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There are five elementary arithmetical operations: addition,
subtraction, multiplication, division, and . . . modular forms.
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Modular invariance arise naturally in many physical context

String
Theory

adapted from Terras

1 String Theory
2 Black hole in Quantum gravity
3 Quantum field theory
4 Quantum Chaos
5 Solid state physics . . .

In this talk we will describe how modular invariance enters in an essential
way in quantum field theory and string theory
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Modular invariance by relating perturbative and non-perturbative regime of
the theory connects the important question and fundamental questions about
the consistency of quantum gravity (e.g. high energy behaviour of N = 8
supergravity . . . ) to deep and cute properties of automorphic representations.

We will see how string theory identifies some interesting modular and
automorphic forms and allows to address difficult mathematical questions in
representation theory

Based on work done with Michael B. Green, Stephen D. Miller, Jorge Russo
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Part I

Dirac Charge quantization
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Dirac Charge Quantization

In this paper Dirac provided an elegant argument for the quantization of
electric charges.
This idea still has important consequences on our understanding of quantum
gravity.
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Dirac charge quantization

Schrödinger’s equation for the electron wavefunction

−
 h2

2m

(
~∂+ ie~A

)2
Ψ(t,~x) = i h

∂Ψ(t,~x)
∂t

I Magnetic monopole of charge g

~A+ − ~A− = ~∇
( g

2π
φ
)
= ~∇χ

I Wavefunction gauge transformation

Ψ(t,~x)→ e−ieχΨ(t,~x) = e−ieg φ2πΨ(t,~x)

Single valueness of the wavefunction implies Dirac quantization

eg ∈ 2πZ

We have a discrete lattice Γ of electric and magnetic charges
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Dirac charge lattice

The electron and the magnetic monopole are dual solution of the
four-dimensional Maxwell equations∫

S2
F = g

∫
S2
?F = e

A dyon is a bound state d1 = (e1, g1) electrically and magnetically charged

Two dyons satisfy the Dirac-Zwanziger-Schwinger quantization

e1g2 − e2g1 ∈ 2πZ

This condition is invariant under SL(2,Z) transformation(
e
g

)
→ γ

(
e
g

)
for γ ∈ Γ = SL(2,Z)
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What about quantum corrections?

Can this symmetry be a symmetry of a quantum theory; i.e. not being
destroyed by quantum corrections?

In the years 1994-1998 it was understood that gauge theories have this
remarkable property [Witten, Vafa, Sen, Seiberg,...]

I Exact symmetry of N = 4 SYM
I Symmetry of Seiberg-Witten N = 2 SYM relating different phases of the

theory
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What about quantum corrections?

Which was soon extended to a fundamental symmetry of String theory
I String theory S-duality and then U-dualities
I Quantum gravity and black hole physics

[Witten, Sen, Schwarz, Green, Hull, Townsend,...]
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Modular invariance of Abelian Theory

Witten has clarified the origin of the modular invariance in an Abelian gauge
theory

L = −
1

4e2 (F ∧ ?F) +
θ

32π2 (F ∧ F)

Let’s L a U(1)-principal bundle with connection Aµ: Fµν = ∂µAν − ∂νAµ
over a 4 dimensional manifold X

Invariance under θ→ θ+ 2π requires that
[ F

2π

]
= m ∈ Λ Lattice

F → ?F induces the map m→ ∗m ∈ Λ
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Modular invariance of Abelian Theory

With (·, ·) is the intersection form on H2(X)

(m, ∗m) =
1

16π2

∫
X

F ∧ F; (m, ∗m) =
1

8π2

∫
X

F ∧ ?F

with q = exp(2iπΩ) andΩ = θ
2π + i 4π

e2

Z =
1

Vol(U(1))

∫
DAe−

∫
X L = (=mΩ)

b1−1
2
∑
m∈Λ

q
(m,∗m)−(m,m)

4 q̄
(m,∗m)−(m,m)

4

This is a modular form for Γ = SL(2,Z)

Z(−
1
Ω
) = Ω

χ+σ
4 Ω̄

χ−σ
4 Z(Ω)

χ is Euler characteristic and σ signature of X
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Black Hole Charge Quantization

Supergravity theories are supersymmetric extensions of the Einstein gravity
theory. The massless spectrum of supergravity theories contains the graviton,
(many) scalar fields, (many) vector fields, and fermions.

