Karen Strung Institute of Mathematics, Czech Academy of Sciences

(Joint with Fredy Díaz García, Réamonn Ó Buachalla, Andrey Krutov, Petr Somberg)

Positive Line Bundles Over the Irreducible Quantum Flag Manifolds

Global NCG Seminar 12.05.2021

Drinfeld-Jimbo quantum groups

Let $q \in \mathbb{R} \setminus \{-1, 0, 1\}$. Every finite-dimensional complex semisimple Lie algebra g admits a q-deformation of its universal enveloping algebra, $U_q(\mathfrak{g})$:

 \oslash rank(g) = r

• \mathfrak{h} a fixed Cartan subalgebra of \mathfrak{g} , with $\Delta \subset \mathfrak{h}^*$ corresponding root system

- $\square = \{\alpha_1, ..., \alpha_r\}$ choice simple roots
- that $(\alpha_i, \alpha_i) = 2$ for any shortest α_i

• Cartan matrix $A = (a_{ij})_{i,j=1,...,r}$ where $a_{ij} = (\alpha_i^{\vee}, \alpha_j)$ for coroot $\alpha_i^{\vee} = 2\alpha_i/(\alpha_i, \alpha_i)$

 $(\cdot, \cdot): \mathfrak{h}^* \times \mathfrak{h}^* \to \mathbb{C}$ symmetric bilinear form induced by Killing form of g, normalised so

Quantised enveloping algebra

for i = 1, ..., r subject to relations

and the quantum Serre relations.

Let $q_i = q^{(\alpha_i, \alpha_i)/2}$. The quantised enveloping algebra $U_q(\mathfrak{g})$ is generated by E_i, F_i, K_i, K_i^{-1}

 $K_i E_i = q_i^{a_{ij}} E_i K_i$, $K_i F_i = q_i^{-a_{ij}} F_i K_i$, $K_i K_i = K_i K_i$, $K_i K_i^{-1} = K_i^{-1} K_i = 1$,

Hopf algebra structure of $U_a(g)$

The quantised enveloping algebra $U_q(\mathfrak{g})$ admits a Hopf algebra structure: $\Delta(K_i) = K_i \otimes K_i, \quad \Delta(E_i) = E_0 \otimes K_i + 1 \otimes E_i, \quad \Delta(F_i) = F_i \otimes 1 + K_i^{-1} \otimes F_i,$ $S(E_i) = -E_i K_i^{-1}, \quad S(F_i) = -K_i F_i, \quad S(K_i) = K_i^{-1},$ $\epsilon(E_i) = \epsilon(F_i) = 0, \quad \epsilon(K_i) = 1.$

The compact real form of $U_{q}(\mathfrak{g})$ is given by the Hopf *-algebra structure

 $K_i^* = K_i, \quad E_i^* = K_i F_i, \quad F_i^* = E_i K_i^{-1}.$

Type-1 representations

 \odot \mathcal{P} the weight lattice of g

 \odot \mathcal{P}^+ dominant integral weights

$$E_i \triangleright v_\mu = 0, \quad K_i \triangleright v_\mu = q^{(\mu,\alpha_i)}v_\mu,$$

The vector v_{μ} is unique up to scalar multiple. A finite direct sum of such modules is called a type-1 representation.

A vector $v \in V_{\mu}$ is called a weight vector with weight $wt(v) \in \mathcal{P}$ if

 $K_i \triangleright v = q^{(\mathrm{wt}(v), \alpha_i)}v$, for all i = 1, ..., r.

For every $\mu \in \mathscr{P}^+$ there exists an irreducible finite-dimensional (left) $\mathscr{U}_q(\mathfrak{g})$ -module V_{μ} uniquely defined by the existence of a highest weight vector $v_{\mu} \in V_{\mu}$ such that

for i = 1, ..., r.

