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KK-theory

> Let A be a separable C*-algebra and let B, C be c-unital
C*-algebras.

» Definition (Kasparov '80): A Kasparov A-B-module (A, Eg, F) is:
» a (Zj-graded) Hilbert B-module E;
» a x-homomorphism A — Endg(E);
> an (odd) operator F € Endg(E) such that for all a € A:

a(1— F?), a(F — F*), [F,a| are compact operators.
lypical exanple - elliphec a*orde. Yo £

> The classes [F] := [(A, Eg, F)] modulo the “homotopy equivalence”
relation form an abelian group KK (A, B).
If a(Fy — F2) is compact for all a € A, then [F1] = [F].
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Kasparov product

» The Kasparov product is an associative bilinear pairing

KK (A, B) x KK (B, C) — KK(A, C).

» Theorem (Connes-Skandalis '84) Consider Kasparov modules
(A, (El)Bv Fl), (B, (E2)C' Fz), and (A, Ec, F) with E = E; ®p E».
Assume the following conditions are satisfied:
connection: for all ¢ € Ep, the graded commutator

F 0 0 Ty\]l.
KO F2> ) <T4’j 0 ﬂ is compact on E @ Ey,

where Ty: Ep — E, 1= ¢ @1;
positivity: there exists 0 < x < 2 such that for all a € A:

a*[F1®1, Fla> —«a*a modulo compact operators.

Then [F] = [F1] ®g [F2] € KK(A, C). Mortovg,  such F
el gs e«fsf.r/
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Unbounded KK-theory

» Definition (Baaj-Julg '83, Hilsum '10)
A half-closed module (A, Eg, D) is:

> a (Zjy-graded) Hilbert B-module E;

» a s-homomorphism A — Endg(E);

» an (odd) regular symmetric operator D on E such that for all a € A:
a(14D*D)~ L is compact;

» a dense x-subalgebra A C A such that for all a € A:
a-DomD* C DomD and [D, a] is bounded.
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Unb

ounded KK-theory

» Definition (Baaj-Julg '83, Hilsum '10)
A half-closed module (A, Eg, D) is:
> a (Zjy-graded) Hilbert B-module E;
» a s-homomorphism A — Endg(E);
» an (odd) regular symmetric operator D on E such that for all a € A:
a(14D*D)~ L is compact;
» a dense x-subalgebra A C A such that for all a € A:
a-DomD* C DomD and [D, a] is bounded.
TyPI’C‘./ eu*"/e - e//PIt;C Iff;a(pie, ‘,//'J’J) 0’9. 8?" (CC_<0/ I)/ L Z(bl /)/ D(ol,): /§<>
» If D = D*, then (A, Eg, D) is an unbounded Kasparov module.
€97 ( CZD(K)I LR, DR = ’ax) {D/IP:}/—\—J [D(o,/J]
» Theorem (Baaj-Julg '83, Hilsum '10)
Consider the bounded transform Fp := D(1+ D*D)~1/2.
Then (A, Eg, Fp) is a Kasparov module, and the map
(A, Eg, D) — [Fp] is surjective onto KK(A, B).

We C?effﬂe Z:DKL‘—’ ZFD z
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Kucerovsky's Theorem

» Theorem (Kucerovsky '97) Consider unbounded Kasparov modules
(.A, (E].)B!Dl)l (B, (EQ)C, Dg), and (A, Ec,D) with
E = E; ®p E>. Assume the following conditions are satisfied:
connection: for ¢ dense in Ej, the graded commutator

D 0 0 T .
KO D2>’<T¢* Olp)} is bounded on E @ E;

positivity: we have Dom D C Dom D; ® 1, and there exists
¢ > 0 such that for all ¢ € Dom D:

(D1 ®1)8|DE) +(DE | (D1 @1)&) = —c(Z]E).