For the case of D = 10 N = 2b supergravity we have

L2b =
1

2κ2
10

|− g|
1
2

(
R−

1
2
(∂µφ)

2 −
1
2

e2φ(∂µC(0))2
)

SettingΩ = C(0) + ie−φ parametrizes the coset SL(2,R)/SO(2)

L2b =
1

2κ2
10

|− g|
1
2

(
R−

1
2
∂µΩ∂

µΩ̄

Ω2
2

)
Again the classical values ofΩ parametrize the vacuum of the theory
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Black Hole Charge Quantization

D-instantons are finite energy solution [Green, Perry, Gibbons]

ds2 =
(

eφ∞ +
c
r8

) 1
2 (

dr2 + r2dΩ9
)

eφ = eφ∞ +
c
r8 ; C(0) = C(0)∞ + eφ∞ − eφ

Charge Q(−1) =
∫

S9 e2φ ? dC(0) ∝ eφ∞c

Completely localized object in the D = 10 space-time. Their magnetic dual
are 7-brane with charge Q(7) =

∮
dC(0)

Dirac charge quantization condition

Q(−1)Q(7) ∈ 2πZ

The classical SL(2,R) symmetry is broken to Γ = SL(2,Z) (or a subgroup)
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Duality symmetries and the S-matrix

Scattering amplitudes and S-matrix elements depend on the classical
background θ and g

f (θ, g) =
∑
n>0

cn gn +
∑
n>0

dn(g) e−2π n
g+2iπnθ

I Finite or infinite number of perturbative contributions cn

I Non-perturbative contributions from instantons
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Duality symmetries and the S-matrix

Scattering amplitudes and S-matrix elements depend on the classical
background θ and g

f (θ, g) =
∑
n>0

cn gn +
∑
n>0

dn(g) e−2π n
g+2iπnθ

I The coefficients cn can be computed (in principle) from the Feynman
rule deduced from the Lagrangian of the theory.

I This is an asymptotic expansion with zero radius of convergence cn ∼ n!
or (2n)!

I The theory is controlled by large fields classical solutions: instantons
I Instanton corrections of energy 2πn/g and charge nθ with fluctuations

dn(g)
I needed to give a prescription for a complete consistent theory
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Duality symmetries and the S-matrix

Scattering amplitudes and S-matrix elements depend on the classical
background θ and g

f (Ω) =
∑
n>0

cnΩ
n
2 +
∑
n,0

dn(Ω2) qn + c.c.

Modular invariance allows to complete the perturbative result with the
non-perturbative contributions

Allows to reach non-perturbative information very difficult to compute
directly
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Part II

S-duality in string theory
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The type IIB string case
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The string theory induced corrections to the Einstein-Hilbert action in D = 10
for the type IIB theory read

δLIIb = E(0)(Ω)`610R
4 + E(2)(Ω)`10

10D4R4 + E(3)(Ω)`12
10D6R4 + · · ·

The corrections are modular function invariant under the action of SL(2,Z)

E(k)(γ ·Ω) = E(k)(Ω) γ ∈ SL(2,Z)

[Green, Gutperle, Russo, Miller, Vanhove, ...]
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The type IIB string case

They satisfy two important constraints

I Their constant term must reproduce string perturbation
I They satisfy second order differential equations

• The boundary data from string perturbation (recallΩ2 = =mΩ = e−φ∞ is
the string coupling constant)∫ 1

0
E(k)(Ω) dΩ1 = Ω

k−1
2

2

(
ak

0Ω
2
2 + ak

1 + ak
2Ω

−2
2 + · · ·+ O(e−Ω2)

)

The coefficients ag arise from the evaluation of the 4-graviton amplitude on a
genus g Riemann surface.

The exp(−Ω2) contributions are from the D-instanton described before.
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The type IIB string case

Explicit computations gives for the perturbative contributions
[Green, Vanhove, Russo, D’Hoker, Pioline, ...]∫ 1

0
E(0)(Ω) dΩ1 = Ω

− 1
2

2

(
2ζ(3)Ω2

2 + 4ζ(2)
)

∫ 1

0
E(2)(Ω) dΩ1 = Ω

1
2
2

(
ζ(5)Ω2

2 +
8ζ(4)

3
Ω−2

2

)
∫ 1

0
E(3)(Ω) dΩ1 = Ω2

(
2
3
ζ(3)2Ω2

2 +
4ζ(2)ζ(3)

3
+

4ζ(4)
Ω2

2
+

4ζ(6)
26Ω4

2

)
+ O(e−Ω2)

Contribution from genus g amplitudeΩ2(2−g)
2
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The type IIB string case

Supersymmetry of the Lagrangian δL = 0

δ =
∑

r

`r10δ
r; δ0Ln +

∑
r1+r2=n

δr1Lr2 = δnL0

implies the differential equations ∆ = Ω2
2(∂

2
Ω1

+ ∂2
Ω2

)

δ0L6 ' 0 (∆−
3
4
)E(0) = 0;

δ0L10 ' 0 (∆−
5
4
)E(2) = 0;

