
Asymptotic equivalence of two strict deformation
quantizations and applications to the classical limit

Christiaan van de Ven

University of Trento

Trento, 03-11-2020

Christiaan van de Ven (UniTN) NCG Seminar Trento, 03-11-2020 1 / 24



Plan of the talk

• Introduction

• Basics on strict deformation quantization

• Examples

• Bulk-boundary asymptotic equivalence

• Applications

Christiaan van de Ven (UniTN) NCG Seminar Trento, 03-11-2020 2 / 24



• K. Landsman, Valter Moretti, C.J.F. van de Ven, Strict Deformation
Quantization Map on the state space of Mk(C) and the Classical Limit of
the Curie-Weiss model. Rev. Math. Phys. Vol. 32 (2020).

• Valter Moretti, C. J. F. van de Ven, Bulk-boundary asymptotic
equivalence of two strict deformation quantizations. Letters. Math. Phys.
(2020).

• C. J. F. van de Ven, The classical limit of mean-field theories. Arxiv:
2007.03390.

Christiaan van de Ven (UniTN) NCG Seminar Trento, 03-11-2020 3 / 24



Introduction

Study the transition between quantum and classical theories. Main
topics we shall discuss:

(1) Existence of the classical limits of quantum (spin) systems.
(2) Spontaneous Symmetry Breaking (SSB).

A useful instrument to study (1) and (2) is based on the concept of
strict deformation quantization → a modern mathematical and
rigorous theory to connect quantum with classical theories.1

1Only a few pairs of quantum and classical C∗-algebras are known to relate in this
way.
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Basics on strict deformation quantization
Continuous bundle of C∗- algebras

• Ingredients: sequence of C ∗-algebras (A~)~∈I over locally compact
Hausdorff space I , A0 = C0(X ) where X a smooth Poisson manifold
(possibly with boundary).

• Consider class of elements a := {a0, a~}~ that is closed w.r.t. pointwise
sums, products, the adjoint, and such that

||a|| := sup~∈I{||a~||~} <∞, (1)

||aa∗|| = ||a||2. (2)

• By construction the set

A =

{
a = {a0, a~}~

∣∣∣∣ all conditions above are satisfied

}
, (3)

is a C ∗- algebra with norm (1).
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Basics on strict deformation quantization
Continuous bundle of C∗- algebras

• A continuous bundle of C ∗-algebras over I consists of a C ∗- algebra A
(constructed by (3)), a collection of C ∗-algebras (A~)~∈I and surjective
homomorphisms φ~ : A→ A~, such that A 3 a := {a0, a~}~ satisfies

φ~(a) = a~. (4)

• Moreover, we require that for any f ∈ C0(I ) one has {f (~)a~}~ ∈ A.

• We furthermore demand the continuity property for the norm, in that for
each a ∈ A one has

I 3 ~ 7→ ||a~||~ ∈ C0(I ), (5)

• If all these conditions are satisfied, the continuous cross-sections are
then maps I 3 ~ 7→ a~ ∈ A~, i.e., elements of A.
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Basics on strict deformation quantization
Strict deformation quantization

Definition (Strict deformation quantization)

- Continuous bundle of C ∗-algebras (A~)~∈I over I with A0 = C0(X );

- A dense Poisson subalgebra Ã0 ⊂ C∞(X ) ⊂ A0

- Quantization maps Q~ : Ã0 → A~ such that Q0 is the inclusion map
Ã0 → A0, each Q~ is linear, and the next conditions (1)− (4) hold:
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Basics on strict deformation quantization
Strict deformation quantization

Definition

1. Q~(1X ) = 1A~ .

2. Q~(f ∗) = Q~(f )∗.

3. 0 7→ f ;
~ 7→ Q~(f ), (~ > 0)

defines a continuous section of the bundle.

4. For all f , g ∈ Ã0 one has the Dirac-Groenewold-Rieffel condition:

lim
~→0
|| i
~

[Q~(f ),Q~(g)]− Q~({f , g})||~ = 0.
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Examples
Berezin quantization on R2n

• Consider

A0 = C0(R2n) (~ = 0);

A~ = B∞(L2(Rn)) (~ > 0),

where R2n is equipped with thet standard symplectic Poisson structure →
fibers of a continuous bundle of C ∗- algebras over I = [0, 1].