Quantum coordinate algebra

 $U_q(\mathfrak{g})$ -module structure. Given $v \in V, f \in V^*$, define $c_{f,v}^V : U_q(\mathfrak{g}) \to \mathbb{C}, \qquad X \mapsto f(X \triangleright v).$ The coordinate ring of V is then given by $C(V) := \operatorname{span}_{\mathbb{C}} \{ c_{f,v}^V \mid v \in V, f \in V^* \} \subset U_q(\mathfrak{g})^*.$ Let G be the compact, connected, simply-connected simple Lie group with \mathfrak{g} as its complexified Lie algebra. The quantum coordinate algebra of G is the Hopf subalgebra of $U_q(\mathfrak{g})^\circ$ given by

Let V be a finite-dimensional left $U_q(\mathfrak{g})$ -module and let V^* be its \mathbb{C} -linear dual with right

Quantum Levi subalgebra

Let $S \subset \{1, ..., r\}$ and consider the subset $\{\alpha_i\}_{i \in S}$ of simple roots. Then there is a Hopf *-algebra embedding of the quantum Levi subalgebra $U_q(l_S)$ $\iota_S: U_q(\mathfrak{l}_S) := \langle K_i, E_j, F_j \mid i = 1, \dots, r; j \in S \rangle \hookrightarrow U_q(\mathfrak{g}).$

Quantum flag manifold $O_a(G/L_S)$

elements,

 $\mathcal{O}_{q}(G/L_{S}) := {}^{U_{q}(\mathfrak{l}_{S})}\mathcal{O}_{q}(G) = \{a \in \mathcal{O}_{q}(G) \mid X \triangleright a = \epsilon(X)a\}.$

When $S = \{1, ..., r\} \setminus \{s\}$ where α_s has coefficient 1 in the expansion of the highest root of g, the quantum flag manifold $\mathcal{O}_q(G/L_S)$ is called irreducible.

The dual pairing $\langle \cdot, \cdot \rangle$ between $U_q(\mathfrak{g})$ and $\mathcal{O}_q(G)$ gives a left action \triangleright of $U_q(\mathfrak{l}_S)$ on $\mathcal{O}_q(G)$. The quantum flag manifold $\mathcal{O}_q(G/L_S)$ is then given by the space of space of invariant

Irreducible quantum flag manifolds

 A_n B_n C_n D_n D_n E_6 E_7

$\mathcal{O}_q(\mathrm{Gr}_{s,n+1})$	quantum Grassmannian
$\mathcal{O}_q(\mathbf{Q}_{2n+1})$	odd quantum quadric
$\mathcal{O}_q(\mathbf{L}_n)$	quantum Lagrangian Grassmannian
$\mathcal{O}_q(\mathbf{Q}_{2n})$	even quantum quadric
$\mathcal{O}_q(\mathbf{S}_n)$	quantum spinor variety
$\mathcal{O}_q(\mathbb{OP}^2)$	quantum Caley plane
$\mathcal{O}_q(\mathrm{F})$	quantum Freudenthal variety

Flag manifolds are great!

Classical flag manifolds have an extremely rich geometric structure. For example:

- They are complex manifolds.
- In fact, they are Kähler manifolds.
- of the best manifolds you could ask for!)
- for geometric representation theory.
- to combinatorics and integrable systems.
- geometry...

In fact, they can be equivalently described as compact homogeneous Kähler manifolds (corresponding to a compact connected semisimple Lie group).

An irreducible flag manifold is moreover a symmetric manifold. (These are some

The Borel–Weil theorem for line bundles over flag manifolds is a starting point

The study of their cohomology, Schubert Calculus, has fundamental connections

As a resident of the Czech Republic, I'd be remiss not to mention parabolic

Question: Do quantum flag manifolds admit a noncommutative geometry in

common with their classical counterparts?

Differential calculus over a *-algebra

graded algebra generated by elements of the form a, db for $a, b \in \Omega^0 \cong B$.

A differential *-calculus over B is a differential calculus such that the *-map of B extends to a conjugate-linear involution $*: \Omega^{\bullet} \to \Omega^{\bullet}$ s.t.

 $(\omega \wedge \nu)^* = (-1)^{kl} \nu^* \wedge \omega^*, \qquad \omega \in \Omega^k, \nu \in \Omega^l.$

The total degree of Ω^{\bullet} is the least integer m such that $\Omega^{k} = 0$ for every k > m. Let A be a Hopf *-algebra and suppose that B is a left A-comodule algebra. We say (Ω^{\bullet}, d) is left (A-)covariant if the coaction $\Delta_{I}: B \to A \otimes B$ extends to a left coaction $\Delta_L: \Omega^\bullet \to A \otimes \Omega^\bullet.$

