫ 1

0

ds1

∫ s1

0

ds2

∫

0

dt12dt23dt24 inf(t12, t23)t23

∫
dµC (A)

Tr

[(
1− i

√
s2λ
N A3

)−1(
1− i

√
s2λ
N A1

)−1

JJ†
(

1− i
√

s2λ
N A1

)−1(
1− i

√
s2λ
N A2

)−1

(
1− i

√
s2λ
N A3

)−1

JJ†
]

Tr

[(
1− i

√
s2λ
N A1

)−1(
1− i

√
s2λ
N A2

)−1

(
1− i

√
s2λ
N A3

)−1
]

Tr

[(
1− i

√
s2λ
N A2

)−1(
1− i

√
s2λ
N A3

)−1
]

C =




1 t12 inf(t12, t23)
t12 1 t23

inf(t12, t23) t23 1



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Example of a non planar LVE graph

loop 1

loop 2

1 2 3

A loop 1

loop 2

1 2 3

=
N−1(−λ)4

3!

∫ 1

0

ds1

∫ s1

0

ds2

∫

0

dt12dt23dt24 inf(t12, t23)

∫
dµC (A)

Tr

[(
1−i

√
s2λ

N
A1

)−1(
1−i

√
s2λ

N
A2

)−1(
1−i

√
s2λ

N
A2

)−1(
1−i

√
s2λ

N
A1

)−1

(
1− i

√
s2λ

N
A3

)−1(
1− i

√
s2λ

N
A2

)−1(
1− i

√
s2λ

N
A2

)−1

(
1− i

√
s2λ

N
A3

)−1(
1− i

√
s2λ

N
A1

)−1

JJ†
]

C =




1 t12 inf(t12, t23)
t12 1 t23

inf(t12, t23) t23 1



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Perturbative expansion

Perturbative expansion with remainder

For any disc D ⊂ C, there is ε > 0 such that for λ ∈ D and ‖JJ†‖ < ε

logZ[J, J†;λ,N] =

∑

G ciliated ribbon graph
|E(G)|≤n

(−λ)|E(G)|N |V (G)|−|E(G)|+|F (G)|−|B(G)|

|Aut(G )|
∏

f∈B(G)

Tr
[(
JJ†
)c(f )

]

+ Rn[J, J†;λ,N]

where χ(G ) = |V (G )| − |E (G )|+ |F (G )| − |B(G )| is the Euler
characteristic (B(G ) = set of faces containing cilia) and c(f )is the
number of cilia in the broken face. The order n perturbative remainder
can be expressed as a convergent sum over LVE graphs with at least
n + 1 edges and at most n + 1 loop edges

Rn[J, J†;λ,N] =
∑

(G,T ) LVE graph
|E(G)|=n+1

A(G ,T )[J, J
†;λ,N] +

∑

T LVE tree
|E(T )|≥n+2

AT [J, J†;λ,N]

and is analytic in the cardioid C.
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Derivation of the perturbative expansion

Contributions of LVE graphs with s = 0 reconstruct perturbative
expansion in terms of Feynman graphs

∑

T⊂G spaning tree

∫ ∏

e∈E(T )

dte
∏

e=(ij)∈E(G)−E(T )

inf
e′∈Pi↔

te′ = 1

where Pi↔j is the unique path on T joining the vertices labelled i
and j .

Counting LVE graphs with n vertices, k cilia and l loop edges

N (n, k , l) =
(2n + 2l + k − 3)! n!

2l (n + k − 1)! (n − k)! k!

Bound on the contribution of each LVE graph

∣∣∣∣A(G ,T )[J, J
†;λ,N]

∣∣∣∣ ≤
∫ ∏

e∈E(T )

dte
∏

e=ij∈E(G)−E(T )

inf
e′∈Pi↔j

te′

N |F (G)|+|V (G)|−|E(G)||λ||E(G)|

|V (G )|!(|E (G )| − |E (T )|)!