• Quantization maps: for any ~ ∈ (0, 1] define

Q~ : Cc(R2n)→ B∞(L2(Rn));

Q~(f ) =

∫
R2n

dnpdnq

(2π~)n
f (p, q)|φ(p,q)~ 〉〈φ(p,q)~ |,

where for each ~ ∈ I the operator |φ(p,q)~ 〉〈φ(p,q)~ | is the projection onto the

subspace spanned by the unit vector φ
(p,q)
~ ∈ L2(Rn), also called a

Schrödinger coherent state.
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Examples
Berezin quantization on two sphere S2 ⊂ R3

• Consider

A′0 = C (S2), (1/N = 0);
A′1/N = MN+1(C), (1/N > 0).

→ fibers of a continuous bundle of C ∗- algebras over I = 1/N ∪ {0}.

• Poisson structure: {f , g}(x) =
∑3

a,b,c=1 εabcxc
∂f
∂xa

∂g
∂xb

(x ∈ S2)), with

f , g restrictions of smooth functions to S2 → dense subspace Ã′0 ⊂ A′0
made of polynomials in three real variables restricted to S2.

• Quantizations maps: for any 1/N ∈ 1/N:

Q ′1/N : Ã′0 → MN+1(C);

Q ′1/N(p) =
N + 1

4π

∫
S2

dµ(Ω)p(Ω)|ΩN〉〈ΩN |.

|ΩN〉〈ΩN | is the projection onto the linear span of the vector ΩN , called a
spin coherent state.
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Examples
Quantization of the algebraic state space of M2(C)

• Consider

A0 = C (S(M2(C))) ' C (B3), (1/N = 0);

A1/N =
⊗N

n=1M2(C), (1/N > 0).

→ fibers of a continuous bundle of C ∗- algebras over I = 1/N ∪ {0}.

• Poisson structure on S(M2(C)) ' B3:
{f , g}(x) =

∑3
a,b,c=1 εabcxc

∂f
∂xa

∂g
∂xb

(x ∈ B3), with f , g restrictions of

smooth functions to B3.

• Quantizations maps are defined by (quasi)-symmetric sequences, i.e.
macroscopic observables. These can start in any finite way, but their
infinite tails consist of averaged observables, and therefore they
asymptotically commute.
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Intermezzo
Symmetrization

• Symmetrization operator SN : A1/N → A1/N , defined as the unique linear
continuous extension of the following map on elementary tensors:

SN(a1 ⊗ · · · ⊗ aN) =
1

N!

∑
σ∈P(N)

aσ(1) ⊗ · · · ⊗ aσ(N). (6)

• For N ≥ M define a bounded operator SM,N : A1/M → A1/N , by linear
and continuous extension of

SM,N(b) = SN(b ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
N−Mtimes

), b ∈ A1/M . (7)
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Intermezzo
Quasi-symmetric sequences

• Sequences A 3 a = (a0, a1/N)N∈N are called symmetric if there exist
M ∈ N and a1/M ∈ A1/M such that

a1/N = SM,N(a1/M) for all N ≥ M, (8)

• They are called quasi-symmetric if a1/N = SN(a1/N) if N ∈ N, and for
every ε > 0, there is a symmetric sequence (b1/N)N∈N as well as M ∈ N
such that

‖a1/N − b1/N‖ < ε for all N > M. (9)

• It can be shown that the continuous cross-sections of the bundle with
fibers (A0,A1/N) are precisely given by quasi-symmetric sequences which
uniquely define this bundle (Landsman, 2017).
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Examples
Quantization of the algebraic state space of M2(C)

• Subspace Z ⊂
⊕∞

M=0M2(C)⊗M made of symmetric tensor products →
map χ : Z → C (S(M2(C))) defind by linear extension of the map

χ(bj1 ⊗s · · · ⊗s bjL)(ω) = ωN(bj1 ⊗s · · · ⊗s bjL) = ω(bj1) · · · ω(bj1),

where ib1, ib2, ib3 form a basis of the Lie algebra of SU(2), where
ω ∈ S(M2(C)) and ω(bji ) = xji (j1, ..., jL ∈ {1, 2, 3}).

• χ is a well-defined linear injective map → χ(Z ) ⊂ C (S(M2(C))) is
dense, and elements of χ(Z ) are polynomials.