Let B be a *-algebra. A differential calculus ($\Omega^{\bullet} = \Omega_{k \in \mathbb{N}} \Omega^{k}$, d) over B is a differential

Complex structures

An almost complex structure $\Omega^{(\bullet,\bullet)}$ for a differential *-calculus Ω^{\bullet} is an \mathbb{N}^2 -grading $\Omega^{(a,b)} \cong \Omega^{\bullet}$ such that, for every $(a,b) \in \mathbb{N}^2$, () $(a,b) \in \mathbb{N} \times \mathbb{N}$

 $\Omega^k = \bigoplus_{a+b=k} \Omega^{(a,b)},$

 $(\Omega^{(a,b)})^* = \Omega^{(b,a)}.$ A complex structure is an almost complex structure satisfying

E. Beggs, S. Paul Smith / Journal of Geometry and Physics 72 (2013)

and the \mathbb{N}^2 -decomposition is in the category of left A-comodules.

Masoud Khalkhali; Giovanni Landi; Walter Daniël van Suijlekom

International Mathematics Research Notices (Volume: 2011, Issue: 4, 2011)

If B is a left A-comodule algebra then a complex structure is covariant if Ω^{\bullet} is covariant

Dolbeault Double Complex

Let $\Omega^{(\bullet,\bullet)}$ be an almost complex structure and define projections $\operatorname{proj}_{\Omega^{(a+1,b)}}: \Omega^{a+b+1} \to \Omega^{a+1,b},$ and let ∂ and $\overline{\partial}$ be defined by $\partial |_{\Omega^{(a,b)}} = \operatorname{proj}_{\Omega^{(a+1,b)}} \circ d, \qquad \overline{\partial} |_{\Omega^{(a,b)}} = \operatorname{proj}_{\Omega^{(a,b+1)}} \circ d.$ If Ω^{\bullet} has a complex structure then d = $\partial + \overline{\partial}$, $\overline{\partial} \circ \partial = - \partial \circ \overline{\partial}$, $\partial^2 = \overline{\partial}^2 = 0$.

Note that ∂ , $\overline{\partial}$ satisfy the graded Leibniz rule.

$\operatorname{proj}_{\Omega^{(a,b+1)}}:\Omega^{a+b+1}\to\Omega^{a,b+1},$

The double complex $\left(\bigoplus_{(a,b)\in\mathbb{N}^2} \Omega^{(a,b)}, \partial, \overline{\partial} \right)$ is called the Dolbeault double complex of Ω^{\bullet} .

Kähler structures

Let $\Omega^{(\bullet,\bullet)}$ be a complex structure for a differential *-calculus over a *-algebra B. If Ω^{\bullet} has total degree 2n and there exists a central closed real form $\kappa \in \Omega^{(1,1)}$ which gives isomorphisms

 $L^{n-k}: \Omega^k \to \Omega^{2n-k}, \qquad k = 0, \dots, n-1$ where $L: \Omega^{\bullet} \to \Omega^{\bullet}, \omega \to \kappa \wedge \omega$ is the Lefschetz operator, then we say that the pair $(\Omega^{(\bullet,\bullet)},\kappa)$ is a Kähler structure. There exists a canonical Hodge map $*_{\kappa}: \Omega^{\bullet} \to \Omega^{\bullet}$ in analogy with the classical case.

A Kähler structure is positive definite if the associated Kähler metric

$$g_{\kappa}(\omega,\nu):=$$

is positive definite (i.e for every nonzero $\omega \in \Omega^{\bullet}$, $g_{\kappa}(\omega, \omega) = b^*b$ for some non-zero $b \in B$).

A long list of quantum miracles occurs*...

The existence of a Kähler structure implies many nice properties. For example, just looking at cohomological implications:

> \bigcirc Hodge decomposition of the de Rham complex (d, ∂ , $\overline{\partial}$ versions) \bigcirc Lefschetz identities \implies Hard Lefschetz theorem Kähler identities =>> Dolbeault cohomology refines de Rham cohomology: $H_d^k \cong \bigoplus_{a+b=k} H_{\partial}^{(a,b)} \cong \bigoplus_{a+b=k} H_{\overline{\partial}}^{(a,b)}$

