Localisations and the Kasparov product in unbounded KK-theory

Koen van den Dungen

Universität Bonn

NCG Seminar — 19 May 2021

- Let A be a separable C^* -algebra and let B, C be σ -unital C^* -algebras.
- ▶ **Definition** (Kasparov '80): A Kasparov A-B-module (A, E_B, F) is:
 - a (\mathbb{Z}_2 -graded) Hilbert B-module E;
 - ▶ a *-homomorphism $A \rightarrow \operatorname{End}_B(E)$;
 - ▶ an (odd) operator $F \in \text{End}_B(E)$ such that for all $a \in A$:

$$a(1-F^2)$$
, $a(F-F^*)$, $[F,a]$ are compact operators

The classes $[F] := [(A, E_B, F)]$ modulo the "homotopy equivalence" relation form an abelian group KK(A, B). If $a(F_1 - F_2)$ is compact for all $a \in A$, then $[F_1] = [F_2]$.

KK-theory

- Let A be a separable C^* -algebra and let B, C be σ -unital C^* -algebras.
- ▶ **Definition** (Kasparov '80): A Kasparov A-B-module (A, E_B, F) is:
 - \triangleright a (\mathbb{Z}_2 -graded) Hilbert B-module E;
 - ▶ a *-homomorphism $A \to \operatorname{End}_B(E)$;
 - ▶ an (odd) operator $F \in End_B(E)$ such that for all $a \in A$:

$$a(1-F^2)$$
, $a(F-F^*)$, $[F,a]$ are compact operators.

The classes $[F] := [(A, E_B, F)]$ modulo the "homotopy equivalence" relation form an abelian group KK(A, B). If $a(F_1 - F_2)$ is compact for all $a \in A$, then $[F_1] = [F_2]$.

KK-theory

- Let A be a separable C^* -algebra and let B, C be σ -unital C^* -algebras.
- ▶ **Definition** (Kasparov '80): A Kasparov A-B-module (A, E_B, F) is:
 - a (\mathbb{Z}_2 -graded) Hilbert B-module E;
 - ▶ a *-homomorphism $A \rightarrow \text{End}_B(E)$;
 - ▶ an (odd) operator $F \in End_B(E)$ such that for all $a \in A$:

$$a(1-F^2)$$
, $a(F-F^*)$, $[F,a]$ are compact operators. Typical example: elliptic otherwise 400 F

► The classes $[F] := [(A, E_B, F)]$ modulo the "homotopy equivalence" relation form an abelian group KK(A, B). If $a(F_1 - F_2)$ is compact for all $a \in A$, then $[F_1] = [F_2]$.

The Kasparov product is an associative bilinear pairing

$$KK(A, B) \times KK(B, C) \rightarrow KK(A, C).$$

▶ **Theorem** (Connes-Skandalis '84) Consider Kasparov modules $(A, (E_1)_B, F_1), (B, (E_2)_C, F_2), \text{ and } (A, E_C, F) \text{ with } E = E_1 \otimes_B E_2$ Assume the following conditions are satisfied:

connection: for all $\psi \in E_1$, the graded commutator

$$\begin{bmatrix} \begin{pmatrix} F & 0 \\ 0 & F_2 \end{pmatrix}, \begin{pmatrix} 0 & T_{\psi} \\ T_{\psi}^* & 0 \end{bmatrix} \text{ is compact on } E \oplus E_2,$$

where $T_{\psi} \colon E_2 \to E$, $\eta \mapsto \psi \otimes \eta$

positivity: there exists $0 \le \kappa < 2$ such that for all $a \in A$

$$a^*[F_1 \otimes 1, F]a \ge -\kappa a^*a$$
 modulo compact operators

Then
$$[F] = [F_1] \otimes_B [F_2] \in KK(A, C)$$
.

Kasparov product

▶ The Kasparov product is an associative bilinear pairing

$$KK(A, B) \times KK(B, C) \rightarrow KK(A, C).$$

▶ **Theorem** (Connes-Skandalis '84) Consider Kasparov modules $(A, (E_1)_B, F_1), (B, (E_2)_C, F_2), \text{ and } (A, E_C, F) \text{ with } E = E_1 \otimes_B E_2.$ Assume the following conditions are satisfied:

connection: for all $\psi \in E_1$, the graded commutator

$$\begin{bmatrix} \begin{pmatrix} F & 0 \\ 0 & F_2 \end{pmatrix}, \begin{pmatrix} 0 & T_{\psi} \\ T_{\psi}^* & 0 \end{bmatrix} \text{ is compact on } E \oplus E_2,$$

where $T_{\psi} \colon E_2 \to E$, $\eta \mapsto \psi \otimes \eta$;

positivity: there exists $0 \le \kappa < 2$ such that for all $a \in A$:

 $a^*[F_1 \otimes 1, F]a \ge -\kappa a^*a$ modulo compact operators.

Then
$$[F] = [F_1] \otimes_B [F_2] \in KK(A,C)$$
. Moreover such F elways exists!