(
1

cos arg λ
2

)2|E(G)|+k

‖JJ†‖k
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Series based on genus g graphs

Topological expansion

Matrix models admit a topological expansion in N2−2g with g the
minimal genus of the surface in which the ribbon graph G is embedded

Generate loops up to genus g (genus g + 1 → remainder)
⇒ remainder made of LVE graphs such that last added loop edge
increases g to g + 1
Series based on graphs of fixed genus have radius of convergence 1

12
⇒ perturbative expansion convergent for |λ| < 1

12 and remainder
convergent for λ in the cardioid

C̃ =

{
λ ∈ C with 12|λ| < cos2

(arg λ

2

)}

1
4

Cλc

1
12

C̃
Reλ

Imλ
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Topological expansion

Topological expansion with remainder

For any disc D ⊂ C̃, there is ε > 0 such that for λ ∈ D and ‖JJ†‖ < ε

logZ[J, J†;λ,N] =
( ∑

G ciliated ribbon graph
g(G)≤g

(−λ)|E(G)|N2−2g(G)−|B(G)|

|Aut(G )|
∏

f∈B(G)

Tr
[(
JJ†
)c(f )

])
+

R̃g [J, J†;λ,N]

with |V (G )| − |E (G )|+ |F (G )| = 2− 2g(G ) and topological remainder

R̃g [J, J†;λ,N] =
∑

(G,T ) LVE graph with
g(G) = g + 1 and g(G − eL(G,T )) = g

A(G ,T )[J, J
†, λ,N]

with G − eL(G ,T ) = graph with last added loop edge removed

Bound on amplitude and number of genus g graphs
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Trace invariants and scalar cumulants

Any homogenous degree k unitarily invariant polynomial expanded as

P(JJ†) =
∑

π∈Πk

PπTr
(
JJ†
)k1 · · ·Tr

(
JJ†
)kp

with trace invariants indexed by partitions π = k1 ≤ · · · ≤ k|π| such
that k1 + · · ·+ · · · k|π| = k .
Integration formula over unitary group U(N) involving Weingarten
functions Wg(σ,N) ⇒ expression of Pπ in terms of P and Wg
∫

dU Ua1b1 . . .UakbkU
∗
c1d1

. . .U∗cldl =

∑

σ,τ∈Sk

δaσ(1)c1
. . . δaσ(k)ck δbτ(1)d1 . . . δbτ(k)dk Wg(τσ−1,N)

Scalar cumulants indexed by integer partitions

Ka1b1c1d1,...,akbkckdk (λ,N) =
∑

π∈Πk

Kπ(λ,N)
∑

ρ,σ∈Sk

∏

1≤l≤k

δcl ,aρτσ−1(l)
δdl ,bρξσ−1(l)

with τ, ξ ∈ Sk such that cycle decomposition of τξ−1 corresponds to π
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Analyticity of scalar cumulants

Analytic expansion for scalar cumulants

Scalar cumulants can be written as a convergent series for λ ∈ C

Kπ(λ,N) =
∑

LVE trees with k cilia

Kπ,T (λ,N)

and is analytic for λ ∈ C. Moreover,

∣∣∣∣Kπ,T (λ,N)

∣∣∣∣ ≤
22k(k!)2|λ||E(T )|N2−|π|

(
cos arg λ

2

)2|E(T )|+k |V (T )|!

Express AT [J, J†;λ,N] in terms of trace invariants

Asymptotic behaviour ⇒ Wg(σ,N) ≤ 22k

N2k−|C(σ)|

Bound the resolvent
∥∥(1− i

√
λ
N

)−1∥∥ ≤ 1
cos arg λ

2

Bound the number of cycles in permutations ρ, σ ∈ Sk as

|C (ρ)|+ |C (σ)| ≤ k + |C (ρσ)|
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Perturbative expansion and Borel summation for scalar cumulants

Perturbative expansion with remainder

The perturbative expansion of the cumulants is analytic for λ ∈ C

Kπ(λ,N) =
∑

G ribbon graph
with broken faces corresponding to π and |E(G)| ≤ n

(−λ)|E(G)|Nχ(G)

|Aut(G )| +Rπ,n(N, λ)

Rπ,n(N, λ) is a sum over LVE graphs with k cilia, at least n + 1 edges
and at most n + 1 loop edges. For all 0 ≤ α < π and 0 ≤ ρ < 1

4 , there

exist Ck,α,ρ and σα such that for | arg λ| < α and |λ| < ρ cos2 arg λ
2

∣∣∣∣Rπ,n(λ,N)

∣∣∣∣ ≤ N2−|π|Ck,α,ρ(σα)n+1|λ|n+1(n + 1)!