• Hence, each polynomial p of degree L uniquely corresponds to a
polynomial of symmetric elementary tensors of the form bj1 ⊗s · · · ⊗s bjL .
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Examples
Quantization of the algebraic state space of M2(C)

• We define Ã0 := χ(Z ). For pL = χ(bj1 ⊗s · · · ⊗s bjL) the quantization
maps Q1/N : Ã0 ⊂ C (B3)→ M2(C)⊗N are defined as the unique
continuous and linear extensions of the maps

Q1/N(pL) =

{
SL,N(bj1 ⊗s · · · ⊗s bjL), if N ≥ L,

0, if N < L,

Q1/N(1) = I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸
N times

. (10)

• Note that the quantization maps indeed define symmetric (hence
macroscopic) observables.
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Bulk-boundary asymptotic equivalence

• Existence of invariant (N + 1)-dimensional symmetric subspace
SymN(C2) ⊂

⊗N
n=1C2 for operators Q1/N(p).

→ Q1/N(p)|SymN(C2) ∈ B(SymN(C2)) ' MN+1(C).

• This yields the following theorem relating both quantization maps

Theorem (Moretti, van de Ven, 2020)

For any polynomial p ∈ Ã0 (the complex vector space of polynomials in
three real variables on the closed unit ball B3), one has

||Q ′1/N(p|S2)− Q1/N(p)|SymN(C2)||N → 0, as N →∞, (11)

the (operator) norm being the one on B(SymN(C2)).
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Applications
mean-field theories

• Consider collection of N two-level atoms corresponding to a spin chain
of N sites described by a mean-field Hamiltonian HN .

• Example: quantum Curie-Weiss spin Hamiltonian defined on
HN =

⊗N
n=1C2:

HN ≡ HCW
N = − J

2N

N∑
i ,j=1

σ3(i)σ3(j)− B
N∑
i=1

σ1(i), (12)

with B magnetic field and J a coupling constant .
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Applications
mean-field theories

• HN typically leaves the subspace SymN(C2) ⊂
⊗N

n=1C2 invariant.

• (HN)N defines a quasi-symmetric sequence → relation with SDQ of
S(M2(C)) ' B3:

lim
N→∞

||HN − Q1/N(h)||N = 0, (13)

for some polynomial h ∈ C (B3) (called the classical CW model).

• By the theorem limN→∞ ||HN |SymN(C2) − Q ′1/N(h|S2)||N = 0, → the
restricted mean-field spin system is represented by quantization of the
Bloch sphere in the semiclassical limit 1/~ := N →∞.
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Applications
Classical limit

• Quantization theory → existence of classical limit of algebraic states
with respect to quantum mechanical observables, i.e. does

ω
(0)
0 (f ) := lim

~→0
ω~(Q~(f )), (f ∈ C0(X )); (14)

exists as a state ω
(0)
0 on A0 = C0(X )? Here, X plays the role of the

classical phase space.

• Which states admit a classical limit? (Think e.g. of pure (vector) states,
local Gibbs states).

• Characterizing the limiting states on C0(X ).
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Applications
Classical limit: Example 1

• 1-dimensional Schrodinger operator h~ = −~2 d2

dx2
+ V (x), with V a

double well potential, h~ψ
(0)
~ = λ

(0)
~ ψ

(0)
~ where λ

(0)
~ minimal.

• One can show that the Berezin quantization on R2 induces the existence
of the classical limit on C0(R2):

lim
~→0
〈ψ(0)

~ ,Q~(f )ψ
(0)
~ 〉 =

1

2
(ω

(0)
+ (f ) + ω

(0)
− (f )). (15)

where ω
(0)
± are Dirac measures localized in the minima of both wells

(Lansdman 2017).
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Applications
Classical limit: Example 2

• We consider mean-field theories. Recall the CW model

HCW
N = − J

2N

N∑
i ,j=1

σ3(i)σ3(j)− B
N∑
i=1

σ1(i), (16)

• Existence of a unique (up to phase) ground state eigenvector Ψ
(0)
N . The

vector state

ω
(0)
1/N(·) = 〈Ψ(0)

N , ·Ψ(0)
N 〉, (17)

converges w.r.t. macroscopic observables:

ω
(0)
0 (f ) := lim

N→∞
ω1/N(Q1/N(f )), (f ∈ C (S(M2(C))); (18)

defines a state on the algebra C (S(M2(C))) (van de Ven, 2020).
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Applications
Classical limit: Example 2

• Also in this case ω
(0)
0 (f ) = 1

2(ω
(0)
+ (f ) + ω

(0)
− (f )), where ω

(0)
± are Dirac

measures corresponding to the minima of the classical CW model hCW ,

hCW (x , y , z) = −1

2
(x2 + Bz), ((x , y , z) ∈ B3). (19)

• Note: parameter 1/N now plays the role of the usual semi-classical
parameter ~.