Serre duality

0

• • •

Solution Kodaira vanishing for positive line bundles

*to paraphrase Bourguignon

Heckenberger-Kolb calculi

Over any irreducible quantum flag manifold $\mathcal{O}_q(G/L_S)$, there exists Theorem a unique finite-dimensional left $\mathcal{O}_q(G)$ -covariant differential *-calculus $\Omega_q^{\bullet}(G/L_S) \in \frac{\mathcal{O}_q(G)}{\mathcal{O}_q(G/L_S)} \mod$

which is of classical dimension, that is to say, satisfying $\dim \Phi \left(\Omega_q^k(G/L_S) \right) = \binom{2M}{k},$

where M is the complex dimension of the corresponding classical manifold.

quantum Grassmanni odd quantum quad quantum Lagrangian Grassmann even quantum quad quantum spinor varie quantum Cayley plan quantum Freudentahl varie

for all k = 0, ..., 2M,

	$\mathcal{O}_q(G/L_S)$	$M := \dim(\Omega^{(1,0)})$
ian	$\mathcal{O}_q(\mathrm{Gr}_{s,n+1})$	$s(n\!-\!s\!+\!1)$
ric	$\mathcal{O}_q(\mathbf{Q}_{2n+1})$	2n-1
ian	$\mathcal{O}_q(\mathbf{L}_n)$	$\frac{n(n+1)}{2}$
ric	${\cal O}_q({f Q}_{2n})$	2(n-1)
ety	$\mathcal{O}_q(\mathbf{S}_n)$	$\frac{n(n-1)}{2}$
16	$\mathcal{O}_q(\mathbb{OP}^2)$	16
ety	$\mathcal{O}_q(\mathrm{F})$	27

I. Heckenberger, S. Kolb / Journal of Algebra 305 (2006)

Heckenberger-Kolb calculi are Kähler

(Matassa) The Heckenberger-Kolb calculus of an irreducible quantum flag manifold admits a unique covariant Kähler structure.

Consequently, we have all the properties that come along with a Kähler structure, in particular the important results on cohomology we saw before:

- Hodge decomposition
- Hard Lefschetz theorem
- Serre duality

0

. . .

Olbeault refinement of de Rham cohomology: $H_{d}^{k} \cong \bigoplus_{a+b=k} H_{d}^{(a,b)} \cong \bigoplus_{a+b=k} H_{\overline{d}}^{(a,b)}$ Solution Kodaira vanishing for positive line bundles

In particular, all cohomology groups have at least classical dimension!

Vector bundles and connections

By a vector bundle over a *-algebra B, we mean a finitely-generated projective (left) B-module \mathscr{E} .

If \mathscr{E} is moreover a *B*-bimodule and there exists a *B*-module \mathscr{E}^{\vee} such that $\mathscr{E} \otimes_R \mathscr{E}^{\vee} \cong \mathscr{E}^{\vee} \otimes_R \mathscr{E} \cong B$, then we say that \mathscr{E} is a line bundle over B. on \mathscr{F} is a \mathbb{C} -linear map $\nabla : \mathscr{F} \to \Omega^1 \otimes_R \mathscr{F}$ satisfying $\nabla(bg) = db \otimes f + b \nabla f$, for every $b \in B, f \in \mathcal{F}$.

Given a complex structure $\Omega^{(\bullet,\bullet)}$, a (0,1)-connection on \mathcal{F} is a connection with respect to the differential calculus $(\Omega^{(0,\bullet)}, \overline{\partial})$.

Let (Ω^{\bullet}, d) be a differential calculus over B and let \mathcal{F} be a left B-module. A connection

