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Quantum Gravity on the computer

Computer simulations are powerful.
They can:
I Calculate the mass of the Proton (lattice QCD)
I Predict gravitational wave signatures of colliding neutron stars and

black holes (numerical relativity)
I Maybe they can also help us understand Quantum Gravity?
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Path Integral on the computer
Recipe:
I Define your theory
I Pick your observables
I Choose your algorithm

〈f 〉 =
∫

f (D) e−S(D) D[D]∫
e−S(D) D[D]

Ingredients:
I Geometry, here the Dirac operator D and measure D[D]
I Functions of the geometry f
I Action S (in the physicists sense, an energy, part of the measure)

(Barrett, LG J.Phys. A49, 245001 (2016))

(LG J.Phys.A50 275201 (2017) )

(Barrett, Druce, LG J.Phys. A52, 275203 (2019))
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Monte Carlo Simulations

I Simulate a Path integral, use Monte Carlo Markov Chain to
calculate averages

I Use Markov Chain to probe space of solutions to find an optimum.
Only examine the solution with minimal value of something.
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Monte Carlo Simulations

I Simulate a Path integral, use Monte Carlo Markov Chain to
calculate averages

I Use Markov Chain to probe space of solutions to find an optimum.
Only examine the solution with minimal value of something.

Note:
It is proven that the Metropolis algorithm will find the global optimum if
sampled long enough.
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Markov Chain Methods in one slide

The Metropolis Hastings algorithm
I propose new operator D′

D → D′ = D + δM with δM some small matrix
I if S(D′) < S(D) accept D′ and add to the chain
I otherwise calculate exp{−S(D′) + S(D)} & generate random

uniform p ∈ [0, 1]
I if p < exp{−S(D′) + S(D)} accept D′
I else add D to the chain again

D

S(D)

D'

S(D')
δM
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Geometry as a spectral triple
(A,H,D) Algebra A with action on a Hilbert space H and a Dirac
operator D

Axioms of non-commutative geometry

1. The n-th characteristic value of the resolvent of D is O(n−
1
p ).

2. [[D, a], b] = 0∀a, b ∈ A first order condition

3. For any a ∈ A both a and [D, a] belong to the domain of δm , for any
integer m where δ is the derivation: δ(T ) = [|D|,T ].

4. There exists a Hochschild cycle c ∈ Zp(A,A) such that πD(c) = 1 for p
odd, while for p even, πD(c) = γ is a Z/2 grading.

5. Viewed as an A-module the space H∞ =
⋂

DomDm is finite and
projective. Moreover the following equality defines a hermitian structure
(|) on this module: 〈ξ, aη〉 =

∫
−a(ξ|η)|D|−p,∀a ∈ A,∀ξ, η ∈ H∞

(A. Connes, Int.J.Geom.Meth.Mod.Phys. 5, 1215-1242 (2008))
(more detail e.g. A. Connes, Commun.Math.Phys. 182, 155-176 (1996))
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A truncated system

A,D are infinite dimensional . . .

Truncate D
Replace the infinite D by a n × n matrix 1

D → PnDPn

with Pn a projector on the n smallest eigenvalues.

We assume that the finite D is a truncation of the infinite one, and that
there are no small eigenvalues that we don’t see.

Can now use computer simulations to understand the theory

1We could also use fuzzy spaces, for work on that see
(J. W. Barrett, LG, J.Phys. A49, 245001 (2016))
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Interlude: Operator system spectral triples

Operator systems: the formal version
Operator systems provide the mathematically rigorous version to our
“just cutting of the spectral triple”.
Algebra is replaced through an operator system E = PAP
The operator system spectral triple is (E ,H,D).