Unbounded KK-theory

- ▶ Definition (Baaj-Julg '83, Hilsum '10) A half-closed module (A, E_B, D) is:
 - ightharpoonup a (\mathbb{Z}_2 -graded) Hilbert B-module E;
 - a *-homomorphism $A \to \operatorname{End}_B(E)$;
 - ▶ an (odd) regular symmetric operator \mathcal{D} on E such that for all $a \in A$: $a(1 + \mathcal{D}^*\mathcal{D})^{-1}$ is compact;
 - ▶ a dense *-subalgebra $\mathcal{A} \subset A$ such that for all $a \in \mathcal{A}$: $a \cdot \mathsf{Dom}\, \mathcal{D}^* \subset \mathsf{Dom}\, \mathcal{D}$ and $[\mathcal{D}, a]$ is bounded.
- ▶ If $\mathcal{D} = \mathcal{D}^*$, then $(\mathcal{A}, E_B, \mathcal{D})$ is an unbounded Kasparov module.
- ▶ Theorem (Baaj-Julg '83, Hilsum '10) Consider the bounded transform $F_{\mathcal{D}} := \mathcal{D}(1 + \mathcal{D}^*\mathcal{D})^{-1/2}$ Then $(A, E_B, F_{\mathcal{D}})$ is a Kasparov module, and the map $(A, E_B, \mathcal{D}) \mapsto [F_{\mathcal{D}}]$ is surjective onto KK(A, B).

Unbounded KK-theory

- ▶ Definition (Baaj-Julg '83, Hilsum '10) A half-closed module (A, E_B, D) is:
 - ightharpoonup a (\mathbb{Z}_2 -graded) Hilbert B-module E;
 - a *-homomorphism $A \to \operatorname{End}_B(E)$;
 - ▶ an (odd) regular symmetric operator \mathcal{D} on E such that for all $a \in A$: $a(1 + \mathcal{D}^*\mathcal{D})^{-1}$ is compact;
 - ▶ a dense *-subalgebra $\mathcal{A} \subset \mathcal{A}$ such that for all $a \in \mathcal{A}$: $a \cdot \mathsf{Dom}\, \mathcal{D}^* \subset \mathsf{Dom}\, \mathcal{D}$ and $[\mathcal{D}, a]$ is bounded.
- ▶ If $\mathcal{D} = \mathcal{D}^*$, then $(\mathcal{A}, E_B, \mathcal{D})$ is an unbounded Kasparov module.
- ▶ Theorem (Baaj-Julg '83, Hilsum '10) Consider the bounded transform $F_{\mathcal{D}} := \mathcal{D}(1 + \mathcal{D}^*\mathcal{D})^{-1/2}$ Then $(A, E_B, F_{\mathcal{D}})$ is a Kasparov module, and the map $(A, E_B, \mathcal{D}) \mapsto [F_{\mathcal{D}}]$ is surjective onto KK(A, B).

Unbounded KK-theory

- ► **Definition** (Baaj-Julg '83, Hilsum '10)
 - A half-closed module (A, E_B, D) is:
 - ightharpoonup a (\mathbb{Z}_2 -graded) Hilbert B-module E;
 - ▶ a *-homomorphism $A \to \operatorname{End}_B(E)$;
 - ▶ an (odd) regular symmetric operator \mathcal{D} on E such that for all $a \in A$: $a(1 + \mathcal{D}^*\mathcal{D})^{-1}$ is compact;
 - ▶ a dense *-subalgebra $\mathcal{A} \subset A$ such that for all $a \in \mathcal{A}$: $a \cdot \mathsf{Dom} \, \mathcal{D}^* \subset \mathsf{Dom} \, \mathcal{D}$ and $[\mathcal{D}, a]$ is bounded.

Typical example: elliptic 1st-order diff op Eq: (Co(0,1), L2(0,1), Pour 12)

- If $\mathcal{D} = \mathcal{D}^*$, then $(\mathcal{A}, E_B, \mathcal{D})$ is an unbounded Kasparov module. $\mathcal{E}_{\mathbf{S}}: \left(\subset_{\mathcal{C}}^{\infty}(R), L^2(R), \mathcal{D}_{R} = i\partial_{\mathbf{X}} \right) \qquad \left[\mathcal{O}_{R} \right] \simeq \left[\mathcal{O}_{C_0, \lambda} \right]$
- ▶ **Theorem** (Baaj-Julg '83, Hilsum '10) Consider the bounded transform $F_{\mathcal{D}} := \mathcal{D}(1 + \mathcal{D}^*\mathcal{D})^{-1/2}$. Then $(A, E_B, F_{\mathcal{D}})$ is a Kasparov module, and the map $(A, E_B, \mathcal{D}) \mapsto [F_{\mathcal{D}}]$ is surjective onto KK(A, B). We define $L \mathcal{D} = \mathcal{F}_{\mathcal{D}} = \mathcal{T}$

Kucerovsky's Theorem

▶ **Theorem** (Kucerovsky '97) Consider *unbounded* Kasparov modules $(A, (E_1)_B, \mathcal{D}_1)$, $(B, (E_2)_C, \mathcal{D}_2)$, and (A, E_C, \mathcal{D}) with $E = E_1 \otimes_B E_2$. Assume the following conditions are satisfied:

connection: for ψ dense in E_1 , the graded commutator

$$\begin{bmatrix} \begin{pmatrix} \mathcal{D} & 0 \\ 0 & \mathcal{D}_2 \end{pmatrix}, \begin{pmatrix} 0 & T_{\psi} \\ T_{\psi}^* & 0 \end{bmatrix} \text{ is bounded on } E \oplus E_2;$$

positivity: we have $\operatorname{Dom} \mathcal{D} \subset \operatorname{Dom} \mathcal{D}_1 \otimes 1$, and there exists $c \geq 0$ such that for all $\xi \in \operatorname{Dom} \mathcal{D}$:

$$\left\langle (\mathcal{D}_1 \otimes 1)\xi \, \middle| \, \mathcal{D}\xi \right\rangle + \left\langle \mathcal{D}\xi \, \middle| \, (\mathcal{D}_1 \otimes 1)\xi \right\rangle \geq -c \langle \xi | \xi \rangle.$$

Then $[\mathcal{D}] = [\mathcal{D}_1] \otimes_B [\mathcal{D}_2] \in \mathit{KK}(A, C)$.