Curvature and holomorphic vector bundles

Any connection extends to a map $\nabla: \Omega^{\bullet} \otimes_{R} \mathscr{F} \to \Omega^{\bullet} \otimes_{R} \mathscr{F}$ uniquely determined by $\nabla(\omega \otimes f) = \mathrm{d}\omega \otimes f + (-1)^{|\omega|} \omega \wedge \nabla f,$ for every $f \in \mathcal{F}$, and $\omega \in \Omega^{\bullet}$ a homogeneous form with degree $|\omega|$. The curvature of a connection is the the left B-module map $\nabla^2 : \mathscr{F} \to \Omega^2 \otimes_B \mathscr{F}$. The connection is flat if $\nabla^2 = 0$. A holomorphic vector bundle over B is a pair $(\mathcal{F}, \overline{\partial}_{\mathcal{F}})$, where \mathcal{F} is a finitely generated projective left B-module and $\overline{\partial}_{\mathscr{F}}: \mathscr{F} \to \Omega^{(0,1)} \otimes_{\mathcal{B}} \mathscr{F}$ is a flat (0,1)-connection on \mathscr{F} . We call $\overline{\partial}_{\mathcal{F}}$ the holomorphic structure for $(\mathcal{F}, \overline{\partial}_{\mathcal{F}})$. Since $\overline{\partial}_{\mathscr{F}}:\mathscr{F}\to\Omega^{(0,1)}\otimes_{B}\mathscr{F}$ is a flat (0,1)-connection, the pair $(\Omega^{(a,\bullet)}\otimes_{B}\mathscr{F},\overline{\partial}_{\mathscr{F}})$ is a complex for any fixed $a \in \mathbb{N}$. For $b \in \mathbb{N}$, we denote by $H^{(a,b)}_{\overline{\partial}}(\mathcal{F})$ the b^{th} cohomology group of this complex.

Hermitian vector bundles

An Hermitian vector bundle over a *-algebra B is a pair $(\mathcal{F}, h_{\mathcal{F}})$ consisting of a finitely generated projective left B-module \mathcal{F} together with a non-degenerate sesquilinear pairing $h_{\mathcal{F}}: \mathcal{F} \times \mathcal{F} \to B$ satisfying

• $h_{\mathcal{F}}(bf,g) = bh_{\mathcal{F}}(f,g)$ for every $f,g \in \mathcal{F}, b \in B$,

• $h_{\mathcal{F}}(f,g) = bh_{\mathcal{F}}(g,f)^*$ for every $f,g \in \mathcal{F}$,

• for every non-zero $f \in \mathcal{F}$ there exists a non-zero $b \in B$ such that $h_{\mathcal{F}}(f, f) = b^*b$.

Holomorphic Hermitian vector bundles

map

 $h_{\Omega^{\bullet}\otimes_{\mathcal{P}}\mathscr{F}}: \Omega^{\bullet}\otimes_{B}\mathscr{F}\times\Omega^{\bullet}\otimes_{B}\mathscr{F}\to B$

by putting $h_{\Omega^{\bullet}\otimes_{R}\mathscr{F}}(\omega\otimes f,\nu\otimes g) = g_{\sigma}(\omega h_{\mathscr{F}}(f,g),\nu)$ for every $f,g\in\mathscr{F},\omega,\nu\in\Omega^{\bullet}$.

Let $(\mathcal{F}, h_{\mathcal{F}})$ be an Hermitian vector bundle and define $\mathfrak{h}_{\mathscr{F}}: \Omega^{\bullet} \otimes_{R} \mathscr{F} \to \Omega^{\bullet} \otimes_{R} \mathscr{F}, \quad (\omega \otimes f, \nu \otimes g) \mapsto \omega h_{\mathscr{F}}(g, f) \wedge \nu^{*}.$ A connection $\nabla : \mathscr{F} \to \Omega^1 \otimes_R \mathscr{F}$ is Hermitian if $d\mathfrak{h}_{\mathscr{F}}(f,g) = \mathfrak{h}_{\mathscr{F}}(\nabla(f), 1 \otimes g) + \mathfrak{h}_{\mathscr{F}}(1 \otimes f, \nabla(g))$ for every $f, g \in \mathscr{F}$.

A holomorphic Hermitian vector bundle is a triple $(\mathcal{F}, h_{\mathcal{F}}, \partial_{\mathcal{F}})$ such that $(\mathcal{F}, h_{\mathcal{F}})$ and $(\mathcal{F}, \overline{\partial}_{\mathcal{F}})$ is a holomorphic vector bundle

Note that if $(\Omega^{(\bullet,\bullet)}, \sigma)$ is an Kähler structure, then $(\Omega^{\bullet}, g_{\sigma})$ is an Hermitian vector bundle. In that case, if $(\mathcal{F}, h_{\mathcal{F}})$ is an Hermitian vector bundle over B we can define a sesquilinear

Chern connection and positivity

Edwin Beggs and Shahn Majid

J. Noncommut. Geom. 11 (2017), 669–701

For any Hermitian holomorphic vector bundle $(\mathcal{F}, h_{\mathcal{F}}, \overline{\partial}_{\mathcal{F}})$ there exists a unique Hermitian connection $\nabla: \mathscr{F} \to \Omega^1 \otimes_R \mathscr{F}$ satisfying $\overline{\partial} = (\operatorname{proj}_{\Omega^{(1,0)}} \otimes \operatorname{id}) \circ \nabla$.

