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Drinfeld—Jimbo quantum groups

Let . Every finite-dimensional complex semisimple Lie algebra  admits 
a -deformation of its universal enveloping algebra, :

q ∈ ℝ∖{−1,0,1} 𝔤
q Uq(𝔤)

rank( ) = 𝔤 r

 a fixed Cartan subalgebra of , with  corresponding root system𝔥 𝔤 Δ ⊂ 𝔥*

 symmetric bilinear form induced by Killing form of , normalised so 
that  for any shortest 
( ⋅ , ⋅ ) : 𝔥* × 𝔥* → ℂ 𝔤

(αi, αi) = 2 αi

 choice simple rootsΠ = {α1, …, αr}

Cartan matrix  where  for coroot A = (aij)i,j=1,…,r aij = (α∨
i , αj) α∨

i = 2αi/(αi, αi)



Quantised enveloping algebra

Let . The quantised enveloping algebra  is generated by  
for  subject to relations

qi = q(αi,αi)/2 Uq(𝔤) Ei, Fi, Ki, K−1
i

i = 1,…, r

KiEj = qaij
i EjKi, KiFj = q−aij

i FjKi, KiKj = KjKi, KiK−1
i = K−1

i Ki = 1,

EiFj − FjEi = δij
Ki − K−1

i

qi − q−1
i

,

and the quantum Serre relations.



The quantised enveloping algebra  admits a Hopf algebra structure:Uq(𝔤)

Δ(Ki) = Ki ⊗ Ki, Δ(Ei) = E0 ⊗ Ki + 1 ⊗ Ei, Δ(Fi) = Fi ⊗ 1 + K−1
i ⊗ Fi,

S(Ei) = − EiK−1
i , S(Fi) = − KiFi, S(Ki) = K−1

i ,

ϵ(Ei) = ϵ(Fi) = 0, ϵ(Ki) = 1.

The compact real form of  is given by the Hopf *-algebra structureUq(𝔤)

K*i = Ki, E*i = KiFi, F*i = EiK−1
i .

Hopf algebra structure of Uq(𝔤)



 the weight lattice of 𝒫 𝔤

 dominant integral weights𝒫+

For every  there exists an irreducible finite-dimensional (left) -module  
uniquely defined by the existence of a highest weight vector  such that 

μ ∈ 𝒫+ 𝒰q(𝔤) Vμ

vμ ∈ Vμ

       for Ei ▹ vμ = 0, Ki ▹ vμ = q(μ,αi)vμ, i = 1,…, r .

The vector  is unique up to scalar multiple. A finite direct sum of such modules is 
called a type-1 representation.

vμ

A vector  is called a weight vector with weight  if  v ∈ Vμ wt(v) ∈ 𝒫

   for all  Ki ▹ v = q(wt(v),αi)v, i = 1,…, r .

Type-1 representations



Let  be a finite-dimensional left -module and let  be its -linear dual with right 
-module structure. Given , define

V Uq(𝔤) V* ℂ
Uq(𝔤) v ∈ V, f ∈ V*

cV
f,v : Uq(𝔤) → ℂ, X ↦ f(X ▹ v) .

The coordinate ring of V is then given by

C(V) := spanℂ{cV
f,v ∣ v ∈ V, f ∈ V*} ⊂ Uq(𝔤)* .

Quantum coordinate algebra

Let  be the compact, connected, simply-connected simple Lie group with  as its 
complexified Lie algebra. The quantum coordinate algebra of  is the Hopf 
subalgebra of  given by  

G 𝔤
G

Uq(𝔤)∘

𝒪q(G) := ⨁
μ∈𝒫+

C(Vμ) .



Let  and  consider the subset  of simple roots. S ⊂ {1,…, r} {αi}i∈S

Then there is a Hopf *-algebra embedding of the quantum Levi subalgebra Uq(𝔩S)

ιS : Uq(𝔩S) := ⟨Ki, Ej, Fj ∣ i = 1,…, r; j ∈ S⟩ ↪ Uq(𝔤) .