- ► There is room for improvement in Kucerovsky's positivity condition:
 - (I) it depends on the subprincipal symbol of $[\mathcal{D},\mathcal{D}_1\otimes 1];$
 - (II) it is global instead of local.
- Remark: localising the positivity condition also allows us to consider non-selfadjoint operators (i.e., half-closed modules).
- **Example:** Consider the manifold $M := (0,1) \times (0,1)$, the C^* -algebras $A := C_0(M)$, $B = C_0(0,1)$, and $C = \mathbb{C}$, and the operators

$$\mathcal{D}_1 := i\partial_y + \sin\left(\frac{1}{x}\right), \quad \text{on } E_1 := C_0\left((0, 1), L^2(0, 1)\right)$$

 $\mathcal{D}_2 := i\partial_x, \quad \text{on } E_2 := L^2(0, 1).$

The operator $\mathcal{D} := \mathcal{D}_1 \sigma_1 + \mathcal{D}_2 \sigma_2$ represents the Kasparov product $[\mathcal{D}_1] \otimes_B [\mathcal{D}_2]$, but Kucerovsky's positivity condition fails!

The positivity condition

- There is room for improvement in Kucerovsky's positivity condition:
 - (I) it depends on the subprincipal symbol of $[\mathcal{D}, \mathcal{D}_1 \otimes 1]$;
- (II) it is global instead of local. KC(0,1) cpt

Q. /

= DR/K

- **Remark:** localising the positivity condition also allows us to consider non-selfadjoint operators (i.e., half-closed modules).
- **Example:** Consider the manifold $M := (0,1) \times (0,1)$, the

$$\mathcal{D}_1 := i\partial_y + \sin\left(\frac{1}{x}\right), \quad \text{on } E_1 := C_0\left((0,1), L^2(0,1)\right)$$
 $\mathcal{D}_2 := i\partial_x, \quad \text{on } E_2 := L^2(0,1).$

The operator $\mathcal{D} := \mathcal{D}_1 \sigma_1 + \mathcal{D}_2 \sigma_2$ represents the Kasparov product

The positivity condition

- ► There is room for improvement in Kucerovsky's positivity condition:
 - (I) it depends on the subprincipal symbol of $[\mathcal{D},\mathcal{D}_1\otimes 1];$
 - (II) it is global instead of local.
- Remark: localising the positivity condition also allows us to consider non-selfadjoint operators (i.e., half-closed modules).
- **Example:** Consider the manifold $M := (0,1) \times (0,1)$, the C^* -algebras $A := C_0(M)$, $B = C_0(0,1)$, and $C = \mathbb{C}$, and the operators

$$\mathcal{D}_1 := i\partial_y + \sin\left(\frac{1}{x}\right), \quad \text{on } E_1 := C_0\left((0, 1), L^2(0, 1)\right),$$

$$\mathcal{D}_2 := i\partial_x, \qquad \qquad \text{on } E_2 := L^2(0, 1).$$

$$\left[\mathcal{D}_{L}, \mathcal{D}_{L}\right] = -i\partial_x \left(\sin\left(\frac{1}{x}\right)\right) = \frac{i}{x^2} \cos\left(\frac{L}{x}\right)$$

The operator $\mathcal{D}:=\mathcal{D}_1\sigma_1+\mathcal{D}_2\sigma_2$ represents the Kasparov product $[\mathcal{D}_1]\otimes_B[\mathcal{D}_2]$, but Kucerovsky's positivity condition fails!

Positivity 'modulo first-order'

Theorem (vdD'20)

Consider unbounded Kasparov modules $(A, (E_1)_B, \mathcal{D}_1)$, $(B, (E_2)_C, \mathcal{D}_2)$, and (A, E_C, \mathcal{D}) with $E = E_1 \otimes_B E_2$. Assume the following conditions are satisfied:

connection: for ψ dense in E_1 , the graded commutator

$$\begin{bmatrix} \begin{pmatrix} \mathcal{D} & 0 \\ 0 & \mathcal{D}_2 \end{pmatrix}, \begin{pmatrix} 0 & \mathcal{T}_{\psi} \\ \mathcal{T}_{\psi}^* & 0 \end{bmatrix} \text{ is bounded on } E \oplus E_2;$$

positivity: we have $\mathsf{Dom}\,\mathcal{D}\subset\mathsf{Dom}\,\mathcal{D}_1\otimes 1$, and there exists $c\geq 0$ such that for all $\xi\in\mathsf{Dom}\,\mathcal{D}$:

$$\big\langle (\mathcal{D}_1 \otimes 1)\xi \, \big| \, \mathcal{D}\xi \big\rangle + \big\langle \mathcal{D}\xi \, \big| \, (\mathcal{D}_1 \otimes 1)\xi \big\rangle \geq -c \big\langle \xi \, \big| \, (1+\mathcal{D}^*\mathcal{D})^{1/2}\xi \big\rangle.$$

Then $[\mathcal{D}] = [\mathcal{D}_1] \otimes_B [\mathcal{D}_2] \in \mathit{KK}(A, C)$.