We call ∇ the Chern connection of (\mathcal{F}, h)

The following was first defined in

A Kodaira Vanishing Theorem for Noncommutative Kahler Structures arXiv:1801.08125 Réamonn Ó Buachalla, Jan Stovicek, Adam-Christiaan van Roosmalen

Definition Let Ω^{\bullet} be a differential calculus over a *-algebra B, and let $(\Omega^{(\bullet,\bullet)},\kappa)$ be a Kähler structure for Ω^{\bullet} . An Hermitian holomorphic vector bundle $(\mathcal{F}, h_{\mathcal{F}}, \overline{\partial}_{\mathcal{F}})$ is said to be *positive* written $\mathcal{F} > 0$, if there exists $\theta \in \mathbb{R}_{>0}$, such that the Chern connection ∇ of \mathcal{F} satisfies

 $\nabla^2(f) = -\theta \mathbf{i} \kappa \otimes f,$

Analogously, $(\mathcal{F}, h_{\mathcal{F}}, \overline{\partial}_{\mathcal{F}})$ is said to be *negative* written $\mathcal{F} < 0$, if there exists $\theta \in$ $\mathbb{R}_{>0}$, such that the Chern connection ∇ of \mathcal{F} satisfies

 $\nabla^2(f) = \theta \mathbf{i} \kappa \otimes f,$

$$(\mathcal{F},\overline{\partial}_{\mathcal{F}})$$
 .

for all $f \in \mathcal{F}$.

for all $f \in \mathcal{F}$.

Circle bundle over $\mathcal{O}_{q}(G/L_{s})$

Define $U_q(\mathfrak{l}_S^s) := \langle K_j, E_j, F_j \mid j \in S \rangle \subset U_q(\mathfrak{g})$. Using a similar construction to that of $\mathcal{O}_{q}(G/L_{S})$, we define a quantum homogeneous space $\mathcal{O}_{q}(G/L_{S}^{s}) := U_{q}(\mathfrak{l}_{S}^{s}) \mathcal{O}_{q}(G).$

sum of $\mathcal{O}_q(G)$ -covariant line bundles over $\mathcal{O}_q(G/L_S)$.

It can be shown that all $\mathcal{O}_q(G)$ -covariant line bundles over $\mathcal{O}_q(G/L_S)$ arise in this way.

- $\mathcal{O}_{g}(G/L_{S}^{s})$ admits a free U(1)-action whose fixed point subalgebra is given by $\mathcal{O}(G/L_{S})$. Thus we think of $\mathcal{O}_q(G/L_S^s)$ as the total space of a principal circle bundle over $\mathcal{O}_q(G/L_S)$.
- The induced strong Z-grading $\mathcal{O}_q(G/L_S^s) = \bigoplus_{k \in \mathbb{Z}} \mathscr{C}_k$ then gives a decomposition into a direct

A well-studied special case is that of $\mathcal{O}_q(\mathbb{CP}^n)$. Here $\mathcal{O}_q(G/L_S^s)$ is the odd-dimensional quantum sphere $\mathcal{O}_q(S^{2n-1})$. Setting n = 1, we get the celebrated quantum Hopf fibration over the Podleś sphere.

THEOREM [DG-K-ÓB-S-S]: For every covariant line bundle \mathscr{E}_k over $\mathscr{O}_q(G/L_S)$ there exists a unique covariant (0,1)-connection $\overline{\partial}_{\mathscr{C}_k}: \mathscr{C}_k \to \Omega_q^{(0,1)}(G/L_S)$ Moreover, $\overline{\partial}_{\mathscr{C}_k}$ is flat and hence is an holo

Since each line bundle \mathscr{E}_k has a unique covariant Hermitian structure and hence a Chern connection, we can consider the question of positivity.

$$\otimes_{\mathcal{O}_q(G/L_S)} \mathscr{E}_k.$$

q-Deformed invariants

An important point to note is that the numerical invariants given by curvature are non-classical. They are q-deformed!