Borel summability of cumulants

Scalar cumulants are Borel summable at the origin, uniformly in N

Kπ(λ,N) =

∫ ∞

0

ds

( ∞∑

n=0

1

n!

∑

G ribbon graph
with |E(G)| ≤ n and broken faces corresponding to π

(−s)|E(G)|Nχ(G)

|Aut(G )|

)
exp

{
− s

λ

}
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Nevanlinna-Sokal theorem

Borel summability (Nevanlinna-Sokal theorem)
[
F (λ)

]
ω∈Ω

= family of analytic functions in the disc

DR =
{
λ ∈ C

∣∣Re
( 1

λ

)
>

1

R

} R

If there are σ > 0 and C > 0 such that for λ ∈ DR and ω ∈ Ω

∣∣Fω(λ)−
n∑

m=0

am(ω)λm
∣∣ < σn+1|λ|n+1(n + 1)!

then Fω can be recovered from its perturbative series as

Fω(λ) =

∫ ∞

0

ds

( ∞∑

n=0

an(ω)

n!
sn
)

exp
{
− s

λ

}

.

⇒ perturbative series
∑

n an(ω)λn sufficient to construct Fω(λ)
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Topological expansion

Topological expansion for scalar cumulants

Cumulants Kπ(λ,N) are expanded in inverse powers of N for λ ∈ C̃. as

Kπ(λ,N) =

g∑

h=0

N2−2g−|π|Kπ,h(λ) + R̃π,g (N, λ)

where Kπ,h(λ) is a convergent series for |λ| < 1
12 over ciliated ribbon

graphs of genus ≤ g whose broken faces correspond to the partition π

Kπ,h(λ) =
∑

G ribbon graph with
genus g and π broken faces

(−λ)|E(G)|

|AutG |

R̃π,g (N, λ) is a sum over LVE graphs with |π| broken faces, genus g + 1
and such that, if we remove the loop edge of highest label, we get a
genus g graph. For all 0 ≤ α < π and 0 ≤ ρ < 1

12 , there exists a

constant C̃g ,k,α,ρ such that
∣∣∣R̃π,n(λ,N)

∣∣∣ ≤ N2−2(g+1)−|π||λ|2(g+1) C̃k,α,ρ

for | arg λ| < α and |λ| < 1
12 .
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Summary of results

Convergent expansion over trees ⇒ analyticity of cumulants

Perturbative and topological expansion with controlled remainder

Techniques used

LVE expansion over trees

Recursive generation of loop edges (LVE graphs)

Bound on resolvent

Expansion on trace invariants (Weingarten functions)

Other possible applications (not discussed here)

Non commutative field theory (Rivasseau, 2007)

Two dimensional models (Rivasseau & Wang, 2010)

Random tensoris (Gurau, 2013)

Other matrix models (Kontsevitch, multimatrix) (...)

Other quantum field theories (Gross-Neveu, QCD) (...)


	Graphs vs trees
	Matrix models and their cumulants
	Divergence of perturbative series
	Perturbation theory
	Counting Feynman graphs
	Trees
	Counting trees through generating functionals
	A short summary of the LVE expansion

	LVE expansion
	Intermediate field representation
	Matrix model for the intermediate field
	Replica trick
	Forest formula
	Application of the forest formula to the matrix model
	LVE expansion
	Example of a tree amplitude
	Convergence and analyticity in the cardioid

	Perturbative expansions with remainder
	Addition of loop edges and LVE graphs
	Amplitude of an LVE graph
	Example of a planar LVE graph
	Example of a non planar LVE graph
	Perturbative expansion
	Derivation of the perturbative expansion
	Series based on genus g graphs
	Topological expansion

	Scalar cumulants
	Trace invariants and scalar cumulants
	Analyticity of scalar cumulants
	Perturbative expansion and Borel summation for scalar cumulants
	Nevanlinna-Sokal theorem
	Topological expansion

	Summary

