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There are five elementary arithmetical operations: addition,
subtraction, multiplication, division, and ... modular forms.
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Modular invariance arise naturally in many physical context

Q String Theory

© Black hole in Quantum gravity
© Quantum field theory

© Quantum Chaos

L © Solid state physics ...

adapted from Terras

In this talk we will describe how modular invariance enters in an essential
way in quantum field theory and string theory
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Modular invariance by relating perturbative and non-perturbative regime of
the theory connects the important question and fundamental questions about
the consistency of quantum gravity (e.g. high energy behaviour of N = 8
supergravity ...) to deep and cute properties of automorphic representations.

We will see how string theory identifies some interesting modular and
automorphic forms and allows to address difficult mathematical questions in
representation theory

Based on work done with Michael B. Green, Stephen D. Miller, Jorge Russo

Pierre Vanhove (IPhT & IHES) Duality and Modularity in QFT Schrodinger Lecture 4/34



Part 1

Dirac Charge quantization
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Dirac Charge Quantization

Quantised Singularities in the Electromagnetic Field.

By P. A. M. Dirac, F.R.S., St. John’s College, Cambridge.

(Received May 28, 1931.)

§ 1. Introduction.

The steady progress of physics requires for its theoretical formulation a
h ics that gets continually more ad d.

to be expected. What, however, was not expected by the scientific workers
of the last century was the particular form that the line of advancement of
the mathematics would take, namely, it was expected that the mathematics
would get more and more complicated, but would rest on a permanent basis
of axioms and definitions, while actually the modern physical developments
have required a h ics that continually shifts its foundations and gets
more abstract. Non-euclidean geometry and non-commutative algebra, which
were at one time considered to be purely fictions of the mind and pastimes for
logical thinkers, have now been found to be very necessary for the description of
general facts of the physical world. It seems likely that this process of
abstraction will continue in the future and that advance in physics

This is only natural and

increasi

[T

In this paper Dirac provided an elegant argument for the quantization of
electric charges.

This idea still has important consequences on our understanding of quantum
gravity.
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Dirac charge quantization

Schrédinger’s equation for the electron wavefunction

oY (1, x)
ot

h? /o 2\ 2
_ (6+ieA> Y(1, %) = ih
2m

» Magnetic monopole of charge ¢

NVt s > 2 _=(8 =

R Ar—A =V (£0) = Vx

~ 7NN

TERN » Wavefunction gauge transformation
CED W(1, %) — e XW(1, ) = e 8 Y(1, 7)

Single valueness of the wavefunction implies Dirac quantization
eg € 2niZ.

We have a discrete lattice I' of electric and magnetic charges
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Dirac charge lattice

The electron and the magnetic monopole are dual solution of the
four-dimensional Maxwell equations

J F=g J *F=e
S2 S2

A dyon is a bound state d; = (e, g1) electrically and magnetically charged

Two dyons satisfy the Dirac-Zwanziger-Schwinger quantization

€182 —exg81 € 2nZ.

This condition is invariant under SL(2, Z.) transformation

<;> -y <;> for yeTl=SL(12,7)
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What about quantum corrections?

Can this symmetry be a symmetry of a quantum theory; i.e. not being
destroyed by quantum corrections?

In the years 1994-1998 it was understood that gauge theories have this
remarkable property [witten, vafa, Sen, Seiberg, ...]

» Exact symmetry of N =4 SYM
» Symmetry of Seiberg-Witten N' = 2 SYM relating different phases of the

theory
= ’MLZ 12 112 &,
Fo = Fola—2ap) Fla) = Clog [] + o Z;C,(%)"
-
: i
" y
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What about quantum corrections?

Which was soon extended to a fundamental symmetry of String theory
» String theory S-duality and then U/-dualities
» Quantum gravity and black hole physics

Witten, Sen, Schwarz, Green, Hull, Townsend, ...
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Modular invariance of Abelian Theory

Witten has clarified the origin of the modular invariance in an Abelian gauge
theory

| 0
L= (FASF) 4+ 5 (FAF)

Let’s L a U(1)-principal bundle with connection A,,: /|, = 0, Ay — 0,A,
over a 4 dimensional manifold X

Invariance under 8 — 0 + 27t requires that [%} =m € A Lattice

F — xF induces the map m — xm € A
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Modular invariance of Abelian Theory

With (-, -) is the intersection form on H>(X)

1 1
(m,*m)WJXF/\F; (m,*m)ST[ZJXF/\*F

with g = exp(2inQ) and Q = 2 + %%

e?