• Existence of spontaneous symmetry breaking (SSB) in the classcial limit:
pure ground states are not invariant, whilst invariant ground states are not
pure.
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Applications
SSB: Example 2

• The (pure) ground state eigenvector Ψ
(0)
N of the quantum Curie-Weiss

model is invariant under Z2- reflexion symmetry for any N.
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Applications
SSB: Example 2

• In the limit N →∞ the ground state eigenvector Ψ
(0)
N ’decomposes’ into

two parts corresponding to the invariant (but not pure) state
1
2(ω

(0)
+ (f ) + ω

(0)
− (f )).
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Poisson bracket

{f , g}(x) =
n∑

a,b,c=1

C c
a,bxc

∂f (x)

∂xa

∂g(x)

∂xb
,

with structure constants coming from the Lie- algebra of SU(k).
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SSB

• The non-degenerate states (ψ
(0)
N , ψ

(1)
N ) converge (in algebraic sense) to

mixed classical states, i.e.,

lim
N→∞

ψ
(0)
N = lim

N→∞
ψ
(1)
N = ω

(0)
0 ,

where ω
(0)
0 = 1

2(ω+
0 + ω−0 ).

• In contrast, the localized pure ground states

ψ±N =
1√
2

(ψ
(0)
N + ψ

(1)
N ),

converge (in algebraic sense) to pure classical states, i.e.,

lim
N→∞

ψ±N = ω±0 .
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Continuous bundle of C ∗-algebras

Definition

Let I be a locally compact Hausdorff space. A continuous bundle of
C ∗-algebras over I consists of a C ∗-algebra A, a collection of C ∗-algebras
(A~)~∈I with norms || · ||~, and surjective homomorphisms ϕ~ : A→ A~ for
each ~ ∈ I , such that

1. The function ~ 7→ ||ϕ~(a)||~ is in C0(I ) for all a ∈ A.

2.The norm for any a ∈ A is given by

||a|| = sup~∈I ||ϕ~(a)||~. (20)

3. For any f ∈ C0(I ) and a ∈ A, there is an element fa ∈ A such that for
each ~ ∈ I ,

ϕ~(fa) = f (~)ϕ~(a). (21)

Christiaan van de Ven (UniTN) NCG Seminar Trento, 03-11-2020 24 / 24



• A continuous (cross-) section of the bundle in question is a map
~ 7→ a(~) ∈ A~, (~ ∈ I ), for which there exists an a ∈ A such that
a(~) = ϕ~(a) for each ~ ∈ I .
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Algebraic ground states and SSB

Definition

Let A be a C ∗-algebra with time evolution, i.e., a continuous
homomorphism α : R→ Aut(A). A ground state of (A, α) is a state ω on
A such that:

1. ω is time independent, i.e., ω(αt(a)) = ω(a) ∀a ∈ A ∀t ∈ R.
2. The generator hω of the ensuing continuous unitary representation

t 7→ ut = e ithω (22)

of R on Hω has positive spectrum, i.e., σ(hω) ⊂ R+, or equivalently
〈ψ, hωψ〉 ≥ 0 (ψ ∈ D(hω)).

• The set of ground states forms a compact convex subset of S(A), and
we denote this set by S0(A). We moreover assume that pure ground states
are pure states as well as ground states.
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Definition

Suppose we have a C ∗-algebra A, a time evolution α, a group G , and a
homomorphism γ : G → Aut(A), which is a symmetry of the dynamics α
in that

αt ◦ γg = γg ◦ αt (g ∈ G , t ∈ R). (23)

The G -symmetry is said to be spontaneously broken (at temperature
T = 0) if

(∂eS0(A))G = ∅, (24)

• Here S G = {ω ∈ S | ω ◦ γg = ω ∀g ∈ G}, defined for any subset
S ∈ S(A), is the set of G - invariant states in S . (24) means that there
are no G -invariant pure ground states. This means also that if spontaneous
symmetry breaking occurs, then invariant ground states are not pure.
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