States are well defined ⇒ distance measure can be generalized to:

d(ω1, ω2) = sup
a∈E
{|ω1(a)− ω2(a)| : ||[D, a]|| ≤ 1}

(Connes,van Suijlekom arXiv:2004.14115, van Suijlekom arXiv:2005.08544)

7/ 23



Conditions on geometry

The one sided Heisenberg relation〈
Y [D,Y ]d

〉
= γ

Where γ is a chirality and
Y ∈ A⊗ Ck , Y =

∑
i ΓiY i with Γi ∈ Ck , and Y 2 =

∑
i Y iY i = 1

Y is idempotent and Y i are embedding maps for the sphere

Quanta of geometry
If D satisfies this equation & the axioms above the spectral triple is a
union of non-commutative d-spheres (for infinite spectra).

(A.H. Chamseddine, A. Connes, V. Mukhanov, Phys.Rev.Lett. 114, 091302
(2015))
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Heisenberg relations as a constraint

Can turn the one sided Heisenberg relation into a constraint for
computer simulations ∥∥∥〈Y [D,Y ]d

〉
− γ

∥∥∥2

HS

with ‖aij‖HS the Hilbert-Schmidt norm (element wise norm)

Motivation:
Using this as an action S in Monte Carlo simulations should force the
spectral triples probed by the algorithm to be close to d-spheres
(A.H. Chamseddine, A. Connes, V. Mukhanov, Phys.Rev.Lett. 114, 091302

(2015))

(LG, A. Stern, W. van Suijlekom work in progress)
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This is a (truncated) sphere

Positive part of the eigenvalue spectrum
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This is a (truncated) sphere
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This is not a sphere!
(but minimizes the Heisenberg equation constraint)

Positive part of the eigenvalue spectrum
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This is not a sphere!
(but minimizes the Heisenberg equation constraint)
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Analytic confirmation

Is the sphere the only minimum?

|| 〈Y [D,Y ][D,Y ]〉 − γ||HS

I Maybe finite matrix size changes things?
I Y , γ vanish outside of some bands, in eigenbasis of DS2

Y = γ =
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Analytic confirmation

Solution:
All operators of the form D + cB, where B = sin(πD) and c ∈ C satisfy
the Heisenberg relation in the infinite case.

This means B is a, bounded, operator with entries ±1

B =
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Analytic confirmation

Solution:
All operators of the form D + cB, where B = sin(πD) and c ∈ C satisfy
the Heisenberg relation in the infinite case.

When we truncate both DS2 and the Heisenberg equation
c = ±1/2 solve exactlya
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Analytic confirmation

First order condition
The reason the solutions with c 6= 0 are not relevant at infinite size is
that they do not satisfy the first order constraint

[[f (DS2), a.], /b] = 0 a, b ∈ A,

and hence do not correspond to a spectral triple.
However the defect at finite size is similar for both cases.

12/ 23



Analytic confirmation

First order condition
The reason the solutions with c 6= 0 are not relevant at infinite size is
that they do not satisfy the first order constraint

[[f (DS2), a.], /b] = 0 a, b ∈ A,

and hence do not correspond to a spectral triple.
However the defect at finite size is similar for both cases.

I What do operator systems say to the first order condition?
I What is the difference between these geometries and the sphere?
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Non-commutative distance

Distance measure in non-commutative geometry
(A. Connes, Noncommutative Geometry. (Academic Press, 1994))

d(ω1, ω2) = sup
a∈A
{|ω1(a)− ω2(a)| : ||[D, a]|| ≤ 1}

Idea:
If we can calculate this numerically we can plot our geometry!
Maybe we can see a difference between the two Dirac operators?

Aim:
Find states of small dispersion, then use the distance between states of
small dispersion to build a picture of M.
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Non-commutative distance

Distance measure in non-commutative geometry
(A. Connes, Noncommutative Geometry. (Academic Press, 1994))

d(ω1, ω2) = sup
a∈A
{|ω1(a)− ω2(a)| : ||[D, a]|| ≤ 1}

Questions:
I What are algebra elements a?