Quantum Levi subalgebra



Quantum flag manifold 𝒪q(G/LS)

The quantum flag manifold  is then given by the space of space of invariant 
elements,

𝒪q(G/LS)

𝒪q(G/LS) := Uq(𝔩S)𝒪q(G) = {a ∈ 𝒪q(G) ∣ X ▹ a = ϵ(X)a} .

When  where  has coefficient 1 in the expansion of the highest 
root of , the quantum flag manifold  is called irreducible.

S = {1,…, r}∖{s} αs
𝔤 𝒪q(G/LS)

The dual pairing  between  and  gives a left action  of  on .⟨ ⋅ , ⋅ ⟩ Uq(𝔤) 𝒪q(G) ▹ Uq(𝔩S) 𝒪q(G)



Irreducible quantum flag manifolds



Flag manifolds are great!
Classical flag manifolds have an extremely rich geometric structure. For example: 

They are complex manifolds. 

In fact, they are Kähler manifolds.

In fact, they can be equivalently described as compact homogeneous Kähler 
manifolds (corresponding to a compact connected semisimple Lie group).

An irreducible flag manifold is moreover a symmetric manifold. (These are some 
of the best manifolds you could ask for!)
The Borel—Weil theorem for line bundles over flag manifolds is a starting point 
for geometric representation theory.

The study of their cohomology, Schubert Calculus, has fundamental connections 
to combinatorics and integrable systems.

As a resident of the Czech Republic, I’d be remiss not to mention parabolic 
geometry…



Question: Do quantum flag manifolds 
admit a noncommutative geometry in 
common with their classical counterparts?



Differential calculus over a *-algebra
Let  be a *-algebra. A differential calculus  over  is a differential 
graded algebra generated by elements of the form   for 

B (Ω∙ = Ωk∈ℕΩk, d) B
a, db a, b ∈ Ω0 ≅ B .

The total degree of  is the least integer  such that  for every .  Ω∙ m Ωk = 0 k > m

A differential *-calculus over B is a differential calculus such that the *-map of B 
extends to a conjugate-linear involution  s.t.* : Ω∙ → Ω∙

 d(ω*) = (dω)*, ω ∈ Ω∙

(ω ∧ ν)* = (−1)klν* ∧ ω*, ω ∈ Ωk, ν ∈ Ωl .

Let  be a Hopf *-algebra and suppose that  is a left -comodule algebra. We say 
 is left (A-)covariant if the coaction  extends to a left coaction 

. 

A B A
(Ω∙, d) ΔL : B → A ⊗ B
ΔL : Ω∙ → A ⊗ Ω∙



Complex structures
An almost complex structure  for a differential *-calculus  is an -grading 

 such that, for every , 
Ω(∙,∙) Ω∙ ℕ2

⨁
(a,b)∈ℕ×ℕ

Ω(a,b) ≅ Ω∙ (a, b) ∈ ℕ2

 Ωk = ⨁
a+b=k

Ω(a,b),

(Ω(a,b))* = Ω(b,a) .
A complex structure is an almost complex structure satisfying

 for every dΩ(a,b) ⊂ Ω(a+1,b) ⊕ Ω(a,b+1), (a, b) ∈ ℕ2 .

If  is a left -comodule algebra then a complex structure is covariant if  is covariant 
and the -decomposition is in the category of left -comodules.

B A Ω∙

ℕ2 A



Dolbeault Double Complex
Let  be an almost complex structure and define projections Ω(∙,∙)

and let  and  be defined by ∂ ∂

projΩ(a+1,b) : Ωa+b+1 → Ωa+1,b, projΩ(a,b+1) : Ωa+b+1 → Ωa,b+1,

∂ |Ω(a,b) = projΩ(a+1,b) ∘ d, ∂ |Ω(a,b) = projΩ(a,b+1) ∘ d .