1 . by —1 (m,xm)— (m,m) (m,xm)— (m,m)
2= | DA Ix* = (3mQ) g
Vol(U(l))J ( ) m%\q !

This is a modular form for I' = SL(2, Z))

1 X+o - x—0
Z(—=)=0Q"+ QO+ 2(Q
(—5) =0 "z

X is Euler characteristic and o signature of X
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Black Hole Charge Quantization

Supergravity theories are supersymmetric extensions of the Einstein gravity
theory. The massless spectrum of supergravity theories contains the graviton,
(many) scalar fields, (many) vector fields, and fermions.

For the case of D = 10 N = 25 supergravity we have

1 1 1
e = s | ol (R (0,00~ 110,60 2)
2K%
Setting QO = C') 4 je~® parametrizes the coset SL(2,IR)/SO(2)

10,000
am Ll (1000
2k3, 2 0}

Again the classical values of () parametrize the vacuum of the theory
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Black Hole Charge Quantization

D-instantons are finite energy solution [Green, Perry, Gibbons]

1
ds® = (e(b“ + r%) ’ (a’r2 + deﬂg)
e :e¢w+£8/. Cl0) = Cl0) 4 oo _ o
r

Charge Q(—1) = ISQ e*® 5 dCl0)  ePoc

Completely localized object in the D = 10 space-time. Their magnetic dual
are 7-brane with charge 0'7) = $dC (0)
Dirac charge quantization condition

0o eonz

The classical SL(2,IR) symmetry is broken to I' = SL(2, Z) (or a subgroup)
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Duality symmetries and the S-matrix

Scattering amplitudes and S-matrix elements depend on the classical
background 6 and g

F0,8) =) cug'+ ) dulg)e Tt

n>0 n>0

» Finite or infinite number of perturbative contributions ¢,

» Non-perturbative contributions from instantons
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Duality symmetries and the S-matrix

Scattering amplitudes and S-matrix elements depend on the classical
background 6 and g

f(0,8) = Z cn &'+ Z d,(g) o 2Tty T2imn®

n>0 n>0

» The coefficients ¢, can be computed (in principle) from the Feynman
rule deduced from the Lagrangian of the theory.

» This is an asymptotic expansion with zero radius of convergence ¢, ~ 1!
or (2n)!

» The theory is controlled by large fields classical solutions: instantons

» Instanton corrections of energy 2711/¢ and charge 70 with fluctuations
dn(g)

» needed to give a prescription for a complete consistent theory
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Duality symmetries and the S-matrix

Scattering amplitudes and S-matrix elements depend on the classical
background 6 and g

flQ) = ch 5+ Zdn(Qz) q" + c.c.

n=0 n#0

Modular invariance allows to complete the perturbative result with the
non-perturbative contributions

Allows to reach non-perturbative information very difficult to compute
directly
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Part 11

S-duality in string theory
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The type IIB string case

D 2-dimensional lagrangian
Sc(;ﬁ)(glw’ Am ) & &

\
—éx(Z) J&2L2a(, X, s Gy Appy --)
§e v -/M(Ev)‘/di/)dX.. e G

= /dDm ge~2¢ [R+ TcFy, F* +...]4+O(mpianck ™?)
general relativity +
gauge theory, etc small string corrections

%o
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The string theory induced corrections to the Einstein-Hilbert action in D = 10
for the type IIB theory read

8L = €(0)(QHR* + €(2) (Q)GID*R? + € (5)(Q) DR + - - -

The corrections are modular function invariant under the action of SL(2, 7))

Epmly-Q)=€1(Q)  yeSL2Z)

[Green, Gutperle, Russo, Miller, Vanhove, ...]
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The type IIB string case

They satisfy two important constraints
» Their constant term must reproduce string perturbation
» They satisty second order differential equations

e The boundary data from string perturbation (recall Q; = JmQ = e~ %= is
the string coupling constant)

! k=1
J En(Q)dQ =Q,7 (a§Q5 +df +d5 Q2+ 4+ 0(e2))
0

The coefficients a, arise from the evaluation of the 4-graviton amplitude on a
genus g Riemann surface.

The exp(—0») contributions are from the D-instanton described before.
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The type IIB string case

Explicit computations gives for the perturbative contributions

[Green, Vanhove, Russo, D’Hoker, Pioline, ...]