Dirac we find has same eigenstates as sphere, can use truncated
spherical harmonics as basis for PnC∞(S2)Pn

I Which states ω?
Use coherent states, inspired by
(L. Schneiderbauer, H. Steinacker 2016, J.Phys. A49 285301)
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Implementing the distance calculation

d(ω1, ω2) = sup
a∈A
{|ω1(a)− ω2(a)| : ||[D, a]|| ≤ 1}

Can parametrise algebra elements as a =
∑

i ciai for ai a basis of the
algebra and then minimize∑

i
ci (〈v |ai |v〉 − 〈w |ai |w〉)

over the ci under the constraint that

|
∑

i
ci [D, ai ]| ≤ 1

Here we chose ai as truncations of the spherical harmonics as basis of
PnC∞(S2)Pn
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How do we define states?

Coherent states
We use the dispersion and the embedding maps Yi from the Heisenberg
relations

η(ωk) =
∑

i
〈ω|Y 2

i |ω〉 − 〈ω|Yi |ω〉2 +
∑
j<k

c
d(ωj , ωk)

Now find a set of coherent states ω that minimizes this and plug them
into distance equation. The repulsive potential is to ensure even
distribution of points.

Shortcut!
Strictly speaking we should optimize over all a, and all ω this is a
non-convex double optimisation problem and not accessible, hence our
use of Yi as a proxy.
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Effect of the repulsive potential
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States are points

An element v of P(HΛ) that is considered to be localized should be
localized somewhere, that is, around some ‘barycenter’ b(v) ∈ M.
We can prove:

Proposition
There exists a map b : P(HΛ)→ M such that

|dΛ(v,w)− dM(b(v), b(w))| = O(
√
η(µv ) +

√
η(µw ))

as η(µv ), η(µw )→ 0, uniformly in v, w.
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Points are states
The converse: Each point x in M can be approximated through a state
v with small dispersion and with barycenter b(v) close to x

Proposition
Let M be equipped with a Dirac-type operator D on a Hermitian vector
bundle π : S→ M, and let π̃ : P(S)→ M be its projectivized bundle.
Then, there exists a family {ΦΛ}Λ of maps ΦΛ : P(S)→ P(HΛ) such
that for all ε > 0,
I dΛ(ΦΛ(v),ΦΛ(w)) = dM(π̃(v), π̃(w)) + Õ

(
Λ−1) uniformly.

I The dispersion η(µ) of the measure µ associated to ΦΛ(v) is
Õ
(
Λ−2) uniformly.

I The maps ΦΛ asymptotically invert b, in the sense that
dM(π̃(v), b(ΦΛ(v))) = Õ

(
Λ−1) uniformly and

dΛ(ΦΛ(v)), v) = Õ
(√

η(µv ) + Λ−2
)

uniformly whenever
b(v) = π̃(v).
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How does the dispersion change with Λ?

State for Λ = 4
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The algorithm for state generation

1: Find a vector v0 (globally) minimizing η. Set V = {v0}.
2: while

√
η(v) +

√
η(w) ≤ αd(v ,w) for v 6= w ∈ V , do

3: Find a vector w (locally) minimizing e(w ; V ).
4: Append w to V .
5: for v ∈ V , do
6: Set d(v ,w) = min{|〈v , av〉 − 〈w , aw〉| : |[D, a]| ≤ 1}.
7: end for
8: end while
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A picture of geometry
The truncated sphere at Λ = 5 The analytic solution at Λ = 5

I run the algorithm to generate a set of states and their distance
matrix

I use graph embedding algorithm to find a locally isometric
embedding

I wonder why the analytic solution is smaller
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Ongoing work
The algorithm implements algebra elements as a =

∑
i ciai linear

combinations of spherical harmonics as a basis of PnC∞(S2)Pn
I Could we take linear combinations of a most general basis of

algebra elements instead?
Looks promising:
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Summary

Todays story:
I Exploring NCG using computer simulations
I truncated NCGs as basis for simulations
I first numerical tests of one sided Heisenberg relation

and Connes distance function

Future plans:
I What is the difference between the two geometries?
I More visualisations:

I try using wider range of a
I use algorithm on other spectral triples

I spectral triples as matter in other QG approaches?
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Thanks for tuning in! Contact lisa.glaser@univie.ac.at
or Twitter:@GravityWithHat
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