δ0L12 + δ12L12 ' 0 (∆− 12)E(3) = −(E(0))
2

[Green, Sethi, Vanhove, Sinha, ...]
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The type IIB string case

These equations together with the boundary conditions imply that

E(0)(Ω) = 2ζ(3)E 3
2
(Ω)

E(2)(Ω) = ζ(5)E 5
2
(Ω)

Eisenstein series

Es(Ω) =
∑

γ∈Γ∞\SL(2,Z)

(=m(γ ·Ω))s =
∑

gcd(m,n)=1

(=mΩ)s

|mΩ+ n|2s
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The type IIB string case

E(3)(Ω) is not an Eisenstein series

(∆− 12)E(3) = −(2ζ(3)E 3
2
)2

The solution to the differential equation is given by

E(3)(Ω) =
2ζ(3)2

3
E 3

2
(Ω) +

∑
γ∈Γ∞\Γ

Φ(γΩ)

Φ(x + iy) = 4ζ(3)
∫
R

(∑
n∈Z

σ−2(|n|) e2iπn(x+u)

)
h
(

x
y

)
du

where h(x) is the unique smooth even real function with h(x) ∼x→±∞ 1/(6|x|3) solving(
d
dx

(1 + x2)
d
dx

− 12
)

h(x) = −
1

(1 + x2)
3
2
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Part III

U-dualities and and UV properties of
maximal supergravity
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Higher Rank Groups

In lower-dimensions the symmetry group of string theory increases and the
theory combines in a higher rank duality group the duality we have discussed
on the scalarΩ from the gravity sector and the one from the Abelian theory.

One important example is N = 8 supergravity with 70 scalar parametrizing
the coset space E7(7)(R)/(SU(8)/Z2) and 56 electromagnetic charges which
Dirac charge quantization imply that the only the discrete subgroup
E7(7)(Z) = E7(7)(R) ∩ Sp(56,Z)

Dirac quantization of the electric/magnetic charges leads to the same lattice Γ
as the one constructed by Chevalley method
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Duality symmetries [Hull,Townsend]

D E11−D(11−D)(R) KD E11−D(11−D)(Z)

10A R+ 1 1
10B Sl(2,R) SO(2) Sl(2,Z)

9 Sl(2,R)×R+ SO(2) Sl(2,Z)
8 Sl(3,R)× Sl(2,R) SO(3)× SO(2) Sl(3,Z)× Sl(2,Z)
7 Sl(5,R) SO(5) Sl(5,Z)
6 SO(5, 5,R) SO(5)× SO(5) SO(5, 5,Z)
5 E6(6)(R) USp(8) E6(6)(Z)
4 E7(7)(R) SU(8)/Z2 E7(7)(Z)
3 E8(8)(R) Spin(16)/Z2 E8(8)(Z)

I String theory on d-torus Td = S1(R1)× · · · × S1(Rd)

I E11−D(11−D) real split forms, KD maximal compact subgroup.
I Automorphy E(k)(γ · ~ϕ) = E(k)(~ϕ) for γ ∈ Γ = Ed(d)(Z)
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From geometry to group theory

The duality group in D+ 1 dimensions Ed is embedded the maximal parabolic
subgroup Pαd+1 = Lαd+1U where Lαd+1 = GL(1) · Ed of Ed+1

Ed(d)

The GL(1) parameter is the radius of circle compactification of the theory
from dimensions D + 1 to D
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From geometry to group theory

The duality group in D+ 1 dimensions Ed is embedded the maximal parabolic
subgroup Pαd+1 = Lαd+1U where Lαd+1 = GL(1) · Ed of Ed+1

Ed(d)

In this construction all the information about the extra space time dimensions
is contained in the higher rank duality group
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Differential equations and critical dimensions

Recursion relation between the various dimensions implies [Green, Russo,

Vanhove](
∆−

3(11 − D)(D − 8)
D − 2

)
E(0) = 6πδD−8,0(

∆−
5(12 − D)(D − 7)

D − 2

)
E(2) = 80ζ(2)δD−7,0(

∆−
6(14 − D)(D − 6)

D − 2

)
E
(D)
(3) = −(E(0))

2 + ζ(3)δD−6,0

Vanishing eigenvalues in the critical dimensions for UV divergence at L-loop

Dc =

{
8 for L = 0
4 + 6/L for 2 6 L 6 4

In D = Dc E(k) = cUV log(gs) + · · · where cUV UV counter-term
Complete agreement with N = 8 multi-loop computations by [Bern et al.]
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Boundary conditions in lower dimensions I
The symmetries of string perturbation (T-duality group SO(d, d)) is recovered
from the maximal parabolic subgroup Pα1 = Lα1Uα1 of Ed+1 where the Levi
factor is GL(1) · SO(d, d)

SO(d, d)