- ▶ Let (A, E_B, \mathcal{D}) be a half-closed module, for which the representation $A \to \operatorname{End}_B(E)$ is essential.
- Assumption: $A \subset A$ contains an (even) approximate unit $\{u_n\}_{n\in\mathbb{N}}$
- ► We obtain a "partition of unity" $\{\chi_k^2\}_{k \in \mathbb{N}}$:

$$\chi_0 := u_0^{1/2}, \qquad \chi_k := (u_k - u_{k-1})^{1/2}, \quad k > 1.$$

- ▶ **Lemma:** The 'localised operator' $\mathcal{D}_k := u_{k+2} \mathcal{D} u_{k+2}$ is regular and
- **Definition:** For any sequence $\{\alpha_k\}_{k\in\mathbb{N}}$ ⊂ $(0, \infty)$, the localised

$$\widetilde{F}_{\mathcal{D}}(\alpha) := \sum_{k=0}^{\infty} \chi_k F_{\alpha_k \mathcal{D}_k} \chi_k$$

- ▶ Let (A, E_B, \mathcal{D}) be a half-closed module, for which the representation $A \to \operatorname{End}_B(E)$ is essential.
- ▶ **Assumption:** $A \subset A$ contains an (even) approximate unit $\{u_n\}_{n \in \mathbb{N}}$ for A which is almost idempotent: $u_{n+1}u_n = u_n$ for all $n \in \mathbb{N}$.
- ▶ We obtain a "partition of unity" $\{\chi_k^2\}_{k\in\mathbb{N}}$:

$$\chi_0 := u_0^{1/2}, \qquad \chi_k := (u_k - u_{k-1})^{1/2}, \quad k > 1$$

- ▶ **Lemma:** The 'localised operator' $\mathcal{D}_k := u_{k+2}\mathcal{D}u_{k+2}$ is regular and self-adjoint.
- **Definition:** For any sequence $\{\alpha_k\}_{k\in\mathbb{N}}$ ⊂ (0, ∞), the localised representative of $(\mathcal{A}, E_B, \mathcal{D})$ is

$$\widetilde{F}_{\mathcal{D}}(\alpha) := \sum_{k=0}^{\infty} \chi_k F_{\alpha_k \mathcal{D}_k} \chi_k$$

- ▶ Let (A, E_B, \mathcal{D}) be a half-closed module, for which the representation $A \to \operatorname{End}_B(E)$ is essential.
- ▶ **Assumption:** $A \subset A$ contains an (even) approximate unit $\{u_n\}_{n\in\mathbb{N}}$ for A which is almost idempotent: $u_{n+1}u_n = u_n$ for all $n \in \mathbb{N}$.
- We obtain a "partition of unity" $\{\chi_k^2\}_{k\in\mathbb{N}}$: $\sum_{k=1}^{\infty} \chi_k^2 = u_n$

$$\chi_0 := u_0^{1/2}, \qquad \chi_k := (u_k - u_{k-1})^{1/2}, \quad k > 1.$$

- ▶ **Lemma:** The 'localised operator' $\mathcal{D}_k := u_{k+2} \mathcal{D} u_{k+2}$ is regular and self-adjoint.
- ▶ **Definition:** For any sequence $\{\alpha_k\}_{k\in\mathbb{N}}\subset(0,\infty)$, the localised representative of $(\mathcal{A},E_B,\mathcal{D})$ is

$$\widetilde{F}_{\mathcal{D}}(\alpha) := \sum_{k=0}^{\infty} \chi_k F_{\alpha_k \mathcal{D}_k} \chi_k$$

- \blacktriangleright Let (A, E_B, \mathcal{D}) be a half-closed module, for which the representation $A \to \operatorname{End}_B(E)$ is essential.
- **Assumption:** $A \subset A$ contains an (even) approximate unit $\{u_n\}_{n \in \mathbb{N}}$ for A which is almost idempotent: $u_{n+1}u_n = u_n$ for all $n \in \mathbb{N}$.
- ▶ We obtain a "partition of unity" $\{\chi_k^2\}_{k \in \mathbb{N}}$:

$$\chi_0 := u_0^{1/2}, \qquad \chi_k := (u_k - u_{k-1})^{1/2}, \quad k > 1.$$

- **Lemma:** The 'localised operator' $\mathcal{D}_k := u_{k+2} \mathcal{D} u_{k+2}$ is regular and self-adjoint.
- **Definition:** For any sequence $\{\alpha_k\}_{k\in\mathbb{N}}$ ⊂ $(0, \infty)$, the localised

$$\widetilde{F}_{\mathcal{D}}(\alpha) := \sum_{k=0}^{\infty} \chi_k F_{\alpha_k \mathcal{D}_k} \chi_k$$