If  has a complex structure then Ω∙

d = ∂ + ∂, ∂ ∘ ∂ = − ∂ ∘ ∂, ∂2 = ∂2 = 0.

The double complex  is called the Dolbeault double complex of ( ⊕(a,b)∈ℕ2 Ω(a,b), ∂, ∂) Ω∙ .

Note that  satisfy the graded Leibniz rule.∂, ∂





Let  be a complex structure for a differential *-calculus over a *-algebra . If 
 has total degree  and there exists a central closed real form  which 

gives isomorphisms

Ω(∙,∙) B
Ω∙ 2n κ ∈ Ω(1,1)

Ln−k : Ωk → Ω2n−k, k = 0,…, n − 1
where  is the Lefschetz operator, then we say that the pair 

 is a Kähler structure. There exists a canonical Hodge map  in 
analogy with the classical case. 

L : Ω∙ → Ω∙, ω → κ ∧ ω
(Ω(∙,∙), κ) *κ : Ω∙ → Ω∙

Kähler structures

gκ(ω, ν) :=
*κ (ω ∧ *κ (ν*)), k = l,
0, k ≠ l .{

A Kähler structure is positive definite if the associated Kähler metric

is positive definite (ie. for every nonzero   for some non-zero ).ω ∈ Ω∙, gκ(ω, ω) = b*b b ∈ B





A long list of quantum miracles occurs*…

*to paraphrase Bourguignon 

The existence of a Kähler structure implies many nice properties. For example, just 
looking at cohomological implications:

Hodge decomposition of the de Rham complex (  versions)d, ∂, ∂

Lefschetz identities  Hard Lefschetz theorem⟹

Kähler identities  Dolbeault cohomology refines de Rham 
cohomology:  

⟹
Hk

d ≅ ⊕a+b=k H(a,b)
∂ ≅ ⊕a+b=k H(a,b)

∂

Kodaira vanishing for positive line bundles

Serre duality

…



Heckenberger—Kolb calculi

.

quantum Grassmannian
odd quantum quadric

quantum Lagrangian Grassmannian
even quantum quadric

quantum spinor variety
quantum Cayley plane

quantum Freudentahl variety



(Matassa) The Heckenberger—Kolb calculus of an irreducible quantum flag 
manifold admits a unique covariant Kähler structure. 

Consequently, we have all the properties that come along with a Kähler 
structure, in particular the important results on cohomology we saw before:

Hodge decomposition
Hard Lefschetz theorem

Dolbeault refinement of de Rham cohomology:  
Hk

d ≅ ⊕a+b=k H(a,b)
∂ ≅ ⊕a+b=k H(a,b)

∂
Kodaira vanishing for positive line bundles

Serre duality

…

In particular, all cohomology groups have at least classical dimension!

Heckenberger—Kolb calculi are Kähler



Vector bundles and connections

By a vector bundle over a *-algebra , we mean a finitely-generated projective (left) 
-module .

B
B ℰ

If  is moreover a -bimodule and there exists a -module  such that 
, then we say that  is a line bundle over .

ℰ B B ℰ∨

ℰ ⊗B ℰ∨ ≅ ℰ∨ ⊗B ℰ ≅ B ℰ B

Let  be a differential calculus over  and let  be a left -module.  A connection 
on  is a -linear map  satisfying

(Ω∙, d) B ℱ B
ℱ ℂ ∇ : ℱ → Ω1 ⊗B ℱ

,          for every ∇(bg) = db ⊗ f + b∇f b ∈ B, f ∈ ℱ .

Given a complex structure , a -connection on  is a connection with respect 
to the differential calculus .