1 1
], €0)(Q)dQ; = 0,7 (2¢(3) Q3 +4¢(2))
: 1 8¢ (4
| ee@a0n - af <C(5)Q§+ C?E)Q22>

1
&3 (Q)d0, =0, <§C(3)2Q§ + 4C(23)C(3) + 423) + ;fgl)
2 2
+ Oe )

. . . 2(2—¢
Contribution from genus g amplitude Qg( &)

ST e | S
: i et s

[} [}
SOOI, + 000 +

'ﬂr‘\r\nn"’Jr
L i i g
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The type IIB string case

Supersymmetry of the Lagrangian 6L = 0

5 = Zezl‘oér; 50511 + Z SNL — 6nL()

rit+rn=n

implies the differential equations A = O3(07, + 0, )

3
8908 ~0 (A—Z)é(o) = 0
5
8010~ 0 (A—Z)S(z) = 0;
0L 48122 ~0 (A-12)E3 = —(&q))?
[Green, Sethi, Vanhove, Sinha, ...]
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The type IIB string case

These equations together with the boundary conditions imply that

Eisenstein series

(ImQ)*

E{(Q) = Z (Jm(y-Q))* = Z mQ + >
1

YET\SL(2,Z) ged(mn)=
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The type IIB string case

E(3)(€)) is not an Eisenstein series
(A—12) €3 = —(2L3)E;
The solution to the differential equation is given by
2¢(3)?
£(3)(Q) = =5 E3(Q) + > orQ)
YET\T
(D()C-i-ly) —4C J (Z ) |n‘ 2iTtn (x+u > (x) du
ne”z. Y
where /1(x) is the unique smooth even real function with /1(x) ~,_,+, 1/(6/x]*) solving
d d 1
< (1+x%)— — 12) hix) = —
dx dx (1+x2)2
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Part III

U-dualities and and UV properties of

maximal supergravity
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Higher Rank Groups

In lower-dimensions the symmetry group of string theory increases and the
theory combines in a higher rank duality group the duality we have discussed
on the scalar () from the gravity sector and the one from the Abelian theory.

One important example is N = 8 supergravity with 70 scalar parametrizing
the coset space E7(7)(IR)/(SU(8)/Z,) and 56 electromagnetic charges which
Dirac charge quantization imply that the only the discrete subgroup

Ey7y(Z) = E7(7y(R) N Sp(56, Z)

Dirac quantization of the electric/magnetic charges leads to the same lattice I’
as the one constructed by Chevalley method
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Duality symmetries

D Eii_pui-p)(R) Kp Ey pui-p)(Z)
10A R™ 1 1

10B SI(2,R) SO(2) SI(2,7)

9 | SI2,R)xR* SO(2) SI(2,Z)

8 | SI3,R) x SI(2,R) | SO(3) x SO(2) | SI(3,Z) x SI(2,Z)
7 SI(5,R) SO(5) SI(5,7)

6 SO(5,5,R) SO(5) x SO(5) S0(5,5,7)

5 Eg(6)(R) USp(8) Ee(6)(Z)

4 E7(7)(R) SU(8)/Zx Ey(7)(Z2)

3 Eg(s)(R) Spin(16)/Z, Egs)(Z)

» String theory on d-torus 7¢ — S'(R) » - -

X SI(R(/)

> Ey_p(11—p) real split forms, £, maximal compact subgroup.

> Automorphy &) (v - @) = &) (@) fory € "= £y (Z)

25/34
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From geometry to group theory

The duality group in D + 1 dimensions E,; is embedded the maximal parabolic
subgroup Py, = Lu,, U where Ly, = GL(1) - E; of E;

T

Eqa)

The GL(1) parameter is the radius of circle compactification of the theory
from dimensions D + 1 to D
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The duality group in D + 1 dimensions E,; is embedded the maximal parabolic
subgroup Py, = Lu,, U where Ly, = GL(1) - E; of E;

d+1 d+1

T

Eqa)

In this construction all the information about the extra space time dimensions
is contained in the higher rank duality group
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Differential equations and critical dimensions

Recursion relation between the various dimensions implies [Green, Russo,

Vanhove]
3(11 —D)(D —8)
<A_ D—2 €0y = 67p g0
5(12—D)(D —7
<A | D—)(z ))Em = 80¢(2)8p-70
6(14—D)(D—6
<A_ | Dj(2 )> ‘Q’E?)) = —(&0))* + &3)8p—6p0

Vanishing eigenvalues in the critical dimensions for UV divergence at L-loop

8 for L=0
D. = D
446/L for2 <L<4

InD =D, &) = cuv log(gs) + - - - where cyy UV counter-term
Complete agreement with N = 8 multi-loop computations by [Bern et al.]
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Boundary conditions in lower dimensions I