- ▶ Let (A, E_B, \mathcal{D}) be a half-closed module, for which the representation $A \to \operatorname{End}_B(E)$ is essential.
- ▶ **Assumption:** $A \subset A$ contains an (even) approximate unit $\{u_n\}_{n\in\mathbb{N}}$ for A which is almost idempotent: $u_{n+1}u_n = u_n$ for all $n \in \mathbb{N}$.
- ▶ We obtain a "partition of unity" $\{\chi_k^2\}_{k\in\mathbb{N}}$:

$$\chi_0 := u_0^{1/2}, \qquad \chi_k := (u_k - u_{k-1})^{1/2}, \quad k > 1.$$

- ▶ **Lemma:** The 'localised operator' $\mathcal{D}_k := u_{k+2}\mathcal{D}u_{k+2}$ is regular and self-adjoint.
- ▶ **Definition:** For any sequence $\{\alpha_k\}_{k\in\mathbb{N}}\subset (0,\infty)$, the localised representative of $(\mathcal{A}, E_B, \mathcal{D})$ is

$$\widetilde{F}_{\mathcal{D}}(\alpha) := \sum_{k=0}^{\infty} \chi_k F_{\alpha_k \mathcal{D}_k} \chi_k.$$

- ▶ Let (A, E_B, \mathcal{D}) be a half-closed module, for which the representation $A \to \operatorname{End}_B(E)$ is essential.
- ▶ **Assumption:** $A \subset A$ contains an (even) approximate unit $\{u_n\}_{n\in\mathbb{N}}$ for A which is almost idempotent: $u_{n+1}u_n = u_n$ for all $n \in \mathbb{N}$.
- ▶ We obtain a "partition of unity" $\{\chi_k^2\}_{k\in\mathbb{N}}$:

$$\chi_0 := u_0^{1/2}, \qquad \chi_k := (u_k - u_{k-1})^{1/2}, \quad k > 1.$$

- ▶ **Lemma:** The 'localised operator' $\mathcal{D}_k := u_{k+2}\mathcal{D}u_{k+2}$ is regular and self-adjoint.
- ▶ **Definition:** For any sequence $\{\alpha_k\}_{k\in\mathbb{N}}\subset(0,\infty)$, the localised representative of $(\mathcal{A},E_B,\mathcal{D})$ is $\chi_{k}\left(F_{O_k}-F_{O_k}\right)=\varsigma\rho^{\frac{1}{2}}$ $\widetilde{F}_{\mathcal{D}}(\alpha):=\sum_{k=0}^{\infty}\chi_kF_{\alpha_k}\mathcal{D}_k\chi_k.\quad \chi_{k}\left(F_{O_k}-F_{O_k}\right)=\varsigma\rho^{\frac{1}{2}}$ $\Rightarrow u_n\left(\widehat{F}_{O}(\alpha)-F_{O}\right)=\varsigma\rho^{\frac{1}{2}}$
- ▶ **Proposition** (vdD'20): $[\widetilde{F}_{\mathcal{D}}(\alpha)] = [F_{\mathcal{D}}] \in KK(A, B)$.

Local positivity condition

- **Assumptions:** Consider half-closed modules $(A, (E_1)_B, \mathcal{D}_1)$ (with essential representation), $(A, (E_2)_C, \mathcal{D}_2)$, and (A, E_C, \mathcal{D}) , with $E:=E_1\otimes_B E_2$. We assume that $\mathcal{A}\subset A$ contains an (even) almost idempotent approximate unit $\{u_n\}$ for A.
- ▶ **Definition**: the strong local positivity condition requires for each

$$\begin{split} \big\langle (\mathcal{D}_1 \otimes 1) \textit{u}_n \xi \, \big| \, \mathcal{D} \textit{u}_n \xi \big\rangle + \big\langle \mathcal{D} \textit{u}_n \xi \, \big| \, (\mathcal{D}_1 \otimes 1) \textit{u}_n \xi \big\rangle \\ & \geq \nu_n \big\langle (\mathcal{D}_1 \otimes 1) \textit{u}_n \xi \, \big| \, (\mathcal{D}_1 \otimes 1) \textit{u}_n \xi \big\rangle - c \big\langle \textit{u}_n \xi \, \big| \, (1 + \mathcal{D}^* \mathcal{D})^{-1/2} \textit{u}_n \xi \big\rangle. \end{split}$$

References

Local positivity condition

- **Assumptions:** Consider half-closed modules $(A, (E_1)_B, \mathcal{D}_1)$ (with essential representation), $(A, (E_2)_C, \mathcal{D}_2)$, and (A, E_C, \mathcal{D}) , with $E:=E_1\otimes_B E_2$. We assume that $\mathcal{A}\subset A$ contains an (even) almost idempotent approximate unit $\{u_n\}$ for A.
- ▶ **Definition**: the strong local positivity condition requires for each $n \in \mathbb{N}$ that we have $u_n \cdot \mathsf{Dom} \, \mathcal{D} \subset \mathsf{Dom} \, \mathcal{D}_1 \otimes 1$, and there exist $\nu_n > 0$ and $c_n \ge 0$ such that for all $\xi \in \mathsf{Dom}\,\mathcal{D}$:

$$\begin{split} \big\langle (\mathcal{D}_1 \otimes 1) \textit{u}_\textit{n} \xi \, \big| \, \mathcal{D} \textit{u}_\textit{n} \xi \big\rangle + \big\langle \mathcal{D} \textit{u}_\textit{n} \xi \, \big| \, (\mathcal{D}_1 \otimes 1) \textit{u}_\textit{n} \xi \big\rangle \\ & \geq \underbrace{\nu_\textit{n} \big\langle (\mathcal{D}_1 \otimes 1) \textit{u}_\textit{n} \xi \, \big| \, (\mathcal{D}_1 \otimes 1) \textit{u}_\textit{n} \xi \big\rangle}_{\textit{n} \leftarrow \text{n}} + \underbrace{\nu_\textit{n} \big\langle (\mathcal{D}_1 \otimes 1) \textit{u}_\textit{n} \xi \, \big| \, (\mathcal{D}_1 \otimes 1) \textit{u}_\textit{n} \xi \big\rangle}_{\textit{n} \leftarrow \text{n}} + \underbrace{\nu_\textit{n} \big\langle (\mathcal{D}_1 \otimes 1) \textit{u}_\textit{n} \xi \, \big| \, (\mathcal{D}_1 \otimes 1) \textit{u}_\textit{n} \xi \big\rangle}_{\textit{n} \leftarrow \text{n}} + \underbrace{\nu_\textit{n} \big\langle (\mathcal{D}_1 \otimes 1) \textit{u}_\textit{n} \xi \, \big| \, (\mathcal{D}_1 \otimes 1) \textit{u}_\textit{n} \xi \big\rangle}_{\textit{n} \leftarrow \text{n}} + \underbrace{\nu_\textit{n} \big\langle (\mathcal{D}_1 \otimes 1) \textit{u}_\textit{n} \xi \, \big| \, (\mathcal{D}_1 \otimes 1) \textit{u}_\textit{n} \xi \big\rangle}_{\textit{n} \leftarrow \text{n}} + \underbrace{\nu_\textit{n} \big\langle (\mathcal{D}_1 \otimes 1) \textit{u}_\textit{n} \xi \, \big| \, (\mathcal{D}_1 \otimes 1) \textit{u}_\textit{n} \xi \big\rangle}_{\textit{n} \leftarrow \text{n}} + \underbrace{\nu_\textit{n} \big\langle (\mathcal{D}_1 \otimes 1) \textit{u}_\textit{n} \xi \, \big| \, (\mathcal{D}_1 \otimes 1) \textit{u}_\textit{n} \xi \big\rangle}_{\textit{n} \leftarrow \text{n}} + \underbrace{\nu_\textit{n} \big\langle (\mathcal{D}_1 \otimes 1) \textit{u}_\textit{n} \xi \, \big| \, (\mathcal{D}_1 \otimes 1) \textit{u}_\textit{n} \xi \big\rangle}_{\textit{n} \leftarrow \text{n}} + \underbrace{\nu_\textit{n} \big\langle (\mathcal{D}_1 \otimes 1) \textit{u}_\textit{n} \xi \, \big| \, (\mathcal{D}_1 \otimes 1) \textit{u}_\textit{n} \xi \big\rangle}_{\textit{n} \leftarrow \text{n}} + \underbrace{\nu_\textit{n} \big\langle (\mathcal{D}_1 \otimes 1) \textit{u}_\textit{n} \xi \, \big| \, (\mathcal{D}_1 \otimes 1) \textit{u}_\textit{n} \xi \big\rangle}_{\textit{n} \leftarrow \text{n}} + \underbrace{\nu_\textit{n} \big\langle (\mathcal{D}_1 \otimes 1) \textit{u}_\textit{n} \xi \, \big| \, (\mathcal{D}_1 \otimes 1) \textit{u}_\textit{n} \xi \big\rangle}_{\textit{n} \leftarrow \text{n}} + \underbrace{\nu_\textit{n} \big\langle (\mathcal{D}_1 \otimes 1) \textit{u}_\textit{n} \xi \, \big| \, (\mathcal{D}_1 \otimes 1) \textit{u}_\textit{n} \xi \big\rangle}_{\textit{n} \leftarrow \text{n}} + \underbrace{\nu_\textit{n} \big\langle (\mathcal{D}_1 \otimes 1) \textit{u}_\textit{n} \xi \, \big| \, (\mathcal{D}_1 \otimes 1) \textit{u}_\textit{n} \xi \big\rangle}_{\textit{n} \leftarrow \text{n}} + \underbrace{\nu_\textit{n} \big\langle (\mathcal{D}_1 \otimes 1) \, u}_\textit{n} \xi \, \big| \, (\mathcal{D}_1 \otimes 1) \, u}_\textit{n} \xi \big\rangle}_{\textit{n} \leftarrow \text{n}} + \underbrace{\nu_\textit{n} \big\langle (\mathcal{D}_1 \otimes 1) \, u}_\textit{n} \xi \, \big| \, (\mathcal{D}_1 \otimes 1) \, u}_\textit{n} \xi \big\rangle}_{\textit{n} \leftarrow \text{n}} + \underbrace{\nu_\textit{n} \big\langle (\mathcal{D}_1 \otimes 1) \, u}_\textit{n} \xi \, \big| \, (\mathcal{D}_1 \otimes 1) \, u}_\textit{n} \xi \big\rangle}_{\textit{n} \leftarrow \text{n}} + \underbrace{\nu_\textit{n} \big\langle (\mathcal{D}_1 \otimes 1) \, u}_\textit{n} \xi \, \big| \, (\mathcal{D}_1 \otimes 1) \, u}_\textit{n} \xi \big\rangle}_{\textit{n} \leftarrow \text{n}} + \underbrace{\nu_\textit{n} \big\langle (\mathcal{D}_1 \otimes 1) \, u}_\textit{n} \xi \, \big| \, (\mathcal{D}_1 \otimes 1) \, u}_\textit{n} \xi \big\rangle}_{\textit{n} \leftarrow \text{n}} + \underbrace{\nu_\textit{n} \big\langle (\mathcal{D}_1 \otimes 1) \, u}_\textit{n} \xi \, \big| \, (\mathcal{D}_1 \otimes 1) \, u}_\textit{n} \xi \big\rangle}_{\textit{n} \leftarrow \text{n}} + \underbrace{\nu_\textit{n} \big\langle (\mathcal{D}_1 \otimes 1) \, u}_\textit{n} \xi \big\rangle}_{\textit{n} \leftarrow \text{n}} + \underbrace{\nu_\textit{n} \big\langle (\mathcal{D}_1 \otimes 1) \, u}_\textit{n} \xi \big\rangle}_{\textit{n} \leftarrow \text{n}} + \underbrace{\nu_\textit{n} \big\langle (\mathcal{D}_1 \otimes 1) \, u}_\textit{n} \xi \big\rangle}_{\textit{n} \leftarrow \text{n}} + \underbrace{\nu_\textit{n} \big\langle (\mathcal{D}_1 \otimes 1) \, u}_\textit{n} \xi \big\rangle}_{\textit{n} \leftarrow \text{n}} + \underbrace{\nu_\textit$$