Ω(∙,∙) (0,1) ℱ
(Ω(0,∙), ∂)



Any connection extends to a map  uniquely determined by∇ : Ω∙ ⊗B ℱ → Ω∙ ⊗B ℱ

  ∇(ω ⊗ f ) = dω ⊗ f + (−1)|ω|ω ∧ ∇f,

for every  and  a homogeneous form with degree .f ∈ ℱ, ω ∈ Ω∙ |ω |

Curvature and holomorphic vector bundles

The curvature of a connection is the the left -module map . The 
connection is flat if 

B ∇2 : ℱ → Ω2 ⊗B ℱ
∇2 = 0.

A holomorphic vector bundle over  is a pair , where  is a finitely generated 
projective left -module and  is a flat -connection on .

B (ℱ, ∂ℱ) ℱ
B ∂ℱ : ℱ → Ω(0,1) ⊗B ℱ (0,1) ℱ

We call  the holomorphic structure for .∂ℱ (ℱ, ∂ℱ)

Since  is a flat -connection, the pair  is a 
complex for any fixed  For , we denote by  the  cohomology 
group of this complex.

∂ℱ : ℱ → Ω(0,1) ⊗B ℱ (0,1) (Ω(a,∙) ⊗B ℱ, ∂ℱ)
a ∈ ℕ . b ∈ ℕ H(a,b)

∂
(ℱ) bth



Hermitian vector bundles

An Hermitian vector bundle over a *-algebra  is a pair  consisting of a 
finitely generated projective left -module  together with a non-degenerate 
sesquilinear pairing  satisfying

B (ℱ, hℱ)
B ℱ

hℱ : ℱ × ℱ → B

 for every hℱ(bf, g) = bhℱ( f, g) f, g ∈ ℱ, b ∈ B,

 for every hℱ( f, g) = bhℱ(g, f )* f, g ∈ ℱ,

for every non-zero  there exists a non-zero  such that .f ∈ ℱ b ∈ B hℱ( f, f ) = b*b



Note that if  is an Kähler structure, then  is an Hermitian vector bundle. In 
that case, if  is an Hermitian vector bundle over  we can define a sesquilinear 
map 

(Ω(∙,∙), σ) (Ω∙, gσ)
(ℱ, hℱ) B

hΩ∙⊗Bℱ : Ω∙ ⊗B ℱ × Ω∙ ⊗B ℱ → B

by putting  for every  hΩ∙⊗Bℱ(ω ⊗ f, ν ⊗ g) = gσ(ωhℱ( f, g), ν) f, g ∈ ℱ, ω, ν ∈ Ω∙ .

Let  be an Hermitian vector bundle and define(ℱ, hℱ)

𝔥ℱ : Ω∙ ⊗B ℱ → Ω∙ ⊗B ℱ, (ω ⊗ f, ν ⊗ g) ↦ ωhℱ(g, f ) ∧ ν* .

A connection  is Hermitian if∇ : ℱ → Ω1 ⊗B ℱ

 for every d𝔥ℱ( f, g) = 𝔥ℱ(∇( f ),1 ⊗ g) + 𝔥ℱ(1 ⊗ f, ∇(g)) f, g ∈ ℱ .

A holomorphic Hermitian vector bundle is a triple  such that  
and  is a holomorphic vector bundle

(ℱ, hℱ, ∂ℱ) (ℱ, hℱ)
(ℱ, ∂ℱ)

Holomorphic Hermitian vector bundles



Chern connection and positivity
For any Hermitian holomorphic vector bundle  
there exists a unique Hermitian connection 

 satisfying .

(ℱ, hℱ, ∂ℱ)

∇ : ℱ → Ω1 ⊗B ℱ ∂ = (projΩ(1,0) ⊗ id) ∘ ∇

 We call  the Chern connection of ∇ (ℱ, hℱ, ∂ℱ) .