Then [D] = [D1] @ [Ds] € KK(A, C).
Rfca// : C§ ’74(/71/1/:“/7 N a,iF,es// anfo %Cﬂ '7(‘,0*0‘&" ¥Dos

7
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() it depends on the subprincipal symbol of [D, D1 ® 1];
(1) it is global instead of local.
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The positivity condition

» There is room for improvement in Kucerovsky's positivity condition:
() it depends on the subprincipal symbol of [D, D1 ® 1];
(1) it is global instead of local.
» Remark: localising the positivity condition also allows us to consider
non-selfadjoint operators (i.e., half-closed modules).
» Example: Consider the manifold M := (0,1) x (({1) the
C*-algebras A := Cp(M), B = (4(0,1), and C = C, and the

operators ) ¥
: _ X
M/\ Dy :=idy +sin (;) on Ep := Co((i), 1), (0, 1)),
l )/ D2 = iax, on E2 = L2(0, 1).
(J,/) > x5 / [D// DZ] = ‘-;))( (,s,’q (‘,%)) = )‘(’T,_ ) (‘KL)

The operator D := D107 + Dy0y represents the Kasparov product
[D1] ®pg [D2], but Kucerovsky's positivity condition fails!
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Positivity ‘modulo first-order’

Theorem (vdD'20)

Consider unbounded Kasparov modules (A, (E1)g,D1), (B, (E2)c. D2),
and (A, Ec, D) with E = E; ®g Ep. Assume the following conditions are
satisfied:

connection: for  dense in Ej, the graded commutator

D 0 0 Ty . ]
{(0 D2>’<T$ 0)} is bounded on E @ E»;

positivity: we have Dom D C Dom Dy ® 1, and there exists ¢ > 0
such that for all £ € DomD:

(D1 ®1)¢| DE) + (D& | (D1 ®1)§) > —c(&| (1 + D*D)V/2¢).
Then [D] = [D1] ®p [D2] € KK(A, C).
”ﬂo, 1, D] =20 rmod Ijtoro’)<w op’s

”w
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The localised representative

> Let (A, Eg, D) be a half-closed module, for which the
representation A — Endg(E) is essential.

» Assumption: A C A contains an (even) approximate unit {up}peN
for A which is almost idempotent: upqun = up for all n € IN.

> We obtain a “partition of unity” {x°}keN:

1/2

Xo=ut? k= (o —ue1)V? k> 1

» Lemma: The ‘localised operator’ Dy := uy  »Duy,, is regular and
self-adjoint.

» Definition: For any sequence {ay }ren C (0, 00), the localised
representative of (A, Eg, D) is
[0 9)

FD 0‘) Z XkFleDka
k=0
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The localised representative

>

>

>

Let (A, Eg, D) be a half-closed module, for which the
representation A — Endg(E) is essential.

Assumption: A C A contains an (even) approximate unit {up}neN
for A which is almost idempotent: upqun = up for all n € IN.

We obtain a ‘partition of unity” {x;°}keN:

Xo=ut? k= (o —ue1)V? k> 1

Lemma: The ‘localised operator’ Dy := vy »Duy 5 is regular and
self-adjoint.

Definition: For any sequence {ay }xen C (0, 0), the localised
representative of (A, Eg, D) is X CFO,(‘ Fo ) =cp?
Fp(a):= Y xuFap Xk % For Favo, ) =P
k=0 g
_ = Uy (K @)-Fo ) =07
Proposition (vdD'20): [Fp(a)] = [Fp] € KK(A, B).
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Local positivity condition

» Assumptions: Consider half-closed modules (A, (E1)g, D1) (with
essential representation), (A, (E)¢,D2), and (A, Ec, D), with
E := E; ®p E». We assume that A C A contains an (even) almost
idempotent approximate unit {u,} for A.
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ocal positivity condition

» Assumptions: Consider half-closed modules (A, (E1)g, D1) (with
essential representation), (A, (E)¢,D2), and (A, Ec, D), with
E := E; ®p E». We assume that A C A contains an (even) almost
idempotent approximate unit {u,} for A.