The symmetries of string perturbation (T-duality group SO(d, d)) is recovered
from the maximal parabolic subgroup P, = Ly, Uy, of E;| where the Levi

factoris GL(1) - SO(d, d)

o
O

50(d, d)

The GL(1) factor is the string coupling constant g7,

i

i P+ SSarear
il e
"ﬁﬁﬁf’“+“ﬁﬁﬁm"+
D i o

BT e e o o Gt
AT
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Boundary conditions in lower dimensions I

In the zero instanton sector (the constant term in a Fourier expansion) we can
see the action of supersymmetry in terms of non-renormalisation theorems

—28D [ Gyree
8(0)‘1361'{ - gD b < g% +Il—100p)

—41=D [ q, 1
8(2)‘per[ = &p v (ree + Tllfloop +12100p>

g &
7()@ ay, 1 1 _ L
8(3) ‘pert ~ &b o <gr60ee " glliloop + g I 100p + I3—100p + Ol ¢P ))

We could have as many term as elements of
the Weyl group |[W(E7)| = 2903040;

|W(Eg)| = 696729600 but the answer picked
by string theory is much simpler

Pierre Vanhove (IPhT & IHES) Duality and Modularity in QFT ger Lecture



String theory picks remarkably simple solutions

Miller, Vanhove]

> Boundary conditions from string/M-theory allow to determine the unique solution [Green, Russo,

Eqr1(2Z) €0 Em

Ey(s)(Z) 203)Ef 7,5 C(S)Ef s
E1)(2) 2C(3)E .5 CS) B oy s
Eg(6)(Z) 203)E L(S)ER
) . S0(5,5) )(5,5) 8C.(6) SO(5,5)
S0(5,5, Z) 2C[31FA‘ 10000];3 U"rw‘”(m 37 T‘F‘Sfmmu,:
AI\M (5 5C,(5) wSL(5)
SL(S’Z) C( )L 00];5 CS)E \wmuu‘,j ‘ 3 : lt\:mo %
SL(3,Z) x SL(2,Z) 2C(?)E51’(;“] +2E,(U) () —se™ ) | Bw)
_3 4 C(S)Es 9
SL(2,Z) 20(3)E: (Q) v, " +4C(2) v] i T HETIN T
- vy - Hvl’
SL(2,7) 2((3)E: (Q) ((S)Es (Q)

30/34
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Black hole contributions

» The instantonic black hole contributions are obtained from the Fourier
modes

» If 0, € U = IR is a set of continuous commuting charges of
non-perturbative contributions we define the fourier modes

FnlQ ol = J d &y e °
{0,1]/71

» In the decompactification limit r; >> {5 | the Fourier modes take the
form

Fil0, 01~ Y dofole)e 2ime
QEZ”
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Black hole contributions

‘rf(k) [Ql (P} ~ Z deQ(q)) 6727-”}1 mg

QeZn

» The Fourier transform induces a condition on the discrete charges O in
the charge lattice £, |(Z) 1 U, , which lies in discrete orbits

» g is the mass of the BPS particle state in dimension /) + | that lead to
an instanton once wrapped on the (euclidean) circle of radius

> dy is a number theoretic function counting the instanton configurations

> fol@), due to the quantum fluctuations, is a function of the moduli
invariant under the symmetry group £, in dimension D -+ 1
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This solves a very difficult math problem

Comments on the impact of Dynkin’s work on
current research in representation theory
David A. Vogan, Jr.

Department of Mathematics,
M h ts Institute of Technol

A central problem in the representations of reductive Lie groups is con-
structing unitary ions attached to the nil dioint orbits,

In a related direction, Arthur’s conjectures (still unproved) relate homo-
morphisms of SL(2) to residues of Eisenstein series. Colette Moeglin has
done great work in the direction of proving that the residues predicted by
Arthur (with Dynkin's tables) actually exist. The residues give rise to in-
teresting unitary automorphic representations that are difficult to construct
in_any other way. Her first paper on this subject is “Orbites unipotentes
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Conclusion

Modular and automorphic symmetry of string theory is fundamental for
getting a consistent theory of quantum gravity.

Any truncation of the theory keeping only a subset of non-perturbative effects
breaks the symmetry and cannot be a consistent theory at high energy

The consistency is different from the notion of UV finiteness : A theory can
be finite in perturbation but in need of non perturbative contribution for being
defined for all ranges of coupling constant and energy
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