representation), $(A, (E_2)_C, \mathcal{D}_2)$, and (A, E_C, \mathcal{D}) , with $E := E_1 \otimes_B E_2$.

Consider half-closed modules $(A, (E_1)_B, \mathcal{D}_1)$ (with essential

Theorem (vdD'20)

```
Assume that (Kucerovsky's) connection condition is satisfied, and that
\mathcal{A} \subset A contains an (even) almost idempotent approximate unit \{u_n\} for
A, such that the strong local positivity condition is satisfied.
Then [\mathcal{D}] = [\mathcal{D}_1] \otimes_{\mathcal{B}} [\mathcal{D}_2] \in KK(A, C).
Proof Step1 strong loc por for D, O, = strong loc per for Oh, D, k

= CS poritivity "locally":
     Given OCKCZ . YKEN 304 >0 s.E.
              xx [Fox Fap, x o1] ηx ≥- κ γx2 mod cpts
  Step 2: CS positivity globally for Fo and Fo(a):
          \frac{1}{u_n} [F_0, \widetilde{F_0}, (\alpha) \otimes 1] u_n = \sum_{k} u_k \chi_k [F_{0_k}, F_{\alpha_k Q_{0_k}} \otimes 1] \chi_k u_n \operatorname{ned}_{ijk}
```

≥ - Kun² mod opts.

- ▶ **Assumption:** Given two half-closed modules $(A, (E_1)_B, \mathcal{D}_1)$ (with essential representation) and $(\mathcal{B}, (E_2)_C, \mathcal{D}_2)$, write $\mathcal{S} := \mathcal{D}_1 \otimes 1$ on $E := E_1 \otimes_B E_2$. Consider an (odd) symmetric operator \mathcal{T} on E, and write $\mathcal{D} := \overline{\mathcal{S} + \mathcal{T}}$. We assume:
 - (A1) \mathcal{D} yields a half-closed module $(\mathcal{A}, E_C, \mathcal{D})$;
 - (A2) for ψ dense in $\mathcal{A} \cdot \mathsf{Dom} \mathcal{D}_1$, the graded commutator $\begin{bmatrix} \mathcal{T} & 0 \\ & 1 \end{bmatrix}$

$$\begin{bmatrix} \begin{pmatrix} \mathcal{T} & 0 \\ 0 & \mathcal{D}_2 \end{pmatrix}, \begin{pmatrix} 0 & \mathcal{T}_{\psi} \\ \mathcal{T}_{\psi}^* & 0 \end{bmatrix} \text{ is bounded on } E \oplus E_2;$$

(A3) $\mathcal{A} \subset A$ contains an (even) almost idempotent approximate unit $\{u_n\}$ for A, such that $u_n \cdot \mathsf{Dom} \, \mathcal{D} \subset \mathsf{Dom} \, \mathcal{F} \cap \mathsf{Dom} \, \mathcal{T}$.

▶ **Remark:** (A2) ensures the connection condition is satisfied.

- ▶ **Assumption:** Given two half-closed modules $(\mathcal{A}, (E_1)_B, \mathcal{D}_1)$ (with essential representation) and $(\mathcal{B}, (E_2)_C, \mathcal{D}_2)$, write $\mathcal{S} := \mathcal{D}_1 \otimes 1$ on $E := E_1 \otimes_B E_2$. Consider an (odd) symmetric operator \mathcal{T} on E, and write $\mathcal{D} := \overline{\mathcal{S} + \mathcal{T}}$. We assume:
 - (A1) \mathcal{D} yields a half-closed module $(\mathcal{A}, E_C, \mathcal{D})$;
 - (A2) for ψ dense in $\mathcal{A} \cdot \mathsf{Dom} \, \mathcal{D}_1$, the graded commutator $\begin{bmatrix} \begin{pmatrix} \mathcal{T} & 0 \\ 0 & \mathcal{D}_2 \end{pmatrix}, \begin{pmatrix} 0 & \mathcal{T}_{\psi} \\ \mathcal{T}_{th}^* & 0 \end{pmatrix} \end{bmatrix}$ is bounded on $E \oplus E_2$;
 - (A3) $\mathcal{A} \subset A$ contains an (even) almost idempotent approximate unit $\{u_n\}$ for A, such that $u_n \cdot \mathsf{Dom} \, \mathcal{D} \subset \mathsf{Dom} \, \mathcal{S} \cap \mathsf{Dom} \, \mathcal{T}$.