> Definition: the strong local positivity condition requires for each
n € IN that we have up - DomD C DomD; ® 1, and there exist
vp > 0 and ¢p > 0 such that for all £ € Dom D:
S 2

{((D1 ® 1)un | Dun) + (Dunl | (D1 @ 1)ual)
> vp((D1 @ 1)uné | (D1 @ 1)unl) — ¢{un | (1+D* D)™ 2u,¢).
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Kucerovsky's Theorem localised

Theorem (vdD'20)

Consider half-closed modules (A, (Ey)g, D1) (with essential
representation), (A, (Ez)c,D2), and (A, Ec, D), with E := E; Qg E;.
Assume that (Kucerovsky's) connection condition is satisfied, and that
A C A contains an (even) almost idempotent approximate unit {up} for
A, such that the strong local positivity condition is satisfied.
Then [D] = [D1] ®g [D2] € KK(A, C).
Praof. Stp1  shey he g e O, 0, = by b pu for O, Dy
- = CS Fdrf//‘w\/}, I occ//y ‘s

Gver ocwk<cz | Vhkew Ta,>0 s&

;(kZFO,( ,Fd"ﬁv,t{ 0117{,( =>-K 7(1(2 mod  cpte
57[62 2 CS PDI"f/'w'{; _9/0.290//9 J\or FO and ’?o'(o() :

ur LFp, Fo,(x)@ ) {u,= ;% X ZFok, likou@,]{(,% el

= —}'rl'('ra mod Cp’f ]
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The constructive approach

> Assumption: Given two half-closed modules (A, (E1)g, D1) (with
essential representation) and (B, (Ez) ¢, D2), write S := D1 ® 1 on
E := E; ®p E;. Consider an (odd) symmetric operator T on E, and
write D := S + 7. We assume:
(A1) D yields a half-closed module (A, E¢, D);
(A2) for ¢ dense in A - Dom Dy, the graded commutator

T 0 0 Ty\]|. )
{(0 D2>’(T$ 0)] is bounded on E @ E;

(A3) A C A contains an (even) almost idempotent approximate unit {u,}
for A, such that u, - DomD C DomS N DomT.

/&VD
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The constructive approach

> Assumption: Given two half-closed modules (A, (E1)g, D1) (with
essential representation) and (B, (Ez) ¢, D2), write S := D1 ® 1 on
E := E; ®p Ey. Consider an (odd) symmetric operator 7 on E, and
write D := S + 7. We assume:
(A1) D yields a half-closed module (A, E¢, D);
(A2) for ¢ dense in A - Dom Dy, the graded commutator

T 0 0 T .
{(0 D2> , (T$ Ozp)] is bounded on E @ E;

(A3) A C A contains an (even) almost idempotent approximate unit {u,}
for A, such that u, - DomD C DomS N DomT.

» Remark: (A2) ensures the connection condition is satisfied.

5Ty = T;)‘y/ =bdd o E, V&pedo».@
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The constructive approach

Theorem (vdD'20)

Given two half-closed modules (A, (E1)g, D1) (with essential
representation) and (B, (Ey) ¢, D2), write S := D1 ®1 on

E := E; ®pg E,. Consider an (odd) symmetric operator T on E, and
write D := S + T . Suppose the assumptions (A1)-(A3) are satisfied.
We assume there exists a core F C Dom D such that for all n € IN:

Then [D] = [D1] ®g [D2] € KK (A, C).
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The constructive approach

Theorem (vdD'20)

Given two half-closed modules (A, (E1)g, D1) (with essential
representation) and (B, (Ey) ¢, D2), write S := D1 ®1 on

E := E; ®pg E,. Consider an (odd) symmetric operator T on E, and
write D := S + T . Suppose the assumptions (A1)-(A3) are satisfied.
We assume there exists a core F C Dom D such that for all n € IN:

» up,-F C DomST NDomTS; and
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The constructive approach

Theorem (vdD'20)

Given two half-closed modules (A, (E1)g, D1) (with essential

representation) and (B, (Ey) ¢, D2), write S := D1 ®1 on

E := E; ®pg E,. Consider an (odd) symmetric operator T on E, and

write D := S + T . Suppose the assumptions (A1)-(A3) are satisfied.

We assume there exists a core F C Dom D such that for all n € IN:
» u,-F C DomST NDomTS; and

» there exist cp > 0 such that for ally € F:

IS, Tlunn|| < cal|(1+ D*D)1/2Un17||.

— l/ZS/Tz /s };{‘ofcper "
Then [D] = [D1] ®g [D2] € KK(A, C).

Prool rdea - ID,51= 25%4+ [S,T]ZzSz-c,, (/f-()”Oj/l

e caq Céaofe Vy =2 in Hhe ”‘1’7 loc pes CondFen,
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