The GL(1) factor is the string coupling constant g2
D
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Boundary conditions in lower dimensions I

In the zero instanton sector (the constant term in a Fourier expansion) we can
see the action of supersymmetry in terms of non-renormalisation theorems

E(0)
∣∣
pert = g

−2 8−D
D−2

D

(
atree

g2
D

+ I1−loop

)
E(2)

∣∣
pert = g

−4 7−D
D−2

D

(
atree

g4
D

+
1

g2
D

I1−loop + I2−loop

)
E(3)

∣∣
pert = g

−6 6−D
D−2

D

(
atree

g6
D

+
1

g4
D

I1−loop +
1

g2
D

I2−loop + I3−loop + O(e−
1

gD )

)

We could have as many term as elements of
the Weyl group |W(E7)| = 2903040;
|W(E8)| = 696729600 but the answer picked
by string theory is much simpler
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String theory picks remarkably simple solutions

I Boundary conditions from string/M-theory allow to determine the unique solution [Green, Russo, Miller, Vanhove]

Ed+1(Z) E(0) E(1)

E8(8)(Z) 2ζ(3)EE8

[1 07]; 3
2

ζ(5)EE8

[1 07]; 5
2

E7(7)(Z) 2ζ(3)EE7

[1 06]; 3
2

ζ(5)EE7

[1 06]; 5
2

E6(6)(Z) 2ζ(3)EE6

[1 05]; 3
2

ζ(5)EE6

[1 05]; 5
2

SO(5, 5,Z) 2ζ(3)ESO(5,5)
[10000]; 3

2
ζ(5) ÊSO(5,5)

[10000]; 5
2
+

8ζ(6)
45 ÊSO(5,5)

[00001];3

SL(5,Z) 2ζ(3)ESL(5)
[1000]; 3

2
ζ(5) ÊSL(5)

[1000]; 5
2
+

6ζ(5)
π3 ÊSL(5)

[0010]; 5
2

SL(3,Z)× SL(2,Z) 2ζ(3)ÊSL(3)
[10]; 3

2
+ 2Ê1(U) ζ(5)ESL(3)

[10]; 5
2
− 8ζ(4)SL(3)

[10];− 1
2

E2(U)

SL(2,Z) 2ζ(3)E 3
2
(Ω)ν

− 3
7

1 + 4ζ(2) ν
4
7
1

ζ(5)E 5
2

ν

5
7
1

+
4ζ(2)ζ(3)

15 ν
9
7
1 E 3

2
+

4ζ(2)ζ(3)

15ν
12
7

1

SL(2,Z) 2ζ(3)E 3
2
(Ω) ζ(5)E 5

2
(Ω)
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Black hole contributions

I The instantonic black hole contributions are obtained from the Fourier
modes

I If θi ∈ U � Rm is a set of continuous commuting charges of
non-perturbative contributions we define the fourier modes

F(k)[Q,ϕ] :=
∫
[0,1]m

dθE(k) e2iπQ·θ

I In the decompactification limit rd � `D+1 the Fourier modes take the
form

F(k)[Q,ϕ] ∼
∑

Q∈Zn

dQ fQ(ϕ) e−2πrd mQ
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Black hole contributions

F(k)[Q,ϕ] ∼
∑

Q∈Zn

dQ fQ(ϕ) e−2πrd mQ

I The Fourier transform induces a condition on the discrete charges Q in
the charge lattice Ed+1(Z) ∩ Uαd+1 which lies in discrete orbits

I mQ is the mass of the BPS particle state in dimension D + 1 that lead to
an instanton once wrapped on the (euclidean) circle of radius rd

I dQ is a number theoretic function counting the instanton configurations

I fQ(ϕ), due to the quantum fluctuations, is a function of the moduli
invariant under the symmetry group Ed in dimension D + 1
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This solves a very difficult math problem

0
E6

A1
E6(a1)

2A1
D5

3A1
E6(a3)

A2
E6(a3)

A2+A1
D5(a1)

2A2
D4

A2+2A1
A4+A1

A3
A4

2A2+A1
D4(a1)

A3+A1
D4(a1)

D4(a1)
D4(a1)

A4
A3

D4
2A2

A4+A1
A2+2A1

A5
A2

D5(a1)
A2+A1

E6(a3)
A2

D5
2A1

E6(a1)
A1

E6
0
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Conclusion

Modular and automorphic symmetry of string theory is fundamental for
getting a consistent theory of quantum gravity.

Any truncation of the theory keeping only a subset of non-perturbative effects
breaks the symmetry and cannot be a consistent theory at high energy

The consistency is different from the notion of UV finiteness : A theory can
be finite in perturbation but in need of non perturbative contribution for being
defined for all ranges of coupling constant and energy
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