▶ **Remark:** (A2) ensures the connection condition is satisfied.

Theorem (vdD'20)

Given two half-closed modules $(\mathcal{A}, (E_1)_B, \mathcal{D}_1)$ (with essential representation) and $(\mathcal{B}, (E_2)_C, \mathcal{D}_2)$, write $\mathcal{S} := \mathcal{D}_1 \otimes 1$ on $E := E_1 \otimes_B E_2$. Consider an (odd) symmetric operator \mathcal{T} on E, and write $\mathcal{D} := \overline{\mathcal{S} + \mathcal{T}}$. Suppose the assumptions (A1)-(A3) are satisfied. We assume there exists a core $\mathcal{F} \subset \mathsf{Dom}\,\mathcal{D}$ such that for all $n \in \mathbb{N}$:

- $u_n \cdot \mathcal{F} \subset \text{Dom } \mathcal{ST} \cap \text{Dom } \mathcal{TS}; \text{ and}$
- ▶ there exist $c_n \ge 0$ such that for all $\eta \in \mathcal{F}$:

$$\|[\mathcal{S}, \mathcal{T}]u_n\eta\| \le c_n\|(1+\mathcal{D}^*\mathcal{D})^{1/2}u_n\eta\|$$

Then $[\mathcal{D}] = [\mathcal{D}_1] \otimes_B [\mathcal{D}_2] \in KK(A, C)$.

Theorem (vdD'20)

Given two half-closed modules $(\mathcal{A}, (E_1)_B, \mathcal{D}_1)$ (with essential representation) and $(\mathcal{B}, (E_2)_C, \mathcal{D}_2)$, write $\mathcal{S} := \mathcal{D}_1 \otimes 1$ on $E := E_1 \otimes_B E_2$. Consider an (odd) symmetric operator \mathcal{T} on E, and write $\mathcal{D} := \overline{\mathcal{S} + \mathcal{T}}$. Suppose the assumptions (A1)-(A3) are satisfied. We assume there exists a core $\mathcal{F} \subset \mathsf{Dom}\,\mathcal{D}$ such that for all $n \in \mathbb{N}$:

- ▶ $u_n \cdot \mathcal{F} \subset \mathsf{Dom}\,\mathcal{ST} \cap \mathsf{Dom}\,\mathcal{TS}$; and
- there exist $c_n \ge 0$ such that for all $\eta \in \mathcal{F}$:

$$\|[\mathcal{S}, \mathcal{T}]u_n\eta\| \le c_n\|(1+\mathcal{D}^*\mathcal{D})^{1/2}u_n\eta\|$$

Then $[\mathcal{D}] = [\mathcal{D}_1] \otimes_B [\mathcal{D}_2] \in KK(A, C)$.

Theorem (vdD'20)

Given two half-closed modules $(\mathcal{A}, (E_1)_B, \mathcal{D}_1)$ (with essential representation) and $(\mathcal{B}, (E_2)_C, \mathcal{D}_2)$, write $\mathcal{S} := \mathcal{D}_1 \otimes 1$ on $E := E_1 \otimes_B E_2$. Consider an (odd) symmetric operator \mathcal{T} on E, and write $\mathcal{D} := \overline{\mathcal{S} + \mathcal{T}}$. Suppose the assumptions (A1)-(A3) are satisfied. We assume there exists a core $\mathcal{F} \subset \mathsf{Dom}\,\mathcal{D}$ such that for all $n \in \mathbb{N}$:

- ▶ $u_n \cdot \mathcal{F} \subset \mathsf{Dom}\,\mathcal{ST} \cap \mathsf{Dom}\,\mathcal{TS}$; and
- there exist $c_n \ge 0$ such that for all $\eta \in \mathcal{F}$:

$$\|[\mathcal{S},\mathcal{T}]u_{n}\eta\| \leq c_{n}\|(1+\mathcal{D}^{*}\mathcal{D})^{1/2}u_{n}\eta\|.$$

$$\qquad \qquad \text{``} \mathcal{Z}_{\mathcal{S},\mathcal{T},\mathcal{T}} \text{ ``}_{\mathcal{S}^{*}} \text{-order} \text{''}$$

$$\text{Then } [\mathcal{D}] = [\mathcal{D}_{1}] \otimes_{B} [\mathcal{D}_{2}] \in \mathit{KK}(A,C).$$

Proof idea:
$$[D,5] = 25^2 + [S,T] \ge 25^2 - c_n (1+0^*0)^{N_2}$$

we can choose $N_1 = 2$ in the strong loc pos condition

- Baaj-Julg'83 Théorie bivariante de Kasparov et opérateurs non bornés dans les *C**-modules hilbertiens, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 875–878.
- Connes-Skandalis'84 The longitudinal index theorem for foliations, Publ. Res. Inst. Math. Sci. 20 (1984), 1139–1183.
- Hilsum'10 Bordism invariance in KK-theory, Math. Scand. 107 (2010), 73-89.
- Kasparov'80 The operator K-functor and extensions of C^* -algebras, Izv. Akad. Nauk SSSR 44 (1980), 571–636.
- Kucerovsky'97 The KK-product of unbounded modules, K-Theory 11 (1997), 17–34.
- vdD Localisations of half-closed modules and the unbounded Kasparov product. arXiv:2006.10616