GD-K-ÓB-S-S:

 $\mathcal{O}_{q}(\mathbb{CP}^{n})$, it holds that

$$abla^2(e) = -(k)_{q^{-2/(n+1)}} \mathbf{i} \kappa \otimes e$$

where we have chosen the unique Kähler form κ satisfying $\nabla^2(e) = -\mathbf{i}\kappa \otimes e,$ (19)

Proposition 5.3. For any positive line bundle \mathcal{E}_k over quantum projective space

- for all $e \in \mathcal{E}_k$, e,
- - for all $e \in \mathcal{E}_1$.

A Kodaira Vanishing Theorem for Noncommutative Kahler Structures arXiv:1801.08125 Réamonn Ó Buachalla, Jan Stovicek, Adam-Christiaan van Roosmalen

calculus with a complex structure. For any positive vector bundle $(\mathcal{F}, \overline{\partial}_{\mathcal{F}}, h)$ $H^{(a,b)}(\mathcal{F}) = 0,$

Using this one can show that if \mathcal{F} is a negative line bundle over $\mathcal{O}_{a}(G/L_{S})$ we have $H_{\overline{a}}^{(a,b)} = 0$ whenever a + b < n. Corollary: Let \mathcal{F} be a covariant line bundle over $\mathcal{O}_{q}(G/L_{S})$. Then • If $H^0_{\overline{\partial}}(\mathscr{E}) \neq 0$ and $H^0_{\partial}(\mathscr{F}) = 0$, then $\mathscr{F} > 0$. • If $H^0_{\partial}(\mathscr{E}) \neq 0$ and $H^0_{\overline{\partial}}(\mathscr{F}) = 0$, then $\mathscr{F} < 0$.

Theorem 8.3 (Kodaira Vanishing). Let $(\Omega^{(\bullet,\bullet)}, \overline{\partial}, \partial)$ be an A-covariant *-differential

whenever a + b > n.

Results of many hands (Beggs–Majid, Khalkhali–Landi–van Suijlekom, Landi– Moatadelro, Carotenuto–Mrozinski–Ó Buachalla and Díaz García–Ó Buachalla) calculate the degree zero cohomology:

[Borel–Weil] For every irreducible quantum flag manifold $\mathcal{O}_q(G/L_S)$ there are $U_q(\mathfrak{g})$ -module isomorphisms

\$H_{\overline{\partial}}^0(\mathscr{C}_k) \cong V_{k\varpi_s}\$, for \$k \ge 0\$
particular, $H_{\overline{\partial}}^0(\mathscr{C}_k) \neq 0$.
$H_{\overline{\partial}}^0(\mathscr{C}_k) = 0$, for $k < 0$.$

• $H^0_{\overline{\partial}}(\mathscr{C}_k) \cong V_{k\varpi_s}$, for $k \ge 0$, where ϖ_S a fundamental weight. In

Analytic Applications

For any covariant Kähler structure over a compact quantum homogeneous space, the associated Dolbeault–Dirac operator $\overline{\partial} + \overline{\partial}^*$ is essentially self-adjoint, has bounded commutators, and is diagonalisable (Das-Ó Buachalla–Somberg). The compact resolvent condition is more challenging . . .

However, twisting $\overline{\partial} + \overline{\partial}^*$ by a negative line bundle $\mathscr{E} < 0$, and applying the noncommutative version of the Akizuki–Nakano identity

Corollary 6.12 (Akizuki–Nakano identity). It holds that $\Delta_{\overline{\partial}_{\mathcal{F}}} = \Delta_{\partial_{\mathcal{F}}} + [\mathbf{i}\nabla^2, \Lambda_{\mathcal{F}}].$

shows that the spectrum has a strictly positive lower bound. From this one can conclude that these operators are Fredholm, making $(\mathcal{O}_{a}(G/L_{S}), L^{2}(\Omega^{(0, \bullet)} \otimes \mathscr{E}_{k}), \partial_{\mathscr{E}_{k}} + \overline{\partial}_{\mathscr{E}}^{*})$ excellent candidates for spectral triples.

Dolbeault-Dirac Fredholm Operators for Quantum Homogeneous Spaces Biswarup Das, Réamonn Ó Buachalla, Petr Somberg arXiv:1910.14007

Thanks for Listening!

M A R Y A M M I R Z A K H A N I

MODULI SPACES

And happy birkhday to Maryam Mirzakhani!