The following was first defined in 

negative

positive



Circle bundle over 𝒪q(G/Ls)
Define . Using a similar construction to that of 

, we define a quantum homogeneous space
Uq(𝔩s

S) := ⟨Kj, Ej, Fj ∣ j ∈ S⟩ ⊂ Uq(𝔤)
𝒪q(G/LS)

𝒪q(G/Ls
S) := Uq(𝔩s

S)𝒪q(G) .

 admits a free -action whose fixed point subalgebra is given by . 
Thus we think of  as the total space of a principal circle bundle over  
𝒪q(G/Ls

S) U(1) 𝒪(G/LS)
𝒪q(G/Ls

S) 𝒪q(G/LS) .

The induced strong -grading  then gives a decomposition into a direct 
sum of -covariant line bundles over 

ℤ 𝒪q(G/Ls
S) = ⊕k∈ℤ ℰk

𝒪q(G) 𝒪q(G/LS) .

It can be shown that all  -covariant line bundles over  arise in 
this way. 

𝒪q(G) 𝒪q(G/LS)



THEOREM [DG—K—ÓB—S—S]: For every covariant line bundle  over  
there exists a unique covariant -connection 

ℰk 𝒪q(G/LS)
(0,1)

Moreover,  is flat and hence is an holomorphic structure.∂ℰk

∂ℰk
: ℰk → Ω(0,1)

q (G/LS) ⊗𝒪q(G/LS) ℰk .

Since each line bundle  has a unique covariant Hermitian structure and hence a 
Chern connection, we can consider the question of positivity.

ℰk

A well-studied special case is that of . Here  is the odd-dimensional 
quantum sphere  Setting , we get the celebrated quantum Hopf fibration 
over the Podleś sphere.

𝒪q(ℂℙn) 𝒪q(G/Ls
S)

𝒪q(S2n−1) . n = 1



An important point to note is that the numerical invariants given by curvature are 
non-classical. They are -deformed!q

GD—K—ÓB—S—S:

q-Deformed invariants



Using this one can show that if  is a negative line bundle over  we 
have  whenever 

ℱ 𝒪q(G/LS)
H(a,b)

∂ℱ
= 0 a + b < n .

Corollary: Let  be a covariant line bundle over . Thenℱ 𝒪q(G/LS)
If  and , then H0

∂(ℰ) ≠ 0 H0
∂ (ℱ) = 0 ℱ > 0.

If  and , then H0
∂ (ℰ) ≠ 0 H0

∂(ℱ) = 0 ℱ < 0.



[Borel—Weil] For every irreducible quantum flag manifold  there are 
-module isomorphisms

𝒪q(G/LS) Uq(𝔤)

 ,  for  where  a fundamental weight. In 

particular,  

H0
∂(ℰk) ≅ Vkϖs

k ≥ 0, ϖS

H0
∂(ℰk) ≠ 0.

 , for H0
∂(ℰk) = 0 k < 0.

Results of many hands (Beggs—Majid, Khalkhali—Landi—van Suijlekom, Landi—
Moatadelro, Carotenuto—Mrozinski—Ó Buachalla and Díaz García—Ó Buachalla) 
calculate the degree zero cohomology:

THEOREM [DG—K—ÓB—S—S] For any irreducible quantum flag manifold it holds that, 
for any ,k ∈ ℕ

ℰk > 0,
ℰ−k < 0.



For any covariant Kähler structure over a compact quantum homogeneous space, the 
associated Dolbeault—Dirac operator  is essentially self-adjoint, has bounded 
commutators, and is diagonalisable (Das--Ó Buachalla—Somberg). The compact 
resolvent condition is more challenging . . .  

However, twisting   by a negative line bundle , and applying the 
noncommutative version of the Akizuki—Nakano identity 

∂ + ∂*

∂ + ∂* ℰ < 0

Analytic Applications

shows that the spectrum has a strictly positive lower bound. From this one can conclude 
that these operators are Fredholm, making  

excellent candidates for spectral triples. 

(𝒪q(G/LS), L2(Ω(0,∙) ⊗ ℰk), ∂ℰ−k
+ ∂*ℰ−k

)



Thanks for listening!

And happy birthday to Maryam Mirzakhani!


